有机质谱裂解规律
- 格式:doc
- 大小:18.00 KB
- 文档页数:1
分子式的推导 不饱和度:2
2a 1)n (UN b -++= (n 为分子中4价原子数目,a 为分子中3价原子数目,b 为分子中1价原子数目,2价的硫、养原子存在对UN 无影响,若S 、N 、P 为高价态时,计算值会低于分子的不饱和数)。
由C 、H 、N 、O (、S )元素组成的化合物,通用分子式为:)(s w z y x S O N H C ,其同位素峰簇的相对强度可由下列公式计算(略去H 2、O 17的贡献):
)()(()()()(.4s 4.2w 0200.1x 1100M)RA 2M RA )8.0(z 37.0x 1.1100M RA 1M RA 2++=⨯+++=⨯+s 化合物若含氯或溴,其同位素的相对丰度按n b a )(+的展开式的系数推算,若两者共存,则按
n m d c b a )()(++的展开式的系数推算。
(m ,n 分别为氯,溴的原子数目,a ,b 和c ,d 在数值上分别近似为同位素的相对丰度简比3,1和1,1。
氮律:在有机化合物中,不含氮或含偶数氮的化合物,分子量一定为偶数;含奇数氮的化合物分子量一定为奇数。
反之亦然。
各类有机化合物质谱的裂解规律烃类化合物的裂解规律:烃类化合物的裂解优先失去大的基团生成稳定的正碳离子含杂原子化合物的裂解(羰基化合物除外):正电荷在杂原子上,异裂羰基化合物的裂解:直链烷烃的质谱特点: 1.直链烷烃显示弱的分子离子峰。
2.直链烷烃的质谱由一系列峰簇(C n H2n-1, CnH2n, C n H2n+1)组成,峰簇之间差14个质量单位。
3.各峰簇的顶端形成一平滑曲线,最高点在C3或C4支链烷烃的质谱特点: 1.支链烷烃的分子离子峰较直链烷烃降低。
2.各峰簇顶点不再形成一平滑曲线。
因在分枝处易断裂,其离子强度增强。
3.在分枝处的断裂,伴随有失去单个氢的倾向,产生较强的C n H2n离子,有时可强于相应的C n H2n+1离子。
环烷烃的质谱特点: 1.分子离子峰的强度相对增加。
2.质谱图中可见m/z为41,55,56,69,70等C n H2n-1和C n H2n的碎片离子峰。
3.环的碎化特征是失去C2H4(也可能失去C2H5)。
链状不饱和脂肪烃的质谱特点:1.双键的引入,可增加分子离子峰的强度2.仍形成间隔14质量单位的一系列峰簇,但峰簇内最高峰为CnH2n-1 出现m/z 41, 55, 69, 83等离子峰。
3.长碳链烯烃具有γ-H原子的可发生麦氏重排反应,产生28,42,56,70,……CnH2n系列峰环状不饱和脂肪烃的质谱特点:1.当符合条件时环状不饱和脂肪烃可发生RDA反应。
2.环状不饱和脂肪烃支链的质谱碎裂反应类似于链烃的断裂方式。
芳烃:1. 分子离子峰较强2. 简单断裂生成苄基离子当苯环连接CH2时,m/z 91 的峰一般都较强。
3. MacLafferty 重排当相对苯环存在 氢时,m/z 92 的峰有相当强度。
4. 苯环碎片离子依次失去C2H2化合物含苯环时,一般可见m/z 39、51、65、77 等峰醇:1.醇类分子离子峰都很弱,有的甚至不出现分子离子峰。
2.容易发生α断裂反应,生成较强的CnH2n+1O+特征碎片离子,伯醇R-OH,则生成CH2=O+H,m/z为31的特征峰,仲醇则产生m/z为45的特征峰,叔醇则产生m/z为59的特征峰。
质谱裂解规律质谱裂解是一种分析化学技术,主要用于确定物质的分子结构和化学成分。
质谱裂解规律是指在质谱仪中,分子离子经过一系列的裂解反应,从而产生一系列特征碎片离子的过程。
这些碎片离子的质荷比和相对丰度信息可以用来确定物质的结构和成分。
质谱裂解规律可以分为以下几个方面:1.双电离和质子化裂解规律:在质谱仪中,分子离子通常会与一些反应气体相互作用,从而发生裂解反应。
最常见的是质子化反应,即分子离子捕获一个质子,形成质子化分子离子。
这种质子化裂解规律适用于很多有机化合物。
2.键断裂规律:在质谱裂解过程中,分子离子中的化学键被断裂,从而形成碎片离子。
键断裂的位置和方式与化学键的性质和强度有关。
常见的键断裂方式包括α键断裂、β键断裂、γ键断裂等。
3.质荷比规律:质谱裂解所得的碎片离子的质荷比往往与原分子离子的质荷比有特定的关系。
根据质谱裂解规律,一般可以将碎片离子的质荷比与原分子离子的质荷比之间的差值称为“质量差”或“失质量”。
这种质量差可以用来确定分子中特定基团的存在。
4.离子过程规律:质谱裂解过程中,分子离子会经历一系列离子过程,例如质子迁移、质子捕获、电子捕获等。
这些离子过程的发生与分子的结构、能量以及反应条件有关,可以通过研究离子过程来推断分子的结构和成分。
5.碎片离子的相对丰度规律:在质谱裂解过程中,不同碎片离子的相对丰度可以提供有关分子的信息。
一般来说,相对丰度较高的碎片离子可能是由于分子中较稳定的基团或化学键裂解而产生的。
因此,通过分析碎片离子的相对丰度可以确定物质的结构和化学成分。
总之,质谱裂解规律是质谱分析中的重要基础知识,通过对分子离子的裂解反应、离子过程以及碎片离子的质荷比和相对丰度的研究,可以推断物质的分子结构和化学成分。
其在物质分析、化学研究等领域有着广泛的应用。
有机化合物裂解规律1.偶电子规律偶电子离子裂解,一般只能生成偶电子离子(少数化合物例外)。
换言之,就是质谱中质荷比较小的奇电子离子往往是由质荷比较大的奇电子离子裂解产生的。
⋅+B +中性分子 +E +中性碎片⋅+A +D+C +自由基 ⋅+F +自由基2.烃类化合物的裂解烃类化合物的裂解是优先失去大基团,优先生成稳定的碳正离子。
碳正离子的稳定顺序是:322322256H C R H C HR C R C CH CH CH H C H C ++++++>>>>=>—,碳正离子的稳定性越高,其离子峰在质谱图中的相对强度越大。
CH 222C H 2CH CH 2R2CH 2CH CH 23.含杂原子化合物的裂解(羰基化合物除外)含杂原子的化合物,主要是自由基位置引发的βαC C —间的σ键断裂(称α裂解,正电荷在杂原子上)和正电荷诱导的碳—杂原子之间的σ键的异裂(称i 异裂),正电荷发生移位。
C H 2C H 2CH2RR4.羰基化合物的裂解羰基化合物的裂解为自由基引发的均裂(α裂解)及正电荷诱导的异裂。
CH OR'C OR'OC ORRC OHOC OR'HNC OCO5.逆Diels—Alder反应环己烯及其衍生物开环裂解反应。
OR6.氢的重排反应(1)Mclafferty重排(γ氢重排,含不饱和键的化合物经过六元环过渡态)OHR'HHR(2)自由基引发或正电荷诱导,含杂原子化合物经过四元、五元、六元环过渡态氢的重排H222H2C 2H 5C H 2CH 2C 2H 5C 2H 5H ClC 2ClC 2C 2C 22(3)长链酯基的双氢重排ROHROH OHR'CH(4)偶电子离子氢的重排偶电子离子经过四元环过渡态的β氢重排。
2CH3H222C2NH22CH3222CH22CH3H222CH2(5)芳环的邻位效应在邻位取代芳环中,取代基经过六元环过渡态氢的重排,失去中性分子,生成奇电子离子。
各类有机化合物质谱的裂解规律烃类化合物的裂解规律:烃类化合物的裂解优先失去大的基团生成稳定的正碳离子含杂原子化合物的裂解(羰基化合物除外):正电荷在杂原子上,异裂羰基化合物的裂解:直链烷烃的质谱特点: 1.直链烷烃显示弱的分子离子峰。
2.直链烷烃的质谱由一系列峰簇(C n H2n-1, CnH2n, C n H2n+1)组成,峰簇之间差14个质量单位。
3.各峰簇的顶端形成一平滑曲线,最高点在C3或C4支链烷烃的质谱特点: 1.支链烷烃的分子离子峰较直链烷烃降低。
2.各峰簇顶点不再形成一平滑曲线。
因在分枝处易断裂,其离子强度增强。
3.在分枝处的断裂,伴随有失去单个氢的倾向,产生较强的C n H2n离子,有时可强于相应的C n H2n+1离子。
环烷烃的质谱特点: 1.分子离子峰的强度相对增加。
2.质谱图中可见m/z为41,55,56,69,70等C n H2n-1和C n H2n的碎片离子峰。
3.环的碎化特征是失去C2H4(也可能失去C2H5)。
链状不饱和脂肪烃的质谱特点:1.双键的引入,可增加分子离子峰的强度2.仍形成间隔14质量单位的一系列峰簇,但峰簇内最高峰为CnH2n-1 出现m/z 41, 55, 69, 83等离子峰。
3.长碳链烯烃具有γ-H原子的可发生麦氏重排反应,产生28,42,56,70,……CnH2n系列峰环状不饱和脂肪烃的质谱特点:1.当符合条件时环状不饱和脂肪烃可发生RDA反应。
2.环状不饱和脂肪烃支链的质谱碎裂反应类似于链烃的断裂方式。
芳烃:1. 分子离子峰较强2. 简单断裂生成苄基离子当苯环连接CH2时,m/z 91 的峰一般都较强。
3. MacLafferty 重排当相对苯环存在 氢时,m/z 92 的峰有相当强度。
4. 苯环碎片离子依次失去C2H2化合物含苯环时,一般可见m/z 39、51、65、77 等峰醇:1.醇类分子离子峰都很弱,有的甚至不出现分子离子峰。
2.容易发生α断裂反应,生成较强的CnH2n+1O+特征碎片离子,伯醇R-OH,则生成CH2=O+H,m/z为31的特征峰,仲醇则产生m/z为45的特征峰,叔醇则产生m/z为59的特征峰。
各类有机化合物质谱的裂解规律烃类化合物的裂解规律:烃类化合物的裂解优先失去大的基团生成稳定的正碳离子含杂原子化合物的裂解(羰基化合物除外):正电荷在杂原子上,异裂羰基化合物的裂解:直链烷烃的质谱特点: 1.直链烷烃显示弱的分子离子峰。
2.直链烷烃的质谱由一系列峰簇(Cn H2n-1, CnH2n, CnH2n+1)组成,峰簇之间差14个质量单位。
3.各峰簇的顶端形成一平滑曲线,最高点在C3或C4支链烷烃的质谱特点: 1.支链烷烃的分子离子峰较直链烷烃降低。
2.各峰簇顶点不再形成一平滑曲线。
因在分枝处易断裂,其离子强度增强。
3.在分枝处的断裂,伴随有失去单个氢的倾向,产生较强的Cn H2n离子,有时可强于相应的CnH2n+1离子。
环烷烃的质谱特点: 1.分子离子峰的强度相对增加。
2.质谱图中可见m/z为41,55,56,69,70等Cn H2n-1和CnH2n的碎片离子峰。
3.环的碎化特征是失去C2H4(也可能失去C2H5)。
链状不饱和脂肪烃的质谱特点:1.双键的引入,可增加分子离子峰的强度2.仍形成间隔14质量单位的一系列峰簇,但峰簇内最高峰为CnH2n-1 出现m/z 41, 55, 69, 83等离子峰。
3.长碳链烯烃具有γ-H原子的可发生麦氏重排反应,产生28,42,56,70,…… CnH2n系列峰环状不饱和脂肪烃的质谱特点:1.当符合条件时环状不饱和脂肪烃可发生RDA反应。
2.环状不饱和脂肪烃支链的质谱碎裂反应类似于链烃的断裂方式。
芳烃:1. 分子离子峰较强2. 简单断裂生成苄基离子当苯环连接 CH2时,m/z 91 的峰一般都较强。
3. MacLafferty 重排当相对苯环存在 氢时,m/z 92 的峰有相当强度。
4. 苯环碎片离子依次失去 C2H 2化合物含苯环时,一般可见 m/z 39、51、65、77 等峰醇:1.醇类分子离子峰都很弱,有的甚至不出现分子离子峰。
2.容易发生α断裂反应,生成较强的CnH2n+1O+特征碎片离子,伯醇R-OH,则生成CH2=O+H,m/z为31的特征峰 ,仲醇则产生m/z为45的特征峰 ,叔醇则产生m/z为59的特征峰。
质谱解析一般程序
(1)标出各峰的质荷比数,尤其要注意高质荷比区的峰。
(2)识别分子离子峰。
首先在高质荷比区假定分子离子峰,判断该假定的分子离子峰与相临碎片离子峰关系是否合理,然后判断其是否符合氮律。
若两者均相符,可认为是分子离子峰。
(3)分析同位素峰簇的相对强度比及峰与峰间的△m 值,判断化合物是否含有Cl ,Br ,S ,Si 等元素及F ,P ,I 等无同位素的元素。
(4)推到分子式,计算不饱和度。
由高分辨质谱仪测得的精确分子量或同位素峰簇的相对强度计算分子式。
若两者均难以实现,则由分子离子峰丢失的碎片及主要碎片离子进行推导,或与其他方法配合。
(5)由分子离子峰的相对强度了解分子结构的信息。
分子离子峰的相对强度由分子的结构所决定,结构稳定性大,相对强度就大。
对于分子量约为200的化合物,若分子离子峰为基峰或强峰,谱图中碎片离子较少,可能为芳烃或稠环化合物;分子离子峰弱或不出现,可能为多支链烃类、醇类、酸类等。
(6)由特征离子峰及丢失的中性碎片了解可能的结构信息。
若质谱图中出现系列1n 2n H C 峰,则化合物可能含有长链烷基。
若出现或部分出现m/z 77,66,65,51,40,39等弱的碎片离子峰,表明化合物含有苯基。
若m/z 91或105为基峰或强峰,表明化合物含有苄基或苯甲酰基。
(7)综合分析以上得到的全部信息,结合分子式及不饱和度,推到化合物的可能结构。
(8)分析所推导的可能结构的裂解机理,看其是否与质谱图相符,确定其结构,并进一步解释质谱,或与标准谱图比较,或与其他谱配合,确证结构。