空间立体几何高考知识点总结及经典题目
- 格式:docx
- 大小:252.08 KB
- 文档页数:11
高中立体几何知识点及经典题型立体几何是高中数学中的重要部分,它研究了在三维空间内的几何形体。
本文将介绍高中立体几何的主要知识点和经典题型。
知识点以下是高中立体几何的主要知识点:1. 空间几何基础:点、线、面的概念及性质。
2. 参数方程和一般式方程:用参数或方程表示几何体的方法。
3. 立体图形的投影:点、直线、平面在投影中的表现形式。
4. 空间几何中的平行与垂直:直线、平面之间的平行关系及垂直关系。
5. 直线与面的位置关系:直线与平面之间的交点、垂线、倾斜角等概念。
6. 空间角的性质:二面角、棱锥、棱台等形体的角度关系。
7. 空间几何中的直线及曲线:空间中直线与曲线的方程及性质。
8. 空间立体角:球、球台、球扇等形体的角度关系。
9. 空间的切线:曲线在空间中的切线方程及其性质。
10. 空间的幂:圆、球及其他形体的幂的概念和性质。
经典题型以下是高中立体几何的经典题型:1. 求直线与平面的位置关系问题:例如,给定一直线和一个平面,求它们之间的交点、垂直线、倾斜角等。
2. 求空间角的问题:例如,给定两个平面的交线,求二面角的度数。
3. 求直线与曲线的位置关系问题:例如,给定一条直线和一个曲面,求它们之间的位置关系。
4. 求切线和法平面的问题:例如,给定一个曲线和一个点,求曲线在该点处的切线方程及法平面方程。
5. 求空间形体的幂问题:例如,给定一个球和一个平面,求平面关于球的幂及其性质。
以上只是一些经典的立体几何题型,通过解答这些题目,可以加深对立体几何知识的理解和运用。
希望本文对高中立体几何知识点和题型的介绍能够帮助到你。
祝你在学习立体几何时取得好成绩!。
高考立体几何知识点与题型精讲在高考数学中,立体几何是一个重要的板块,它不仅考查学生的空间想象能力,还对逻辑推理和数学运算能力有较高要求。
接下来,咱们就一起深入探讨一下高考立体几何的知识点和常见题型。
一、知识点梳理1、空间几何体的结构特征(1)棱柱:有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行。
(2)棱锥:有一个面是多边形,其余各面是有一个公共顶点的三角形。
(3)棱台:用一个平行于棱锥底面的平面去截棱锥,底面与截面之间的部分。
2、空间几何体的表面积和体积(1)圆柱的表面积:S =2πr² +2πrl (r 为底面半径,l 为母线长)。
体积:V =πr²h (h 为高)。
(2)圆锥的表面积:S =πr² +πrl 。
体积:V =1/3πr²h 。
(3)球的表面积:S =4πR² 。
体积:V =4/3πR³ 。
3、空间点、直线、平面之间的位置关系(1)公理 1:如果一条直线上的两点在一个平面内,那么这条直线在此平面内。
(2)公理 2:过不在一条直线上的三点,有且只有一个平面。
(3)公理 3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线。
4、直线与平面平行的判定与性质(1)判定定理:平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行。
(2)性质定理:一条直线与一个平面平行,则过这条直线的任一平面与此平面的交线与该直线平行。
5、平面与平面平行的判定与性质(1)判定定理:一个平面内的两条相交直线与另一个平面平行,则这两个平面平行。
(2)性质定理:如果两个平行平面同时和第三个平面相交,那么它们的交线平行。
6、直线与平面垂直的判定与性质(1)判定定理:一条直线与一个平面内的两条相交直线都垂直,则该直线与此平面垂直。
(2)性质定理:垂直于同一个平面的两条直线平行。
7、平面与平面垂直的判定与性质(1)判定定理:一个平面过另一个平面的垂线,则这两个平面垂直。
【考点梳理】一、考试内容1.平面。
平面的基本性质。
平面图形直观图的画法。
2.两条直线的位置关系。
平行于同一条直线的两条直线互相平行。
对应边分别平行的角。
异面直线所成的角。
两条异面直线互相垂直的概念。
异面直线的公垂线及距离。
3.直线和平面的位置关系。
直线和平面平行的判定与性质。
直线和平面垂直的判定与性质。
点到平面的距离。
斜线在平面上的射影。
直线和平面所成的角。
三垂线定理及其逆定理。
4.两个平面的位置关系。
平面平行的判定与性质。
平行平面间的距离。
二面角及其平面角。
两个平面垂直的判定与性质。
二、考试要求1.掌握平面的基本性质,空间两条直线、直线与平面、平面与平面的位置关系(特别是平行和垂直关系)以及它们所成的角与距离的概念。
对于异面直线的距离,只要求会计算已给出公垂线时的距离。
2.能运用上述概念以及有关两条直线、直线和平面、两个平面的平行和垂直关系的性质与判定,进行论证和解决有关问题。
对于异面直线上两点的距离公式不要求记忆。
3.会用斜二测画法画水平放置的平面图形(特别是正三角形、正四边形、正五边形、正六边形)的直观图。
能够画出空间两条直线、两个平面、直线和平面的各种位置关系的图形,能够根据图形想象它们的位置关系。
4.理解用反证法证明命题的思路,会用反证法证明一些简单的问题。
三、考点简析1.空间元素的位置关系2.平行、垂直位置关系的转化3.空间元素间的数量关系(1)角①相交直线所成的角;②异面直线所成的角——转化为相交直线所成的角;③直线与平面所成的角——斜线与斜线在平面内射影所成的角;④二面角——用二面角的平面角来度量。
(2)距离①两点之间的距离——连接两点的线段长;②点线距离——点到垂足的距离;③点面距离——点到垂足的距离;④平行线间的距离——平行线上一点到另一直线的距离;⑤异面直线间的距离——公垂线在两条异面直线间的线段长;⑥线面距离——平行线上一点到平面的距离;⑦面面距离——平面上一点到另一平面的距离;⑧球面上两点距离——球面上经过两点的大圆中的劣弧的长度。
知识空间立体几何知识点归纳:1. 空间几何体的类型( 1)多面体: 由若干个平面多边形围成的几何体,如棱柱、棱锥、棱台。
( 2) 旋转体: 把一个平面图形绕它所在的平面内的一条定直线旋转形成了封闭几何体。
如圆柱、圆锥、圆台。
2. 一些特殊的空间几何体 直棱柱:侧棱垂直底面的棱柱。
正棱柱:底面多边形是正多边形的直棱柱。
正棱锥:底面是正多边形且所有侧棱相等的棱锥。
正四面体:所有棱都相等的四棱锥。
3. 空间几何体的表面积公式棱柱、棱锥的表面积:各个面面积之和圆柱的表面积 : S 2 rl 2 r2圆锥的表面积: S rlr2圆台的表面积:Srlr2RlR2球的表面积:S4 R 24.空间几何体的体积公式: VS底 h: V1h柱体的体积锥体的体积S 底3台体的体积:1球体的体积: V43V( S 上下下hR3S 上 SS )35. 空间几何体的三视图正视图:光线从几何体的前面向后面正投影,得到的投影图。
侧视图:光线从几何体的左边向右边正投影,得到的投影图。
俯视图:光线从几何体的上面向右边正投影,得到的投影图。
画三视图的原则:长对正、宽相等、高平齐。
即正视图和俯视图一样长,侧视图和俯视图一样宽,侧视图和正视图一样高。
6 . 空间中点、直线、平面之间的位置关系( 1) 直线与直线的位置关系:相交;平行;异面。
(2)直线与平面的位置关系:直线与平面平行;直线与平面相交;直线在平面内。
(3)平面与平面的位置关系:平行;相交。
7.空间中点、直线、平面的位置关系的判断(1)线线平行的判断:①平行公理:平行于同一直线的两直线平行。
②线面平行的性质定理:如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线和交线平行。
③面面平行的性质定理:如果两个平行平面同时和第三个平面相交,那么它们的交线平行。
④线面垂直的性质定理:垂直于同一平面的两直线平行。
(2)线线垂直的判断:①线面垂直的定义:若一直线垂直于一平面,这条直线垂直于平面内所有直线。
空间几何体[考情分析] 几何体的结构特征是立体几何的基础,空间几何体的表面积与体积是高考题的重点与热点,多以小题的形式进行考查,属于中等难度. 考点一 表面积与体积 核心提炼1.旋转体的侧面积和表面积(1)S 圆柱侧=2πrl ,S 圆柱表=2πr (r +l )(r 为底面半径,l 为母线长). (2)S 圆锥侧=πrl ,S 圆锥表=πr (r +l )(r 为底面半径,l 为母线长). (3)S 球表=4πR 2(R 为球的半径). 2.空间几何体的体积公式 V 柱=Sh (S 为底面面积,h 为高); V 锥=13Sh (S 为底面面积,h 为高);V 球=43πR 3(R 为球的半径).例1 (1)已知圆锥的顶点为S ,母线SA ,SB 所成角的余弦值为78,SA 与圆锥底面所成角为45°.若△SAB 的面积为515,则该圆锥的侧面积为________. 答案 402π解析 因为母线SA 与圆锥底面所成的角为45°, 所以圆锥的轴截面为等腰直角三角形. 设底面圆的半径为r ,则母线长l =2r .在△SAB 中,cos ∠ASB =78,所以sin ∠ASB =158.因为△SAB 的面积为515,即12SA ·SB sin ∠ASB=12×2r ×2r ×158=515, 所以r 2=40,故圆锥的侧面积为πrl =2πr 2=402π.(2)如图,已知正三棱柱ABC -A 1B 1C 1的各棱长均为2,点D 在棱AA 1上,则三棱锥D -BB 1C 1的体积为________.答案 233解析 如图,取BC 的中点O ,连接AO .∵正三棱柱ABC -A 1B 1C 1的各棱长均为2, ∴AC =2,OC =1,则AO = 3. ∵AA 1∥平面BCC 1B 1,∴点D 到平面BCC 1B 1的距离为 3. 又11BB C S=12×2×2=2, ∴11D BB C V =13×2×3=233.易错提醒 (1)计算表面积时,有些面的面积没有计算到(或重复计算). (2)一些不规则几何体的体积不会采用分割法或补形思想转化求解. (3)求几何体体积的最值时,不注意使用基本不等式或求导等确定最值.跟踪演练1 (1)已知圆柱的上、下底面的中心分别为O 1,O 2,过直线O 1O 2的平面截该圆柱所得的截面是面积为8的正方形,则该圆柱的表面积为( ) A .122π B .12π C .82π D .10π答案 B解析 设圆柱的底面半径为r ,高为h ,由题意可知2r =h =22,∴圆柱的表面积S =2πr 2+2πr ·h =4π+8π=12π.故选B.(2)如图,在Rt △ABC 中,AB =BC =1,D 和E 分别是边BC 和AC 上异于端点的点,DE ⊥BC ,将△CDE 沿DE 折起,使点C 到点P 的位置,得到四棱锥P -ABDE ,则四棱锥P -ABDE 的体积的最大值为________.答案327解析 设CD =DE =x (0<x <1),则四边形ABDE 的面积S =12(1+x )(1-x )=12(1-x 2),当平面PDE ⊥平面ABDE 时,四棱锥P -ABDE 的体积最大,此时PD ⊥平面ABDE ,且PD =CD =x ,故四棱锥P -ABDE 的体积V =13S ·PD =16(x -x 3),则V ′=16(1-3x 2).当x ∈⎝⎛⎭⎫0,33时,V ′>0;当x ∈⎝⎛⎭⎫33,1时,V ′<0.∴当x =33时,V max =327. 考点二 多面体与球 核心提炼解决多面体与球问题的两种思路(1)利用构造长方体、正四面体等确定直径.(2)利用球心O 与截面圆的圆心O 1的连线垂直于截面圆的性质确定球心.例2 (1)已知三棱锥P -ABC 满足平面P AB ⊥平面ABC ,AC ⊥BC ,AB =4,∠APB =30°,则该三棱锥的外接球的表面积为__________. 答案 64π解析 因为AC ⊥BC ,所以△ABC 的外心为斜边AB 的中点,因为平面P AB ⊥平面ABC ,所以三棱锥P -ABC 的外接球球心在平面P AB 上, 即球心就是△P AB 的外心,根据正弦定理ABsin ∠APB =2R ,解得R =4,所以外接球的表面积为4πR 2=64π.(2)(2020·全国Ⅲ)已知圆锥的底面半径为1,母线长为3,则该圆锥内半径最大的球的体积为________. 答案23π 解析 圆锥内半径最大的球即为圆锥的内切球,设其半径为r .作出圆锥的轴截面P AB ,如图所示,则△P AB 的内切圆为圆锥的内切球的大圆.在△P AB 中,P A =PB =3,D 为AB 的中点,AB =2,E 为切点,则PD =22,△PEO ∽△PDB , 故PO PB =OE DB ,即22-r 3=r 1,解得r =22, 故内切球的体积为43π⎝⎛⎭⎫223=23π.规律方法 (1)长方体的外接球直径等于长方体的体对角线长.(2)三棱锥S -ABC 的外接球球心O 的确定方法:先找到△ABC 的外心O 1,然后找到过O 1的平面ABC 的垂线l ,在l 上找点O ,使OS =OA ,点O 即为三棱锥S -ABC 的外接球的球心. (3)多面体的内切球可利用等积法求半径.跟踪演练2 (1)已知A ,B 是球O 的球面上两点,∠AOB =90°,C 为该球面上的动点.若三棱锥O -ABC 体积的最大值为36,则球O 的表面积为( ) A .36π B .64π C .144π D .256π 答案 C解析 如图所示,设球O 的半径为R ,因为∠AOB =90°, 所以S △AOB =12R 2,因为V O -ABC =V C -AOB , 而△AOB 的面积为定值,当点C 位于垂直于平面AOB 的直径端点时,三棱锥O -ABC 的体积最大, 此时V O -ABC =V C -AOB =13×12R 2×R =16R 3=36,故R =6,则球O 的表面积为S =4πR 2=144π.(2)中国古代数学经典《九章算术》系统地总结了战国、秦、汉时期的数学成就,书中将底面为长方形且有一条侧棱与底面垂直的四棱锥称之为阳马,将四个面都为直角三角形的三棱锥称之为鳖臑,如图为一个阳马与一个鳖臑的组合体,已知P A ⊥平面ABCE ,四边形ABCD 为正方形,AD =5,ED =3,若鳖臑P -ADE 的外接球的体积为92π,则阳马P -ABCD 的外接球的表面积为________.答案 20π解析 ∵四边形ABCD 是正方形,∴AD ⊥CD ,即AD ⊥CE ,且AD =5,ED =3, ∴△ADE 的外接圆半径为r 1=AE2=AD 2+ED 22=2, 设鳖臑P -ADE 的外接球的半径为R 1, 则43πR 31=92π,解得R 1=322. ∵P A ⊥平面ADE ,∴R 1=⎝⎛⎭⎫P A 22+r 21, 可得P A 2=R 21-r 21=102,∴P A =10. 正方形ABCD 的外接圆直径为2r 2=AC =2AD =10, ∴r 2=102, ∵P A ⊥平面ABCD ,∴阳马P -ABCD 的外接球半径R 2=⎝⎛⎭⎫P A 22+r 22=5, ∴阳马P -ABCD 的外接球的表面积为4πR 22=20π. 专题强化练一、单项选择题1.水平放置的△ABC 的直观图如图,其中B ′O ′=C ′O ′=1,A ′O ′=32,那么原△ABC 是一个( )A .等边三角形B .直角三角形C .三边中只有两边相等的等腰三角形D .三边互不相等的三角形 答案 A解析 AO =2A ′O ′=2×32=3,BC =B ′O ′+C ′O ′=1+1=2.在Rt △AOB 中,AB =12+(3)2=2,同理AC =2,所以原△ABC 是等边三角形.2.(2020·全国Ⅰ)埃及胡夫金字塔是古代世界建筑奇迹之一,它的形状可视为一个正四棱锥.以该四棱锥的高为边长的正方形面积等于该四棱锥一个侧面三角形的面积,则其侧面三角形底边上的高与底面正方形的边长的比值为( )A.5-14 B.5-12 C.5+14 D.5+12答案 C解析 设正四棱锥的底面正方形的边长为a ,高为h , 侧面三角形底边上的高(斜高)为h ′, 则由已知得h 2=12ah ′.如图,设O 为正四棱锥S -ABCD 底面的中心,E 为BC 的中点,则在Rt △SOE 中,h ′2=h 2+⎝⎛⎭⎫a 22, ∴h ′2=12ah ′+14a 2,∴⎝⎛⎭⎫h ′a 2-12·h ′a -14=0,解得h ′a =5+14(负值舍去).3.已知一个圆锥的侧面积是底面积的2倍,记该圆锥的内切球的表面积为S 1,外接球的表面积为S 2,则S 1S 2等于( )A.12B.13C.14D.18 答案 C 解析 如图,由已知圆锥侧面积是底面积的2倍,不妨设底面圆半径为r ,l 为底面圆周长,R 为母线长, 则12lR =2πr 2, 即12·2π·r ·R =2πr 2, 解得R =2r ,故∠ADC =30°,则△DEF 为等边三角形, 设B 为△DEF 的重心,过B 作BC ⊥DF ,则DB 为圆锥的外接球半径,BC 为圆锥的内切球半径,则BC BD =12,∴r 内r 外=12,故S 1S 2=14. 4.(2020·大连模拟)一件刚出土的珍贵文物要在博物馆大厅中央展出,如图,需要设计各面是玻璃平面的无底正四棱柱将其罩住,罩内充满保护文物的无色气体.已知文物近似于塔形,高1.8米,体积0.5立方米,其底部是直径为0.9米的圆形,要求文物底部与玻璃罩底边至少间隔0.3米,文物顶部与玻璃罩上底面至少间隔0.2米,气体每立方米1 000元,则气体的费用最少为( )A .4 500元B .4 000元C .2 880元D .2 380元 答案 B解析 因为文物底部是直径为0.9米的圆形,文物底部与玻璃罩底边至少间隔0.3米,所以由正方形与圆的位置关系可知,底面正方形的边长为0.9+2×0.3=1.5米,又文物高1.8米,文物顶部与玻璃罩上底面至少间隔0.2(米),所以正四棱柱的高为1.8+0.2=2(米),则正四棱柱的体积V =1.52×2=4.5(立方米).因为文物的体积为0.5立方米,所以罩内空气的体积为4.5-0.5=4(立方米),因为气体每立方米1 000元,所以气体的费用最少为4×1 000=4 000(元),故选B.5.如图所示,在正方体ABCD -A 1B 1C 1D 1中,动点E 在BB 1上,动点F 在A 1C 1上,O 为底面ABCD 的中心,若BE =x ,A 1F =y ,则三棱锥O -AEF 的体积( )A .与x ,y 都有关B .与x ,y 都无关C .与x 有关,与y 无关D .与y 有关,与x 无关 答案 B解析 由已知得V 三棱锥O -AEF =V 三棱锥E -OAF =13S △AOF ·h (h 为点E 到平面AOF 的距离).连接OC ,因为BB 1∥平面ACC 1A 1,所以点E 到平面AOF 的距离为定值.又AO ∥A 1C 1,OA 为定值,点F 到直线AO 的距离也为定值,所以△AOF 的面积是定值,所以三棱锥O -AEF 的体积与x ,y 都无关.6.在梯形ABCD 中,∠ABC =π2,AD ∥BC ,BC =2AD =2AB =2.将梯形ABCD 绕AD 所在的直线旋转一周而形成的曲面所围成的几何体的体积为( ) A.2π3 B.4π3 C.5π3 D .2π 答案 C解析 如图,过点C 作CE 垂直AD 所在直线于点E ,梯形ABCD 绕AD 所在直线旋转一周而形成的旋转体是由以线段AB 的长为底面圆半径,线段BC 为母线的圆柱挖去以线段CE 的长为底面圆半径,ED 为高的圆锥,该几何体的体积为V =V 圆柱-V 圆锥=π·AB2·BC -13·π·CE 2·DE =π×12×2-13π×12×1=5π3.7.(2020·全国Ⅰ)已知A ,B ,C 为球O 的球面上的三个点,⊙O 1为△ABC 的外接圆.若⊙O 1的面积为4π,AB =BC =AC =OO 1,则球O 的表面积为( ) A .64π B .48π C .36π D .32π 答案 A解析 如图,设圆O 1的半径为r ,球的半径为R ,正三角形ABC 的边长为a .由πr 2=4π,得r =2, 则33a =2,a =23, OO 1=a =2 3.在Rt △OO 1A 中,由勾股定理得R 2=r 2+OO 21=22+(23)2=16,所以S 球=4πR 2=4π×16=64π.8.(2020·武汉调研)已知直三棱柱ABC -A 1B 1C 1的6个顶点都在球O 的表面上,若AB =AC =1,AA 1=23,∠BAC =2π3,则球O 的体积为( )A.32π3 B .3π C.4π3 D .8π 答案 A解析 设△ABC 外接圆圆心为O 1,半径为r ,连接O 1O ,如图,易得O 1O ⊥平面ABC ,∵AB =AC =1,AA 1=23,∠BAC =2π3,∴2r =AB sin ∠ACB =112=2,即O 1A =1,O 1O =12AA 1=3,∴OA =O 1O 2+O 1A 2=3+1=2,∴球O 的体积V =43π·OA 3=32π3.故选A.9.如图所示,某几何体由底面半径和高均为5的圆柱与半径为5的半球对接而成,在该封闭的几何体内部放入一个小圆柱体,且小圆柱体的上、下底面均与外层圆柱的底面平行,则小圆柱体积的最大值为( )A.2 000π9B.4 000π27C .81πD .128π答案 B解析 小圆柱的高分为上、下两部分,上部分的高同大圆柱的高相等,为5,下部分深入底部半球内.设小圆柱下部分的高为h (0<h <5),底面半径为r (0<r <5).由于r ,h 和球的半径构成直角三角形,即r 2+h 2=52,所以小圆柱的体积V =πr 2(h +5)=π(25-h 2)(h +5)(0<h <5),把V 看成是关于h 的函数,求导得V ′=-π(3h -5)(h +5).当0<h <53时,V ′>0,V 单调递增;当53<h <5时,V ′<0,V 单调递减.所以当h =53时,小圆柱的体积取得最大值.即V max =π⎝⎛⎭⎫25-259×⎝⎛⎭⎫53+5=4 000π27,故选B. 10.已知在三棱锥P -ABC 中,P A ,PB ,PC 两两垂直,且长度相等.若点P ,A ,B ,C 都在半径为1的球面上,则球心到平面ABC 的距离为( ) A.36 B.12 C.13 D.32答案 C解析 ∵在三棱锥P -ABC 中,P A ,PB ,PC 两两垂直,且长度相等, ∴此三棱锥的外接球即以P A ,PB ,PC 为三边的正方体的外接球O , ∵球O 的半径为1,∴正方体的边长为233,即P A =PB =PC =233,球心到截面ABC 的距离即正方体中心到截面ABC 的距离,设P 到截面ABC 的距离为h ,则正三棱锥P -ABC 的体积V =13S △ABC ×h =13 S △P AB ×PC =13×12×⎝⎛⎭⎫2333, ∵△ABC 为边长为263的正三角形,S △ABC =233,∴h =23, ∴球心(即正方体中心)O 到截面ABC 的距离为13.二、多项选择题11.(2020·枣庄模拟)如图,透明塑料制成的长方体容器ABCD -A 1B 1C 1D 1内灌进一些水,固定容器一边AB 于地面上,再将容器倾斜,随着倾斜度的不同,有下面几个结论,其中正确的是( )A .没有水的部分始终呈棱柱形B .水面EFGH 所在四边形的面积为定值C .随着容器倾斜度的不同,A 1C 1始终与水面所在平面平行D .当容器倾斜如图③所示时,AE ·AH 为定值 答案 AD解析 由于AB 固定,所以在倾斜的过程中,始终有CD ∥HG ∥EF ∥AB ,且平面AEHD ∥平面BFGC ,故水的部分始终呈棱柱形(三棱柱或四棱柱),且AB 为棱柱的一条侧棱,没有水的部分也始终呈棱柱形,故A 正确;因为水面EFGH 所在四边形,从图②,图③可以看出,EF ,GH 长度不变,而EH ,FG 的长度随倾斜度变化而变化,所以水面EFGH 所在四边形的面积是变化的,故B 错;假设A 1C 1与水面所在的平面始终平行,又A 1B 1与水面所在的平面始终平行,则长方体上底面A 1B 1C 1D 1与水面所在的平面始终平行,这就与倾斜时两个平面不平行矛盾,故C 错;水量不变时,棱柱AEH -BFG 的体积是定值,又该棱柱的高AB 不变,且V AEH -BFG =12·AE ·AH ·AB ,所以AE ·AH =2V AEH -BFG AB ,即AE ·AH 是定值,故D 正确.12. (2020·青岛检测)已知四棱台ABCD -A 1B 1C 1D 1的上、下底面均为正方形,其中AB =22,A 1B 1=2,AA 1=BB 1=CC 1=DD 1=2,则下列叙述正确的是( )A .该四棱台的高为 3B .AA 1⊥CC 1C .该四棱台的表面积为26D .该四棱台外接球的表面积为16π 答案 AD解析 将四棱台补为如图所示的四棱锥P -ABCD ,并取E ,E 1分别为BC ,B 1C 1的中点,记四棱台上、下底面中心分别为O 1,O ,连接AC ,BD ,A 1C 1,B 1D 1,A 1O ,OE ,OP ,PE .由条件知A 1,B 1,C 1,D 1分别为四棱锥的侧棱P A ,PB ,PC ,PD 的中点,则P A =2AA 1=4,OA =2,所以OO 1=12PO =12P A 2-OA 2=3,故该四棱台的高为3,故A 正确;由P A =PC=4,AC =4,得△P AC 为正三角形,则AA 1与CC 1所成角为60°,故B 不正确;四棱台的斜高h ′=12PE =12PO 2+OE 2=12×(23)2+(2)2=142,所以该四棱台的表面积为(22)2+(2)2+4×2+222×142=10+67,故C 不正确;易知OA 1=OB 1=OC 1=OD 1=O 1A 21+O 1O 2=2=OA =OB =OC =OD ,所以O 为四棱台外接球的球心,所以外接球的半径为2,外接球表面积为4π×22=16π,故D 正确.三、填空题13.(2020·浙江)已知圆锥的侧面积(单位:cm 2)为2π,且它的侧面展开图是一个半圆,则这个圆锥的底面半径(单位:cm)是________. 答案 1解析 如图,设圆锥的母线长为l ,底面半径为r ,则圆锥的侧面积S 侧=πrl =2π,即r·l=2.由于侧面展开图为半圆,可知12πl2=2π,可得l=2,因此r=1.14.在如图所示的斜截圆柱中,已知圆柱的底面直径为40 cm,母线长最短50 cm,最长80 cm,则斜截圆柱的侧面面积S=________cm2.答案 2 600π解析将题图所示的相同的两个几何体对接为圆柱,则圆柱的侧面展开图为矩形.由题意得所求侧面展开图的面积S=12×(π×40)×(50+80)=2 600π(cm2).15.已知球O与棱长为4的正四面体的各棱相切,则球O的体积为________.答案82 3π解析将正四面体补成正方体,则正四面体的棱为正方体面上的对角线,因为正四面体的棱长为4,所以正方体的棱长为2 2.因为球O与正四面体的各棱都相切,所以球O为正方体的内切球,即球O的直径2R=22,则球O的体积V=43πR3=823π.16.(2020·新高考全国Ⅰ)已知直四棱柱ABCD-A1B1C1D1的棱长均为2,∠BAD=60°.以D1为球心,5为半径的球面与侧面BCC1B1的交线长为________.答案2π2解析如图,设B1C1的中点为E,球面与棱BB1,CC1的交点分别为P,Q,连接DB,D1B1,D1P,D1E,EP,EQ,由∠BAD =60°,AB =AD ,知△ABD 为等边三角形, ∴D 1B 1=DB =2,∴△D 1B 1C 1为等边三角形, 则D 1E =3且D 1E ⊥平面BCC 1B 1,∴E 为球面截侧面BCC 1B 1所得截面圆的圆心, 设截面圆的半径为r , 则r =R 2球-D 1E 2=5-3= 2.又由题意可得EP =EQ =2,∴球面与侧面BCC 1B 1的交线为以E 为圆心的圆弧PQ . 又D 1P =5, ∴B 1P =D 1P 2-D 1B 21=1, 同理C 1Q =1,∴P ,Q 分别为BB 1,CC 1的中点, ∴∠PEQ =π2,知PQ 的长为π2×2=2π2,即交线长为2π2.。
高一数学立体几何知识点以及例题一、知识概述《高一数学立体几何知识点》①基本定义:立体几何是研究三维空间内点、线、面及其相互关系的几何学科。
②重要程度:在高一数学中,立体几何是不可或缺的一部分,它不仅能够帮助学生建立空间想象力,还为后续的数学学习打下基础。
在高考中,立体几何也是常考题型之一,对学生的逻辑思维和空间索取能力有很高的要求。
③前置知识:要求熟练掌握平面几何的基本概念、直线与平面的位置关系等。
④应用价值:立体几何在建筑设计、工程制图等多个领域都有广泛应用。
比如,建筑师需要运用立体几何知识来设计建筑的三维结构,确保安全性和美观性。
二、知识体系①知识图谱:立体几何位于高一数学的第二学期,与平面几何、三角函数等内容紧密相连。
②关联知识:立体几何的知识与平面解析几何、向量等有密切联系。
比如,我们可以用向量来解决立体几何中的角度和距离问题。
③重难点分析:重点在于点、线、面的位置关系及性质,难点在于如何通过逻辑推理和计算解决复杂问题。
需要较强的空间想象力和数学运算能力。
④考点分析:在考试中,立体几何通常会以解答题的形式出现,涉及空间几何体的表面积和体积计算、几何体中的点线面位置关系判断等。
三、详细讲解【方法技能类】①基本步骤:解决立体几何问题的基本步骤是先明确问题要求,然后识别并分析题目中的几何体和空间关系,最后通过逻辑推理或数学计算得出答案。
②关键要点:关键在于建立正确的空间模型,理解并掌握点、线、面的基本性质及位置关系。
③常见误区:很多学生在处理立体几何问题时,容易忽略空间中的隐藏条件,如异面直线的角度关系等。
④技巧提示:在做题时,可以尝试利用一些辅助线或面来帮助理解和解决问题,比如过某点作垂线、平行线等。
四、典型例题例题一《空间坐标系的建立》题目内容:在空间直角坐标系中,点A的坐标为(1,2,3),求与点A在同一直线上且距离为2的点B的坐标。
解题思路:首先确定直线AB的方向向量,然后根据向量长度的关系求解B点的坐标。
立体几何复习(知识点+经典习题)1.给出以下命题:1) 若平面α内的两条相交直线分别平行于平面β内的两条直线,则平面α平行于平面β;2) 若平面α外一条直线l与平面α内的一条直线平行,则直线l和平面α平行;3) 设平面α和平面β相交于直线l,若平面α内有一条直线垂直于l,则平面α和平面β垂直;4) 直线l与平面α垂直的充分必要条件是直线l与平面α内的两条直线垂直。
写出所有真命题的序号。
2.在空间中,以下命题正确的是:A) 平行直线的平行投影重合;B) 平行于同一直线的两个平面平行;C) 垂直于同一平面的两个平面平行;D) 垂直于同一平面的两条直线平行。
考点为二三视图与直观图及面积与体积。
基础训练】1.如图,E和F分别为正方体的面ADD1A1和面BCC1B1的中心,则四边形BFD1E在该正方体的面上的投影可能是什么形状。
2.如果一个水平放置的图形的斜二测直观图是一个底角为45度,腰和上底均为1的等腰梯形,则原图形的面积是多少?3.在三角形ABC中,AB=2,BC=1.5,∠ABC=120度。
若使其绕直线BC旋转一周,则它形成的几何体的体积是多少?4.已知一个长方体共一顶点的三个面的面积分别是2,3,6,则这个长方体的对角线长是多少?若长方体共顶点的三个侧面面积分别为3,5,15,则它的体积是多少?5.正方体的内切球和外接球的半径之比为多少?6.一个正方体的顶点都在球面上,它的棱长为2,则球的表面积是多少?7.若三个球的表面积之比是1:2:3,则它们的体积之比是多少?8.长方体的一个顶点上三条棱长分别为3、4、5,且它的8个顶点都在同一球面上,则这个球的表面积是多少?9.半径为R的半圆卷成一个圆锥,则它的体积为多少?高考链接】1.一个棱锥的三视图如图,则该棱锥的全面积为多少?2.设某几何体的三视图如下,则该几何体的体积为多少?1.在三棱锥ABCDE中,AB=AC=AD=2,BC=3,CD=4,BE=5,CE=6,DE=7,求∠AED的大小。
高考立体几何知识点总结整体知识框架:一 、空间几何体 〔一〕 空间几何体的类型1 多面体:由假设干个平面多边形围成的几何体。
围成多面体的各个多边形叫做多面体的面,相邻两个面的公共边叫做多面体的棱,棱与棱的公共点叫做多面体的顶点。
2 旋转体:把一个平面图形绕它所在的平面内的一条定直线旋转形成了封闭几何体。
其中,这条直线称为旋转体的轴。
〔二〕 几种空间几何体的结构特征 1 、棱柱的结构特征1.1 棱柱的定义:有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体叫做棱柱。
1.2 棱柱的分类棱柱四棱柱平行六面体直平行六面体长方体正四棱柱正方体性质:棱长都相等底面是正方形底面是矩形侧棱垂直于底面底面是平行四边形底面是四边形图1-1 棱柱Ⅰ、侧面都是平行四边形,且各侧棱互相平行且相等; Ⅱ、两底面是全等多边形且互相平行; Ⅲ、平行于底面的截面和底面全等; 1.3 棱柱的面积和体积公式ch S =直棱柱侧〔c 是底周长,h 是高〕S 直棱柱外表 = c ·h+ 2S 底 V 棱柱 = S 底 ·h2 、棱锥的结构特征 2.1 棱锥的定义〔1〕 棱锥:有一个面是多边形,其余各面是有一个公共顶点的三角形,由这些面所围成的几何体叫做棱锥。
〔2〕正棱锥:如果有一个棱锥的底面是正多边形,并且顶点在底面的投影是底面的中心,这样的棱锥叫做正棱锥。
2.2 正棱锥的结构特征Ⅰ、 平行于底面的截面是与底面相似的正多边形,相似比等于顶点到截面的距离与顶点到底面的距离之比;它们面积的比等于截得的棱锥的高与原棱锥的高的平方比;截得的棱锥的体积与原棱锥的体积的比等于截得的棱锥的高与原棱锥的高的立方比; Ⅱ、 正棱锥的各侧棱相等,各侧面是全等的等腰三角形; 正棱锥侧面积:1'2S ch =正棱椎〔c 为底周长,'h 为斜高〕 体积:13V Sh =棱椎〔S 为底面积,h 为高〕 正四面体:对于棱长为a 正四面体的问题可将它补成一个边长为a 22的正方体问题。
【高考压轴题】空间立体几何经典大题汇编100题(含答案)未命名一、解答题1.直三棱柱'''ABC A B C -中,底面ABC 是边长为2的正三角形,'D 是棱''A C 的中点,且'AA =.(1)若点M 为棱'CC 的中点,求异面直线'AB 与BM 所成角的余弦值; (2)若点M 在棱'CC 上,且'A M ⊥平面''AB D ,求线段CM 的长.2.如图,在三棱台DEF ABC -中,2AB DE =,CF ⊥平面ABC ,AB BC ⊥,45BAC ∠=︒,CF DE =,,G H 分别为,AC BC 的中点.(1)求证://BD 平面FGH ;(2)求平面FGH 与平面ACFD 所成角(锐角)的大小.3.在直三棱柱111ABC A B C -中,AC BC ==12AB AA ==,E 是棱1CC 的中点.(1)求证:平面1A AB ⊥平面1A BE ; (2)求二面角1A BE A --的余弦值.4.如图,四棱锥P ABCD -中,PA ⊥平面,,ABCD AB AD CD BC ==. (1)求证:平面PBD ⊥平面PAC ; (2)若120,60B A D B CD ∠=∠=,且P B P D ⊥,求二面角B PC D --的平面角的大小.5.如图,在三棱柱111ABC A B C -中,四边形11BB C C 是矩形,11AB B C ⊥,平面1A BC ⊥平面11AB C .(1)求证:11AB A B ⊥;(2)若113B C =,4AB =,160ABB ︒∠=,求二面角1A A C B --的余弦值.6.如图,在正方体1111ABCD A B C D -中,,E F 分别是111,CC B C 的中点.(1)求证:1A F //平面1AD E ; (2)求二面角1D E A DC --余弦值.7.在多面体ABCDEF 中,四边形ABCD 是正方形,//EF AB ,1DE EF ==,2DC BF ==,30EAD ︒∠=.(Ⅰ) 求证:AE ⊥平面CDEF ;(Ⅱ)在线段BD 上确定一点G ,使得平面EAD 与平面FAG 所成的角为30︒. 8.已知四棱锥P ABCD -中,平面PCD ⊥平面ABCD ,且22PD PC BC ===, 2,3BCD ABD π∠=∆是等边三角形,AC B D E =. (1)证明:PC ⊥平面PAD ; (2)求二面角P AB C --的余弦值.9.已知直角梯形ABCD 中,//AB CD ,AB AD ⊥,22AB AD CD ===,E 、F 分别是边AD 、BC 上的点,且//EF AB ,沿EF 将EFCD 折起并连接成如图的多面体CD ABFE -,折后BE ED ⊥.(Ⅰ)求证:AE FC ⊥;(Ⅱ)若折后直线AC 与平面ABFE 所成角θABCD ⊥平面FCB .10.如图,在四棱锥S ABCD -中,SA ⊥平面ABCD ,且90ABC BCD ∠=∠=︒,22SA AB BC CD ====,E 是边SB 的中点.(1)求证:AE ⊥平面SBC ;(2)若F 是线段SB 上的动点(不含端点):问当BF FS为何值时,二面角D CF B--余弦值为10-. 11.如图,已知三棱柱111ABC A B C -,侧面11BCC B ABC ⊥底面. (Ⅰ)若,M N 分别是1,AB AC 的中点,求证:11//MN BCC B 平面; (Ⅱ)若三棱柱111ABC A B C -的各棱长均为2,侧棱1BB 与底面ABC 所成的角为60︒,问在线段11A C 上是否存在一点P ,使得平面111B CP ACC A ⊥平面?若存在,求1C P 与1PA 的比值,若不存在,说明理由.12.已知某几何体直观图和三视图如图所示,其正视图为矩形,侧视图为等腰直角三角形,俯视图为直角梯形.(1)求证:BN 11C B N ⊥平面;(2)11sin C N CNB θθ设为直线与平面所成的角,求的值;(3)设M 为AB 中点,在BC 边上找一点P ,使MP //平面1CNB 并求BPPC的值. 13.如图,在直三棱柱111ABC A B C -中,,D E 分别是棱,BC AB 的中点,点F 在1CC 棱上,且AB AC =,13AA =,2BC CF ==.(1)求证:1//C E 平面ADF ;(2)当2AB =时,求二面角111A C E B --的余弦值.14.如图,在直三棱柱111ABC A B C -中,已知1CA CB ==,12AA =,90BCA ︒∠=.(1)求异面直线1BA 与1CB 夹角的余弦值; (2)求二面角1B AB C --平面角的余弦值.15.已知正三棱柱 中, 、 分别为 的中点,设.(1)求证:平面 平面 ;(2)若二面角 的平面角为,求实数 的值,并判断此时二面角是否为直二面角,请说明理由.16.在直三棱柱中,13,2,AA AB BC AC D ====是AC 中点. (Ⅰ)求证:1B C //平面1A BD ; (Ⅱ)求点1B 到平面1A BD 的距离; (Ⅲ)求二面角11A DB B --的余弦值.17.如图,在三棱柱ABC -111A B C 中,侧棱与底面垂直,090BAC ∠=,AB AC =1AA =2=,点,M N 分别为1A B 和11B C 的中点.(1)证明:1A M ⊥MC ;(2)求二面角N MC A --的正弦值.18.如图,四边形ABCD 是正方形,EA ⊥平面ABCD ,//EA PD ,22AD PD EA ===,F ,G ,H 分别为PB ,EB ,PC 的中点.(1)求证://FG 平面PED ;(2)求平面FGH 与平面PBC 所成锐二面角的大小;(3)在线段PC 上是否存在一点M ,使直线FM 与直线PA 所成的角为3π?若存在,求出线段PM 的长;若不存在,请说明理由.19.已知五边形ABCDE 是由直角梯形ABCD 和等腰直角三角形ADE 构成,如图所示, AB AD ⊥, AE DE ⊥, AB CD ,且224AB CD DE ===,将五边形ABCDE 沿着AD 折起,且使平面ABCD ⊥平面ADE .(Ⅰ)若M 为DE 中点,边BC 上是否存在一点N ,使得MN 平面ABE ?若存在,求BNBC的值;若不存在,说明理由; (Ⅱ)求二面角A BE C --的平面角的余弦值.20.如图,在以,,,,,A B C D E F 为顶点的多面体中,四边形ACDF 是菱形,60,,//FAC AC BC AB DE ∠=︒⊥, //,2,1,BC EF AC BC BF ===(1)求证:BC ⊥平面ACDF ; (2)求二面角C AE F --的余弦值.21.在PABC 中,4PA =,PC =45P ∠=︒,D 是PA 中点(如图1).将PCD ∆沿CD 折起到图2中1PCD ∆的位置,得到四棱锥1P ABCD -.(1)将PCD ∆沿CD 折起的过程中,CD ⊥平面1P DA 是否成立?并证明你的结论; (2)若1P D 与平面ABCD 所成的角为60°,且1PDA ∆为锐角三角形,求平面1P AD 和平面1P BC 所成角的余弦值.22.四棱锥P ABCD -中,侧面PDC 是边长为2的正三角形,且与底面垂直,底面ABCD 是60ADC ∠=︒的菱形,M 为PB 的中点,Q 为CD 的中点.(1)求证:PA CD ⊥;(2)求AQ 与平面CDM 所成的角.23.如图,在正方体ABCD – A 1B 1C 1D 1中,点E ,F ,G 分别是棱BC ,A 1B 1,B 1C 1的中点.(1)求异面直线EF 与DG 所成角的余弦值;(2)设二面角A —BD —G 的大小为θ,求 |cos θ| 的值.24.如图,四边形ABCD 与BDEF 均为菱形, 60DAB DBF ∠=∠=︒,且F A F C =.(1)求证:AC ⊥平面BDEF ;(2)求直线AF 与平面BCF 所成角的正弦值.25.如图,在正方体1111ABCD A B C D -中,,F G 分别是棱1,CC AD 的中点,E 为棱AB 上一点,且异面直线1B E 与BG 所成角的余弦值为25.(1)证明:E 为AB 的中点;(2)求平面1B EF 与平面11ABC D 所成锐二面角的余弦值.26.如图,ABC ∆中,02,4,90AC BC ACB ==∠=,,D E 分别是,AC AB 的中点,将ADE ∆沿DE 折起成PDE ∆,使面PDE ⊥面BCDE ,,H F 分别是PD 和BE 的中点,平面BCH 与PE ,PF 分别交于点,I G .(1)求证://IH BC ;(2)求二面角P GI C --的正弦值.27.如图,矩形ABCD 中,6AB =,AD =点F 是AC 上的动点.现将矩形ABCD沿着对角线AC 折成二面角D AC B '--,使得D B '=.(Ⅰ)求证:当AF =D F BC '⊥;(Ⅱ)试求CF 的长,使得二面角A D F B -'-的大小为4π.28.如图,在三棱锥P ABC -中,,,CP CA CB 两两垂直且相等,过PA 的中点D 作平面α∥BC ,且α分别交PB ,PC 于M 、N ,交,AB AC 的延长线于,E F .(Ⅰ)求证:EF ⊥平面PAC ;(Ⅱ)若2AB BE =,求二面角P DM N --的余弦值.29.如图1,在M B C △中,24BM BC ==,BM BC ⊥,A ,D 分别为BM ,MC 的中点.将MAD △沿AD 折起到PAD △的位置,使90PAB ∠=,如图2,连结PB ,PC .(Ⅰ)求证:平面PAD ⊥平面ABCD ;(Ⅱ)若E 为PC 中点,求直线DE 与平面PBD 所成角的正弦值;(Ⅲ)线段PC 上是否存在一点G ,使二面角G AD P --求出PGPC的值;若不存在,请说明理由.30.如图,在四棱锥P ABCD -中,PA ⊥平面ABCD ,底面ABCD 是菱形.(1)求证:BD ⊥平面PAC ;(2)若PA AB BD ==,求PC 与平面PBD 所成角的正弦值.31.如图,四棱锥P ABCD -中,底面ABCD 为梯形,PD ⊥底面ABCD ,//,,1,AB CD AD CD AD AB BC ⊥===过A 作一个平面α使得//α平面PBC .(1)求平面α将四棱锥P ABCD -分成两部分几何体的体积之比;(2)若平面α与平面PBC PA 与平面PBC 所成角的正弦值.32.如图几何体ADM-BCN 中,ABCD 是正方形,CD //NM ,,AD MD CD CN ⊥⊥,MDC ∠=120o ,30CDN ∠=,24MN MD ==.(Ⅰ)求证://AB CDMN 平面; (Ⅱ)求证:DN AMD ⊥平面; (Ⅲ)求二面角N AM D --的余弦值.33.如图所示,在四棱锥P ABCD -中,底面ABCD 为正方形,PA ⊥平面ABCD ,且1PA AB ==,点E 在线段PC 上,且2PE EC =. (Ⅰ)证明:平面BDE ⊥平面PCD ; (Ⅱ)求二面角P BD E --的余弦值.34.在如图所示的多面体ABCDE 中,AB ⊥平面ACD ,DE ⊥平面ACD ,AC AD CD DE 2AB 1G =====,,为AD 中点,F 是CE 的中点. (1)证明:BF 平面ACD (2)求点G 到平面BCE 的距离.35.如图所示,四棱锥P ABCD -的侧面PAD ⊥底面ABCD ,底面ABCD 是直角梯形,且//,AB CD AB AD ⊥,12CD PD AD AB ===,E 是PB 中点.(1)求证:CE ⊥平面PAB ;(2)若4CE AB ==,求直线CE 与平面PDC 所成角的大小.36.如图,在四棱锥E ABCD -中,ABD ∆是正三角形,BCD ∆是等腰三角形,120BCD ∠=,EC BD ⊥.(1)求证:BE DE =;(2)若AB =AE =EBD ⊥平面ABCD ,直线AE 与平面ABD 所成的角为45°,求二面角B AE D --的余弦值.37.如图1,在平行四边形11ABB A 中,160ABB ∠=︒,4AB =,12AA =,C 、1C 分别为AB 、11A B 的中点,现把平行四边形11ABB A 1沿C 1C 折起如图2所示,连接1B C 、1B A 、11B A .(1)求证:11AB CC ⊥;(2)若1AB =11C AB A --的正弦值.38.如图,已知四棱锥S ABCD -中,底面ABCD 是边长为2的菱形,60BAD ∠=︒,SA SD SB ===点E 是棱AD 的中点,点F 在棱SC 上,且SF SC λ=,SA //平面BEF .(1)求实数λ的值;(2)求二面角S BE F --的余弦值.39.如图所示,在四棱锥P ABCD -中,平面PAD ⊥平面ABCD ,底面ABCD 是正方形,且PA PD =,90APD ︒∠=.(Ⅰ)证明:平面PAB ⊥平面PCD ; (Ⅱ)求二面角A PB C --的余弦值.40.如图,空间四边形OABC 中,,OA BC OB AC ⊥⊥.求证:OC AB ⊥.41.如图,直角梯形BDFE 中,||EF BD ,BE BD ⊥,EF =等腰梯形ABCD 中,||AB CD ,AC BD ⊥,24AB CD ==,且平面BDFE ⊥平面ABCD . (1)求证:AC ⊥平面BDFE ; (2)若BF 与平面ABCD 所成角为4π,求二面角B DF C --的余弦值.42.在如图所示的几何体中,正方形ABEF 所在的平面与正三角形ABC 所在的平面互相垂直,//CD BE ,且2BE CD =,M 是ED 的中点. (1)求证://AD 平面BFM ;(2)求面EDF 与面ADB 所成锐二面角的大小.43.如图,四面体中,分别是的中点,(1)求证:平面;(2)求直线与平面所成角的正弦值.44.如图,已知正方体ABCD A B C D ''''-的棱长为1,E ,F ,G ,H 分别是棱AB ,CC ',AA ',C D ''的中点.(1)求证:EF 平面GHD ; (2)求直线EF 与BD '所成的角.45.如图,在四棱锥P -ABCD 中,底面ABCD 是边长为2的菱形,∠ABC =60°,PAB ∆为正三角形,且侧面P AB ⊥底面ABCD ,E 为线段AB 的中点,M 在线段PD 上.(I )当M 是线段PD 的中点时,求证:PB // 平面ACM ; (II )求证:PE AC ⊥;(III )是否存在点M ,使二面角M EC D --的大小为60°,若存在,求出PMPD的值;若不存在,请说明理由.46.长方形ABCD 中,2AB AD =,M 是DC 中点(图1).将△ADM 沿AM 折起,使得AD BM ⊥(图2)在图2中:(1)求证:平面ADM ⊥平面ABCM ;(2)在线段BD 上是否存点E ,使得二面角E AM D --为大小为π4,说明理由. 47.如下图,在空间直角坐标系O xyz -中,正四面体(各条棱均相等的三棱锥)ABCD 的顶点,,A B C 分别在x 轴,y 轴,z 轴上.(Ⅰ)求证://CD 平面OAB ; (Ⅱ)求二面角C AB D --的余弦值.48.如图,在四棱柱1111ABCD A B C D -中,1AA ⊥平面ABCD ,底面ABCD 为梯形, //AD BC ,AB DC ==1122AD AA BC ===,点P ,Q 分别为11A D ,AD 的中点.(Ⅰ)求证://CQ 平面1PAC ; (Ⅱ)求二面角1C AP D --的余弦值;(Ⅲ)在线段BC 上是否存在点E ,使PE 与平面1PAC 所成角的正弦值是21若存在,求BE 的长;若不存在,请说明理由.49.如图在棱锥P ABCD -中,ABCD 为矩形,PD ⊥面ABCD ,2PB =,PB 与面PCD 成045角,PB 与面ABD 成030角.(1)在PB 上是否存在一点E ,使PC ⊥面ADE ,若存在确定E 点位置,若不存在,请说明理由;(2)当E 为PB 中点时,求二面角P AE D --的余弦值.50.如图所示,在底面为正方形的四棱柱1111ABCD A B C D -中,1111,2,3AA A B A D AB AA B π===∠=.(1)证明:平面1A BD ⊥平面11A BC ; (2)求直线1AC 与平面1DBC 所成角的正弦值.51.如图,在等腰梯形ABCD 中,060ABC ∠=,上底2CD =,下底4AB =,点E 为下底AB 的中点,现将该梯形中的三角形BEC 沿线段EC 折起,形成四棱锥B AECD -.(1)在四棱锥B AECD -中,求证:AD BD ⊥;(2)若平面BEC 与平面AECD 所成二面角的平面角为0120,求直线AE 与平面ABD所成角的正弦值.52.如图,已知四棱锥P ABCD - 中,//,,3,4,4,AB CD AB AD AB CD AD AP ⊥====060PAB PAD ∠=∠=.(1)证明:顶点P 在底面ABCD 的射影在BAD ∠的平分线上; (2)求二面角B PD C --的余弦值.53.如图,三棱柱111ABC A B C -中,AB ⊥平面11AAC C ,12AA AB AC ===,160A AC ∠=.过1AA 的平面交11B C 于点E ,交BC 于点F .(l)求证:1A C ⊥平面1ABC ;(Ⅱ)求证:四边形1AA EF 为平行四边形; (Ⅲ)若是23BF BC =,求二面角1B AC F --的大小. 54.如图,在四棱锥P ABCD -中,底面ABCD 为梯形,平面PAD ⊥平面,//,ABCD BC AD ,PA PD ⊥,60,AB AD PDA E ⊥∠=为侧棱PD 的中点,且2,4AB BC AD ===.(1)证明://CE 平面PAB ; (2)求二面角A PB C --的余弦值.55.如图1,梯形ABCD 中,AD BC ∥,CD BC ⊥,1BC CD ==,2AD =,E为AD 中点.将ABE ∆沿BE 翻折到1A BE ∆的位置,使11A E A D =,如图2.(Ⅰ)求证:平面1A DE ⊥与平面BCDE ; (Ⅱ)求直线1A B 与平面1A CD 所成角的正弦值;(Ⅲ)设M N 、分别为1A E 和BC 的中点,试比较三棱锥1M A CD -和三棱锥1N A CD -(图中未画出)的体积大小,并说明理由.56.如图1,梯形ABCD 中,//,,1,2,AD BC CD BC BC CD AD E ⊥===为AD中点.将ABE ∆沿BE 翻折到1A BE ∆的位置,如图2.(Ⅰ)求证:平面1A DE ∆⊥平面BCDE ; (Ⅱ)求直线1A B 与平面1A CD 所成角的正弦值;(Ⅲ)设,M N 分别为1A E 和BC 的中点,试比较三棱锥1M A CD -和三棱锥1N A CD -(图中未画出)的体积大小,并说明理由.57.如图,在几何体ABCDEF 中,四边形ADEF 为矩形,四边形ABCD 为梯形,//AB CD ,平面CBE 与平面BDE 垂直,且CB BE ⊥.。
空间立体几何
知识点归纳:
1. 空间几何体的类型
( 1) 多面体: 由若干个平面多边形围成的几何体,如棱柱、棱锥、棱台。
( 2) 旋转体: 把一个平面图形绕它所在的平面内的一条定直线旋转形成了封闭几何体。
如圆柱、圆锥、圆台。
2. 一些特殊的空间几何体
直棱柱:侧棱垂直底面的棱柱。
正棱柱:底面多边形是正多边形的直棱柱。
正棱锥:底面是正多边形且所有侧棱相等的棱锥。
正四面体:所有棱都相等的四棱锥。
3. 空间几何体的表面积公式
棱柱、棱锥的表面积:各个面面积之和
圆柱的表面积 : S
2 rl 2 r 2
圆锥的表面积:
S rl
r 2
圆台的表面积:
S rl
r
2
Rl R
2
球的表面积:
S 4 R
2
4. 空间几何体的体积公式
柱体的体积 :
V S 底 h
锥体的体积 : V
1
S 底 h 3
1 4 3 台体的体积 :
V
( S 上3
S 上 S 下 S 下 ) h
球体的体积:
V
R 3
5. 空间几何体的三视图
正视图:光线从几何体的前面向后面正投影,得到的投影图。
侧视图:光线从几何体的左边向右边正投影,得到的投影图。
俯视图:光线从几何体的上面向右边正投影,得到的投影图。
画三视图的原则:
长对正、宽相等、高平齐。
即正视图和俯视图一样长,侧视图和俯视图一样宽,侧视图和正视图一样高。
6 . 空间中点、直线、平面之间的位置关系
( 1) 直线与直线的位置关系: 相交;平行;异面。
(2)直线与平面的位置关系:直线与平面平行;直线与平面相交;直线在平面内。
(3)平面与平面的位置关系:平行;相交。
7. 空间中点、直线、平面的位置关系的判断
(1)线线平行的判断:
①平行公理:平行于同一直线的两直线平行。
②线面平行的性质定理:如果一条直线和一个平面平行,经过这条直线的平面和这个平
面相交,那么这条直线和交线平行。
③面面平行的性质定理:如果两个平行平面同时和第三个平面相交,那么它们的交线平
行。
④线面垂直的性质定理:垂直于同一平面的两直线平行。
(2)线线垂直的判断:
①线面垂直的定义:若一直线垂直于一平面,这条直线垂直于平面内所有直线。
②线线垂直的定义:若两直线所成角为,则两直线垂直
③一条直线和两条平行直线中的一条垂直,也必垂直平行线中的另一条。
(3)线面平行的判断:
①线面平行的判定定理:如果平面外的一条直线和平面内的一条直线平行,那么这条直线
和这个平面平行。
②面面平行的性质定理:两个平面平行,其中一个平面内的直线必平行于另一个平面。
(4)线面垂直的判断:
①线面垂直的判定定理:如果一直线和平面内的两相交直线垂直,这条直线就垂直于这
个平面。
②如果两条平行线中的一条垂直于一个平面,那么另一条也垂直于这个平面。
③一直线垂直于两个平行平面中的一个平面,它也垂直于另一个平面。
④如果两个平面垂直,那么在—个平面内垂直于交线的直线必垂直于另—个
(5)面面平行的判断:
①面面平行的判定定理:一个平面内的两条相交直线分别平行于另一个平面,这两个平
面平行。
②垂直于同一条直线的两个平面平行。
(6)面面垂直的判断:
面面垂直的判定定理:一个平面经过另一个平面的垂线,这两个平面互相垂直。
8. 空间中直线与直线、直线与平面、平面与平面所成角
(1)异面直线所成的角
已知a、b 是两条异面直线,经过空间任意一点O,分别引直线a′∥′∥b, 则a′和b′ 所成的锐角( 或直角) 叫做异面直线 a 和b 所成的角.
异面直线所成的角的求法:通过直线的平移,把异面直线所成的角转化为平面内相交
直线所成的角。
异面直线所成角的范围:0 o 90o ;
(2)直线与平面所成的角
一条直线与平面相交于A,在直线取一点P(异于 A 点),过P 作平面的垂线,
垂足为O,则线段叫做直线l 在平面内的射影,直线l 与射影所成角就叫做直线l 与平
面所成的角。
直线与平面所成角的范围:0 o 90 o
(3)平面与平面所成角
二面角的定义:由一条棱出发的两个半平面组成的图形。
二面角的平面角:在二面角的棱上任取一点O,过O 分别在两个半平面内作棱的垂线、,
则垂线与所成角就叫做二面角的平面角。
二面角的平面角的范围:0o 180 o ;
求平面与平面所成角关键是找出二面角的平面角。
方法有:①定义法;②垂面法;
基础巩固
一.三视图和空间几何体的表面积和体积
1. 如图所示的是一个立体图形的三视图,此立体
图形的名称为( )
A.圆锥B.圆柱C.长方体D.圆台
2.如图,图(1)(2)(3) 是图(4) 表示的几何体的三视图,其中图(1) 是,图(2) 是,图(3) 是( 说出视图名称) .
(1) (2) (3) (4)
3. 已知一个几何体是由上、下两部分构成的一个组合体,其三视图如图所示,则这个组
合体的上、下两部分分别是( )
A.上部是圆锥,下部是圆柱 B .上部是圆锥,下部是四棱柱
C.上部是三棱锥,下部是四棱柱 D .上部是三棱锥,下部是圆柱
4. 下列几何体各自的三视图中,有且仅有两个视图相同的是( )
A.①② B .①③ C .①④ D .②④
5. 某几何体的正视图和侧视图均如图所示,则该几何体的俯视图不可能...是( )
6. 某几何体的三视图如图所示,则该几何体的体积等于.
7. 如图是某几何体的三视图,则该几何体的体积为( )
A. 82
3
B. 8
3
C. 8 2
D.
2
3
9. 某四棱锥的三视图如图所示,该四棱锥的表面积是()
A.32 B.16+ 16 2 C.48 D. 16 32 2
10. 如图,某几何体的正视图(主视图),侧视图(左视图)和俯视图分别是等边三角
形,等腰三角形和菱形,则该几何体的体积为()
A.4 3 B .4 C .2 3 D .2
2 3
第9 题正视图
2 侧视图
第8 题 2
10 题
俯视图
11. 某几何体的三视图如图所示,则其体积为.
12. 若某几何体的三视图(单位:cm )如图所示,则此几何体的体积等于cm3 .
13. 某几何体的三视图如图所示,则该几何体的体积是.
第11 题
第12 题第13 题
8. 某几何体的三视图如图所示,则它的体积是()
14.如图,正方体-A1B1C1D1 的棱长为1,E,F 分别为线段1,B1C 上的点,则三棱锥D1-的体积为.
15.圆柱的轴截面是边长为 5 的正方形,从 A 到C圆柱侧面上的最短距离为
2
16.底面直径和高都是 4 的圆柱的侧面积为
二.空间中点、直线、平面的位置关系
17.如图,在空间四边形中,==2,E、F
分别是、的中点,若=,求异面直线、
所成角的大小.
18. 如图2-1-13,在正方体-A1B1C1D1 中,
(1) 和 1 所成的角是;(2) 和D1C1 所成的角是;
(3) 和B1D1 所成的角是;(4) 和A1B 所成的角是.
19. 正方体-A1B1C1D1 中,的中点为M,1 的中点为N,异面直线B1M与所成的角是
20. 如图,空间四边形中,E、F、G、H 分别是、、、的中
点.求证:(1) ∥平面;(2) ∥平面.
21. 如图,在四棱锥P-中,平行四边形,M,N 分别是,的中点.求证:∥平面.
22. 在正方体-A1B1C1D1 中,M、N、P 分别是C1C、B1C1、C1D1 的中点,求证:平面∥平面A1.
23. 三棱锥P-中,E,F,G分别是,,的中点.证明平面∥平面.
24. 如图所示,已知E、F 分别是正方体-A1B1C1D1 的棱1、1 的中点,求证:四边形1F 是平行四边形.
25. 如图所示,已知P 是?所在平面外一点,M、N分别是、的中点,平面∩平面=l .
(1)求证:l ∥;
(2)与平面是否平行?试证明你的结论.
26. 如图,在正方体-A1B1C1D1中,E,F 分别是棱,的中点,O 是底面的中心,求证:⊥ 平面1O.
27. 在正方体-A1B1C1D1 中,求证:A1C⊥平面1D.
28. 如图,在正方体—A1B1C1D1中,
(1)求A1B 与平面1D1D 所成的角;
(2)求A1B与平面1D1D所成的角.
29. 在正方体-A1B1C1D1 中,E,F 分别是1,A1D1 的中点,求:
(1)D1B与平面所成角的余弦值;
(2)与平面A1B1C1D1 所成的角.
30. 如图,是⊙O的直径,垂直于⊙O所在的平面, C 是圆周上异于A、B 的任意一点,求证:平面⊥平面.
31. 如图,四棱锥P-的底面是正方形,⊥底面,点E在棱上.求证:平面⊥平面.
32. 如图,已知四边形是正方形,⊥平面.
(1)求二面角B--D平面角的度数;
(2)求二面角B--C平面角的度数.
33. 在长方体—A1B1C1D1 中,==2,1=,二面角C1——C的大小为.
34. 如图,正方体A1 B1C1D1—中,与异面直线、A1D 都垂直相
交.求证:∥1.
35. 如图,P是△所在平面外的一点,且⊥平面,平面⊥平面,求证:⊥.。