基于ArcGIS Server和地图图片引擎的北京市道路管理信息系统建设
- 格式:ppt
- 大小:7.62 MB
- 文档页数:26
基于GIS技术的城镇道路路基信息管理与实践解析引言:随着城镇化进程的快速发展,城市交通建设成为了一个重要课题。
在城市交通系统中,道路路基是起到承载交通流量和保障交通安全的关键要素之一。
有效管理和维护道路路基信息对城市交通建设具有重要意义。
本文将对基于GIS技术的城镇道路路基信息管理进行深入探讨,并阐述实践案例以及相关的方法与经验。
一、GIS技术在城镇道路路基信息管理中的应用GIS(地理信息系统)技术集成了地理数据的收集、存储、处理、分析和展示等功能,为城镇道路路基信息管理提供了强有力的支持。
下面将对GIS技术在城镇道路路基信息管理中的应用进行详细阐述。
1. 地理信息数据的采集和建模城镇道路路基信息的采集是GIS技术应用的第一步。
传统的测量方法通常比较耗时且成本较高,而GIS技术可以通过使用航空遥感、卫星遥感、GPS定位等手段,实现对大范围道路路基信息的高效、准确的采集。
采集到的数据可以通过建立道路路基信息模型进行统一管理和组织,使得数据更加可视、可查询、可分析。
2. 路基信息的可视化与空间分析GIS技术可以将采集到的道路路基信息以地图的形式进行可视化展示。
通过地图的方式,用户可以直观地了解道路路基的分布情况、各个要素的空间关系等。
同时,GIS技术还支持多种空间分析方法,如缓冲区分析、网络分析等,以帮助决策者进行优化规划和决策。
3. 路基信息管理系统的构建GIS技术支持构建一个完整的路基信息管理系统,将各类道路路基信息进行整合、存储、查询和管理。
通过该系统,可以实现对道路路基信息的快速查询、可视化展示、统计分析、管理维护等功能。
系统的建立不仅提高了工作效率,还能够为城市道路的规划、设计和维护提供决策支持。
二、实践案例与经验方法分享在实际工作中,基于GIS技术的城镇道路路基信息管理已经有了一些成功的应用案例。
下面将分享一些经验方法和实践案例。
1. 数据完整性和一致性的保障在道路路基信息管理中,数据的完整性和一致性非常重要。
地理信息系统在城市交通管理中的作用在当今城市化进程飞速发展的时代,城市交通管理面临着日益严峻的挑战。
交通拥堵、交通事故频发、出行效率低下等问题已经成为城市发展的瓶颈。
为了有效应对这些问题,地理信息系统(GIS)作为一种强大的技术工具,正逐渐在城市交通管理中发挥着至关重要的作用。
GIS 是一种能够收集、存储、管理、分析和展示地理空间数据的系统。
在城市交通领域,它可以将各种交通相关的数据,如道路网络、交通流量、公共交通线路、交通事故地点等,与地理空间位置相结合,从而为交通管理提供全面、准确、直观的信息支持。
首先,GIS 有助于优化城市道路网络规划。
通过对城市地理空间数据的分析,GIS 可以帮助交通规划者清晰地了解城市的地形、地貌、土地利用等情况,从而更合理地设计道路布局。
例如,它可以根据人口分布和出行需求,确定道路的建设优先级和规模;可以分析不同道路走向和连接方式对交通流量的影响,避免出现断头路和交通瓶颈;还可以评估新建道路对周边环境和生态的影响,实现可持续的交通发展。
其次,GIS 在交通流量监测和预测方面表现出色。
利用传感器和监测设备收集的实时交通流量数据,结合 GIS 的空间分析功能,可以直观地展示交通流量的分布和变化情况。
管理者能够迅速发现拥堵路段和热点区域,并及时采取措施进行疏导。
同时,GIS 还可以基于历史数据和模型算法,对未来的交通流量进行预测,为交通规划和管理提供前瞻性的决策依据。
例如,在节假日或大型活动前,提前预测交通流量的高峰时段和重点区域,合理安排警力和交通设施,保障道路畅通。
再者,GIS 为公共交通管理提供了有力支持。
它可以精确地绘制公共交通线路图,包括公交车、地铁、轻轨等,方便市民查询和规划出行路线。
通过分析公共交通的覆盖范围和服务水平,管理者能够发现薄弱环节,优化线路布局和站点设置,提高公共交通的吸引力和使用率。
此外,GIS 还可以用于公交车辆的实时监控和调度,提高运营效率,减少乘客等待时间。
智慧城市中基于GIS的地下管线信息系统研究焦玉慧发布时间:2021-09-23T10:42:35.493Z 来源:《防护工程》2021年15期作者:焦玉慧[导读] 在智慧城市的建设背景下,需要对城市地下管线进行综合管理,从而实现城市规划工作的优化。
借助GIS的地下管线信息系统的运用,不仅能够优化地下管线的普查情况,同时也能够借助系统的合理运用实现其信息的动态管控,为后续的城市规划建设提供重要的信息数据,以此推动智慧城市的稳定建设。
因此,本文主要对智慧城市中基于GIS的地下管线信息系统进行研究分析,旨在对其系统的建设意义通过实例进行详细阐述,并对当前存在的问题进行优化建设,为以后类似的研究提供一定的参考建议。
焦玉慧山东省淄博市临淄区住房和城乡建设局摘要:在智慧城市的建设背景下,需要对城市地下管线进行综合管理,从而实现城市规划工作的优化。
借助GIS的地下管线信息系统的运用,不仅能够优化地下管线的普查情况,同时也能够借助系统的合理运用实现其信息的动态管控,为后续的城市规划建设提供重要的信息数据,以此推动智慧城市的稳定建设。
因此,本文主要对智慧城市中基于GIS的地下管线信息系统进行研究分析,旨在对其系统的建设意义通过实例进行详细阐述,并对当前存在的问题进行优化建设,为以后类似的研究提供一定的参考建议。
关键词:智慧城市;CIS辅助管理;地下管线;信息系统;研究分析引言:城市的地下管线作为城市建设的基础,其管理质量往往影响着城市居民的生活质量。
在智慧城市的建设背景下,城市得到了快速发展,地下管线建设也愈发复杂。
针对当前的地下管线的管理难度,需要合理运用GIS的地下管线信息系统进行实时管控,从而保障城市居民的生活质量,为城市的现代化建设提供重要的技术支撑。
因此,本文以临淄区地下管线普查现状及相关要求、存在问题进行实例分析,从而对后续的GIS地下管线信息系统的建立提供参考建议。
1、智慧城市下基于GIS的地下管线信息系统1.1智慧城市智慧城市即以大数据技术与信息技术为核心,通过提升城市运行于居民生活品质为要点,确保城市能够可持续发展。
基于 ArcGIS 平台的绿化林业管理系统的建设钱杰 林金炼 (上海市绿化管理局信息中心 上海 200023 上海杰狮信息技术有限公司 上海 200233) 摘要: 《上海市绿化林业遥感和地理信息系统》从空间信息管理切入,充分利用了 ESRI 公司的 ARCGIS平台建立了从信息采集,维护,管理,发布到专业应用的一体化绿化林业信息管理体系,为绿化林业信息 化管理提供了新的建设思路。
关键词:绿化林业信息;ArcGIS Server1. 背景上海市绿化管理局是上海市绿化和林业管理的职能部门, 下辖 19 区县的绿化管理部门, 主要负责编制城市绿化专业规划和绿地系统详细规划,城市绿化建设审批,监督,执法和日 常管理等工作。
如何做好城市的绿化规划,建设适合城市绿化持续发展、生态化人居环境, 一直是上海市绿化管理局在努力的方向。
自从市绿化局和农林局撤二建一,实行统一管理后,上海市绿化管理局提出了基于全 市范围的《上海市绿化林业遥感和地理信息系统》的建设,系统的建设旨在从空间信息管理 切入,结合绿化林业的业务,建立全市范围的从数据采集,维护,发布,共享到专业服务的 一体化管理体系, 提升绿化和林业行业信息化水平, 为上海市绿化林业城乡统一管理和城城 市绿化合理规划提供依据和决策支持,并为未来的城市管理网格化打下基础。
在建设《上海市绿化林业遥感和地理信息系统》过程中,我们切合系统的各方面需求, 选择了 ArcGIS 平台的系列产品, 充分利用了 ESRI 产品在处理海量数据、 方式数据编辑、 B/S 数据维护、数据发布、移动办公、空间分析等方面的优点和特性,在项目的实施过程中取到 了很好的效果。
2. 系统设计目标系统未来建成后,要达到以下的几个目标: 数据维护分散、数据管理集中的管理模式——局信息中心需要和 19 个区县绿化林 业系统进行数据交换,由各区县绿化系统业务人员进行数据的维护和更新,但数 据进行集中存放和管理。
基于ArcGIS Engine的高速公路车辆轨迹查询与回放系统的设计顾倩文;曾献辉;沈振一【摘要】针对高速公路全程监控系统中车辆流水数据的多源异构特点,提出了采用同步复制技术将各监控子系统的车辆流水数据汇总至监控中心,利用数据同步复制技术形成车辆完整轨迹数据库.采用C#开发语言,结合ArcGIS Engine技术,开发出基于VS 2012平台的车辆轨迹查询与回放系统,实现了实时查询车辆的行车路线,并在地图上动态回放各个时段的车辆运行轨迹.经实际项目测试验证了该系统在交通管理中有很好的实用性.【期刊名称】《东华大学学报(自然科学版)》【年(卷),期】2016(042)006【总页数】6页(P863-868)【关键词】车辆;多源异构;ArcGIS Engine;同步复制;轨迹回放【作者】顾倩文;曾献辉;沈振一【作者单位】东华大学信息科学与技术学院,上海201620;东华大学数字化纺织服装技术教育部工程研究中心,上海201620;东华大学信息科学与技术学院,上海201620;东华大学数字化纺织服装技术教育部工程研究中心,上海201620;东华大学信息科学与技术学院,上海201620;东华大学数字化纺织服装技术教育部工程研究中心,上海201620【正文语种】中文【中图分类】TN311随着社会经济的高速发展和城市化水平的不断提高,机动车数量也迎来了飞速的增长.在社会公共交通管理中,因交通拥堵、交通事故频频发生,对机动车辆进行合理的监控管理已经成了极为重要的部分,高速公路作为一种现代化的公路运输通道,在交通管理中发挥着越来越重要的作用.目前高速公路全程监控系统正在不断完善,高速公路的全程安装了数量巨大的视频监控设施,基本实现了对高速公路全线无盲点监控,建设了全程视频监控系统和辅助交通检测系统.随着全程监控各系统不断地上线投入运营,各高速公路公司的管理人员也逐步体验新监控系统带来的便捷服务.在全程监控系统中,可以通过获取各断面所经过车辆的车牌、时间、车型等车辆的流水数据,利用这些端口采集的数据进行深入的分析,规划整理出有效的车辆信息,实现对过往车辆行驶路径的全程检测,为高速公路的交通管理提供更加有效的手段.本文针对高速公路全程监控系统中的车辆流水数据,实现了将各监控子系统的车辆流水数据汇总至监控中心,利用数据融合技术形成车辆完整轨迹数据库,结合ArcGIS Engine技术,实现了实时查询车辆的行车路线,并在地图上动态回放各个时段的车辆运行轨迹.本文的车辆轨迹查询与回放系统由3部分组成,即数据层、技术服务层、应用层.数据层用来存放所需要的系统数据,包括监控中心数据库、地图数据库;技术服务层提供各种服务组件来访问数据层和响应系统界面所发送的请求;应用层则提供给管理人员数据查询并发送请求,实现电子地图的浏览、车辆轨迹的回放.其系统框架如图1所示.在VS 2012开发环境中,采用C#开发语言,通过连接与访问数据库,采用Geo database管理ArcGIS地图数据库,调用ArcGIS Engine提供的接口实现访问和操作电子地图[1].在高速公路监控系统中,收费站、服务区以及其他众多断面节点基本实现了无盲点监控,各地的子系统卡口采集了所经车辆的车牌、时间、车型等信息.高速公路监控系统将各地采集的车辆流水数据解析后实时传输到监控中心服务器上,其监控网络结构如图2所示.利用数据融合技术形成车辆完整轨迹数据库,用户通过系统的界面窗口查询,结合ArcGIS技术就能精确地显示车辆行驶轨迹,从而实现对车辆位置和状态的查询.车辆轨迹查询系统主要实现管理人员对车辆行驶轨迹的可视化查询管理,除了在正常的监控管理中起到监管作用并防止交通事故的发生,还能对法治车辆的监护、犯罪嫌疑车辆的监控[2-3]以及配合警务人员侦查案件起到很好的作用,该系统的功能从以下3方面进行详细阐述.2.1 多源异构数据的同步复制由于车辆的信息分散在各地的子系统中,一般高速公路的数据源分为3个类别,即收费站、主线卡口、服务区,其特点如下:(1) 各地子系统所选用的数据库类型是多种多样的,例如存在的数据库管理系统有SQL Server 2000、SQL Server 2008、Mysql、Oracle等[4].(2) 数据存放的方式也是不固定的,包括单一表、生成表、按日生成表等.(3) 有些表结构可修改,例如增加sendok字段;有些表结构不能修改,比如按月生成表的情况,因为无法获得生成表的源代码.针对车辆流水数据的多源异构特点,高速公路车辆数据采集模块需要对全线各个站点的子系统中的车辆流水数据实现实时采集,即将各个数据源的数据实时地同步复制到上级监控中心数据库中.由地方数据库将动态产生数据中的关键信息同步到监控中心数据库,其同步复制结构如图3所示.监控中心根据地方子系统,动态地按日或按月生成一张表,表名为“tra ffic_年月日”,traffic表的字段定义如表1所示.同时考虑到数据存放模式的多样性,需灵活地处理数据源,将来自不同数据库类型的数据进行分析处理,并以XML格式配置数据源,将各地的车辆流水数据融合后同步到监控中心的数据库服务器.2.2 电子地图浏览在C#开发环境下建立GIS(geographic information system)的基本应用框架,地图浏览模块利用ArcGIS Engine地图引擎实现图层的加载、关闭、移除,以及地图随机放大、缩小、平移、全屏实现、比例尺等基本功能[1,5].在VS的编译器中添加“ESRI MapControl”控件,ESRI MapControl 是ArcGIS Engine 的一个控件,也是电子地图主视图区的构成控件.在ArcGIS Engine基本应用框架中使用MapControl 和 ToolbarControl 两个控件.MapControl控件主要负责从固定目录中加载地图的mxd文件、管理控件的数据层,并通过监听事件实现与地图的交互.通过调用MapControl控件中的AddLayer、 DeleteLayer、 MoveLayer方法来添加、删除、移动图层[5].修改MapControl控件的Extent 属性值来实现地图的缩放功能,对不同的矩形范围可以实现不同比例的缩放,地图的移动可以通过调用Pan方法来实现.2.3 空间最短路径查询在空间查询中着重介绍两点间最短路径查询,计算最短路径的算法有Dijkstra算法、Floyd 算法、Moore 算法等,但是在ArcGIS Engine 中,对象库已经将最短路径算法封装,在使用时只需调用PathFinder模块,即可实现最短路径分析. PathFinder模块主要是由SolvePath 函数和一些辅助函数(包括OpenFeatureDatasetNetwork函数和PathPolyLine函数)等组成.SolvePath函数主要执行过程如下:程序在开始计算最短路径时,首先调用一个循环,该循环中有两个函数,即GetNearestEdge 和QueryIDs.GetNearestEdge主要是查找输入点的最近边线, QueryIDs是以GetNearestEdge 找到的点为基础,将这些查找到的点变成下一次搜索的起点,通过这两个函数在循环中交替进行计算,查询出最短路径的两点间的所有路径,并保存查询路径的所有节点[6].查询所有路径的部分代码如下:for (int i = 0; i < intCount; i++){INetFlag ipNetFlag = new EdgeFlagClass() as INetFlag;IPoint ipEdgePoint = m_ipPoints.get_Point(i);//查找输入点的最近边线m_ipPointToEID.GetNearestEdge(ipEdgePoint, out intEdgeID, out ipFoundEdgePoint, out dblEdgePercent);ipNetElements.QueryIDs(intEdgeID, esriElementType.esriETEdge, out intEdgeUserClassID, out intEdgeUserID, out intEdgeUserSubID); erClassID = intEdgeUserClassID;erID = intEdgeUserID;erSubID = intEdgeUserSubID;IEdgeFlag pTemp = (IEdgeFlag)(ipNetFlag as IEdgeFlag); pEdgeFlagList[i] = pTemp;}在循环查询后,所查询得到的由各个节点组成的路径并不都是最短路径,因此要进行更深入的分析,通过调用ipNetSchema.WeightByName(WeightName)设置边的权重,可以将边关系中的任何字段作为权重,通过findpath得到边线和交汇点的集合,并根据权重来选出哪些节点组成的路径是最短路径.2.4 ArcMap电子地图的展示电子地图是本文系统的基础,GIS的图层是通过读取Geo database数据库中的数据来显示的.在车辆轨迹查询系统中,为了方便数据的管理,将性质类似的数据放在同一层,并将不同的图层叠加.在本文系统中,地图区域以某省的4个市级区域为主,将地图划分为不同的图层,例如,道路、行政区域、监控点(卡口采集点)等部分,以便于地图的展示和车辆数据的管理,展示出更直观的可视化效果.系统中地图以市级区域矢量图为主,添加图层形成后的展示如图4所示.本文系统要实现车辆轨迹的回放,需要获取所经过路段的监控点信息,通过发送车牌号信息的查询请求,调用GetMinitorPoints函数得到车辆所经过的监控点,调用IgraphicsContainer获取的线元素中包含了车辆经过的监控点的位置信息.遍历所有point名称取得point的信息,调用最佳路径查询算法PathFinder 模块,得到穿越point的线,将这些线合并,调用GetCrossLine函数将合并的线路集成一条线路,将线集合中线的Geometry存入几何集合中,在得出最佳路径后,调用PathPolyLine 函数将最佳路径显示在电子地图上.本文系统以VS 2012为开发工具,ArcGIS Engine为GIS的支撑平台,中心数据库采用SQL Server 2008.车辆轨迹查询系统主要从以下几个方面来实现:数据同步传输、车辆行驶数据查询、车辆轨迹回放.3.1 数据同步传输在本文系统中,监控中心实时获取各地的车辆流水数据,并将获取数据的时间记录保存在监控中心数据库中的track表(同步追踪表)中,track表的定义如表2所示.track表中详细地记录各地获取最新数据的时间点,包括最近一个同步开始时间、最近一次上传结束时间,通过设定时间间隔,保证数据同步的实时性,上传的时间间隔越短,实时性越好.本系统设置时间间隔为60 s,考虑到网络负载能力,采用动态缓存机制提高同步的实时性,减轻网络负荷,即将已同步数据的关键字段保存在缓存中,在同步时只需判断缓存中关键字段是否已存在.数据同步机制的效果如图5所示.在保证数据同步效率的基础上,须保证数据同步过程中没有丢失数据. 3.2 车辆行驶数据查询在完成下级系统的数据同步复制到监控中心之后,在系统的车辆轨迹查询界面输入所需查询车辆的相关信息,向监控中心的数据库服务器发送查询请求,根据查询条件返回车牌号码、车辆的行驶时间、经过的高速路段、采集信息的监控点、车辆行驶的方向,其操作流程如图6所示.根据各地数据库的数据生成模式,在监控中心数据库中每天自动生成一张表,表名为“traffic_年月日”,例如“traffic_20150521”,各地数据库将当天的车辆流水数据解析后同步上传到监控中心数据库服务器.在系统查询界面上输入车牌号码,并选择车辆行驶日期,例如输入车牌号码“浙AA5E76”,车辆行驶日期“20150521”,其数据请求返回结果的界面显示如图7所示,其中的字段包括车牌号码、车辆经过时间、经过的高速路段、采集信息的监控点、车辆行驶的方向.ArcGIS Engine通过返回的监控点数据信息,调用点图层,绘制出车行驶轨迹.3.3 车辆轨迹回放轨迹数据是对车辆空间和时间位置序列变化的采集,而车辆行驶轨迹实际上是车辆在一段时间内行走通过的数据所形成的一条曲线,曲线上的每个点都是道路图层上的监控点.在ArcMap中显示的车辆行驶轨迹就是这些监控点所连接成的一条曲线,而每个监控点的位置就是车辆所经过时刻数据采集卡口的车辆位置,将这条曲线描出显示在电子地图上就是车辆的行驶轨迹.输入车牌号码“浙AA5E76”,输入车辆的行驶日期“20150521”,如图7所示,点击查询按钮,在datagridview控件中显示查询返回的结果.通过读取datagridview中监控点的信息,在图层遍历出这些监控点,按照顺序将监控点两两之间查询出空间最短路径,并调用PathPolyLine 函数进行轨迹描绘,得到的曲线集就是车辆行驶的完整轨迹路线.在ArcMap图中,设置ESRI(environmental systems research institute)Arc GIS符号库里的符号来标志车辆行驶的起点和终点,可更方便直观地显示车辆行驶的路线,如图8所示.由图8可以详细地知道车辆行驶路段、行驶方向,同时结合实际的道路状况,在某些监控卡口的采集信息丢失从而导致车辆线路中断的情况下,仍旧能够描绘出车辆的行驶轨迹,保证了数据查询的可靠性、有效性,同时方便管理人员更有力地监控车辆的行踪.本文运用ArcGIS Engine技术,在VS 2012平台上成功开发了车辆轨迹查询与回放系统,该系统有机地结合车辆监控采集系统,动态获取监控点的信息,通过绘制监控点的集合路线,实时监控追踪车辆的行驶路线及方向,为营运管理提供更加有效的管理手段.通过结合高速公路的监控系统的实际项目进行了测试,表明该系统实现方法简单、效率高,能满足用户在实际应用中对车辆监控的需求.【相关文献】[1] 吴建华.基于Arc GIS Engine 的车辆监控GIS 系统开发[J].地球信息科学学报,2011,13(1):8894.[2] 宋明月,贾远信,王文华,等.基于Arc GIS Engine 的车辆轨迹回放系统的实现[J]. 哈尔滨师范大学自然科学学报,2011,27(3):5558.[3] 苏子林,韩晓玲.基于GIS/GPS/GSM 的车辆监控系统的设计与实现[J].计算机工程与应用, 2003,39(19):206226.[4] 何超,彭慧,尚文利.利用ArcGIS Silverlight 实现的车辆监控技术[J].自动化仪表,2013,34(7):5457.[5] 张磊.基于GIS和GPS的车辆实时监控系统的设计与实现[D].苏州:苏州大学计算机学院,2013.[6] 李春立,曾致远,徐学军.基于 ArcGIS Engine 的车辆监控系统[J].计算机工程,2006,32(24):257259.。
基于WebGIS的城市管理信息系统设计与实现随着城市化进程的加速和信息化的普及,城市管理变得越来越复杂。
如何高效、全面地收集和管理城市数据,成为了城市管理中急待解决的问题。
基于WebGIS的城市管理信息系统应运而生,它将地理信息系统(GIS)技术和Web技术相结合,为城市管理带来了巨大的便利。
一、系统架构基于WebGIS的城市管理信息系统由前端展示系统和后台管理系统两部分组成。
前端展示系统主要负责数据可视化展示和交互操作功能,后台管理系统则负责数据采集、处理和管理。
前端展示系统使用最新的Web技术,采用响应式布局,兼容各种设备和浏览器。
地图界面采用ArcGIS API for JavaScript,能够高效地展示各类数据,并提供缩放、平移、测量、搜索、标注、分析等功能。
用户可以通过地图定位、选择、筛选各种信息,也可以通过图表、表格等方式查看数据。
后台管理系统也使用Web技术,使用Node.js作为后台框架,采用MVC(Model-View-Controller)架构,将业务逻辑、数据模型和视图层分离。
数据库采用关系型数据库MySQL,前后端交互采用RESTful API,保证数据的安全、可靠和高效。
二、数据采集及处理城市管理信息系统需要大量的数据支撑,包括基础地理数据、人口数据、交通数据、环境数据、安全数据等。
这些数据获取的方式主要有两种,一种是利用公共数据资源平台获取,另一种是通过新建传感器获取。
公共数据资源平台包括政府开放数据平台、交通部门数据平台、气象局数据平台等,这些平台已经开放了海量的数据资源,可以供城市管理信息系统使用。
比如交通部门数据平台中包括实时交通拥堵情况、高速公路收费站车流量等数据,可以帮助城市管理人员更好地管控交通。
新建传感器可以帮助获取更多的数据,比如可以新建空气质量传感器、垃圾填埋场渗漏液监测传感器等,将数据实时传输到城市管理信息系统中,让城市管理人员更准确地掌握城市状况。
基于ArcGIS平台的数据处理与建库思路探讨随着人类土地利用方式的不断变更和利用节奏的加快,如何快速、准确进行土地利用现状调查已成为目前土地调查部门面临的关键问题。
地理数据库的建立将为该问题的解决提供有效方案。
本文就基于ArcGIS平台的数据处理与建库思路进行了探讨。
标签:ArcGIS平台;数据处理;建库思路前言:城镇地籍图形管理信息系統是一项综合性极强的系统工程。
系统充分考虑到土地管理方面的特点,根据扬州市的实际情况,采用了ARCGIS平台,在此基础上建立图形信息管理系统,同时结合了科学的图形管理流程。
既要能满足日常管理的需要,也为使用者提供简捷方便的操作。
ArcGIS是一个完整的地理信息系统合成的软件。
该体系在ArcEngine作为软件开发平台,ArcGIS由四个重要的部分组成:ArcGIS Desktop是高层次GIS具体应用的一个重要桌面化集成软件。
ArcGIS Engine是利用多个应用程序的接口来自主创建应用程序的地理信息系统组件库。
ArcGIS Server是Web和企业运用框架式,构建在服务器端实现自定义应用程序的一个发布平台,可用于建立Web应用和服务程序。
ArcIMS是通过公开的WEB发布数据、元数据和地图的GISWeb服务器。
一、ArcGIS Engine技术ArcGIS系列软件是一个具有扩展性、全面性、移植性等特征的GIS软件平台,适用于单用户或多用户在互联网、桌面端、服务器端应用ArcGIS构建地理信息系统。
其中,ArcGIS Engine是一组应用于ArcGIS Desktop框架之外的嵌入式ArcGIS组件。
C++,COM,.NET等环境中的ArcGIS Engine,开发者应用接口模块获取任意GIS功能的组合来构建相应的GIS应用解决方案。
进行GIS应用开发时,ArcGIS为用户提供具有针对性的GIS功能,无须ArcGIS的桌面系统支持。
对于标准的ArcGIS Engine而言,其标准功能包括:地图浏览、地图制作、数据查询、数据分析、控件开发,矢量数据读权限以及读写MXD文件。