宁波地区中考数学复习专题讲座三开放性问题含详细参考答案
- 格式:doc
- 大小:284.00 KB
- 文档页数:26
浙江省宁波市2021-2023三年中考数学真题分类汇编-03解答题(基础题)知识点分类一.平方差公式(共2小题)1.(2023•宁波)计算:(1)(1+)0+|﹣2|﹣.(2)(a+3)(a﹣3)+a(1﹣a).2.(2021•宁波)(1)计算:(1+a)(1﹣a)+(a+3)2.(2)解不等式组:.二.解一元一次不等式组(共1小题)3.(2022•宁波)(1)计算:(x+1)(x﹣1)+x(2﹣x).(2)解不等式组:.三.一次函数的应用(共1小题)4.(2023•宁波)某校与部队联合开展红色之旅研学活动,上午7:00,部队官兵乘坐军车从营地出发,同时学校师生乘坐大巴从学校出发,沿公路(如图1)到爱国主义教育基地进行研学.上午8:00,军车在离营地60km的地方追上大巴并继续前行,到达仓库后,部队官兵下车领取研学物资,然后乘坐军车按原速前行,最后和师生同时到达基地,军车和大巴离营地的路程s(km)与所用时间t(h)的函数关系如图2所示.(1)求大巴离营地的路程s与所用时间t的函数表达式及a的值.(2)求部队官兵在仓库领取物资所用的时间.四.待定系数法求二次函数解析式(共1小题)5.(2023•宁波)如图,已知二次函数y=x2+bx+c图象经过点A(1,﹣2)和B(0,﹣5).(1)求该二次函数的表达式及图象的顶点坐标.(2)当y≤﹣2时,请根据图象直接写出x的取值范围.五.二次函数的应用(共1小题)6.(2022•宁波)为了落实劳动教育,某学校邀请农科院专家指导学生进行小番茄的种植,经过试验,其平均单株产量y千克与每平方米种植的株数x(2≤x≤8,且x为整数)构成一种函数关系.每平方米种植2株时,平均单株产量为4千克;以同样的栽培条件,每平方米种植的株数每增加1株,单株产量减少0.5千克.(1)求y关于x的函数表达式.(2)每平方米种植多少株时,能获得最大的产量?最大产量为多少千克?六.作图—复杂作图(共1小题)7.(2022•宁波)图1,图2都是由边长为1的小等边三角形构成的网格,每个小等边三角形的顶点称为格点,线段AB的端点均在格点上,分别按要求画出图形.(1)在图1中画出等腰三角形ABC,且点C在格点上.(画出一个即可)(2)在图2中画出以AB为边的菱形ABDE,且点D,E均在格点上.七.解直角三角形的应用-仰角俯角问题(共1小题)8.(2023•宁波)某综合实践研究小组为了测量观察目标时的仰角和俯角,利用量角器和铅锤自制了一个简易测角仪,如图1所示.(1)如图2,在P点观察所测物体最高点C,当量角器零刻度线上A,B两点均在视线PC 上时,测得视线与铅垂线所夹的锐角为α,设仰角为β,请直接用含α的代数式示β.(2)如图3,为了测量广场上空气球A离地面的高度,该小组利用自制简易测角仪在点B,C分别测得气球A的仰角∠ABD为37°,∠ACD为45°,地面上点B,C,D在同一水平直线上,BC=20m,求气球A离地面的高度AD.(参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)八.频数(率)分布直方图(共1小题)9.(2023•宁波)宁波象山作为杭州亚运会分赛区,积极推进各项准备工作.某校开展了亚运知识的宣传教育活动,为了解这次活动的效果,从全校1200名学生中随机抽取部分学生进行知识测试(测试满分为100分,得分x均为不小于60的整数),并将测试成绩分为四个等第:合格(60≤x<70),一般(70≤x<80),良好(80≤x<90),优秀(90≤x ≤100),制作了如下统计图(部分信息未给出).由图中给出的信息解答下列问题:(1)求测试成绩为一般的学生人数,并补全频数分布直方图.(2)求扇形统计图中“良好”所对应的扇形圆心角的度数.(3)这次测试成绩的中位数是什么等级?(4)如果全校学生都参加测试,请你根据抽样测试的结果,估计该校测试成绩为良好和优秀的学生共有多少人?九.折线统计图(共1小题)10.(2022•宁波)小聪、小明参加了100米跑的5期集训,每期集训结束时进行测试.根据他们集训时间、测试成绩绘制成如下两个统计图.根据图中信息,解答下列问题:(1)这5期的集训共有多少天?(2)哪一期小聪的成绩比他上一期的成绩进步最多?进步了多少秒?(3)根据统计数据,结合体育运动的实际,从集训时间和测试成绩这两方面,简要说说你的想法.浙江省宁波市2021-2023三年中考数学真题分类汇编-03解答题(基础题)知识点分类参考答案与试题解析一.平方差公式(共2小题)1.(2023•宁波)计算:(1)(1+)0+|﹣2|﹣.(2)(a+3)(a﹣3)+a(1﹣a).【答案】(1)0;(2)a﹣9.【解答】解:(1)(1+)0+|﹣2|﹣=1+2﹣3=0;(2)(a+3)(a﹣3)+a(1﹣a)=a2﹣9+a﹣a2=a﹣9.2.(2021•宁波)(1)计算:(1+a)(1﹣a)+(a+3)2.(2)解不等式组:.【答案】(1)6a+10;(2)3≤x<4.【解答】解:(1)原式=1﹣a2+a2+6a+9=6a+10;(2),解①得:x<4,解②得:x≥3,∴原不等式组的解集是:3≤x<4.二.解一元一次不等式组(共1小题)3.(2022•宁波)(1)计算:(x+1)(x﹣1)+x(2﹣x).(2)解不等式组:.【答案】(1)2x﹣1;(2)x>3.【解答】解:(1)原式=x2﹣1+2x﹣x2=2x﹣1;(2),解不等式①得:x>3,解不等式②得:x≥﹣2,∴原不等式组的解集为:x>3.三.一次函数的应用(共1小题)4.(2023•宁波)某校与部队联合开展红色之旅研学活动,上午7:00,部队官兵乘坐军车从营地出发,同时学校师生乘坐大巴从学校出发,沿公路(如图1)到爱国主义教育基地进行研学.上午8:00,军车在离营地60km的地方追上大巴并继续前行,到达仓库后,部队官兵下车领取研学物资,然后乘坐军车按原速前行,最后和师生同时到达基地,军车和大巴离营地的路程s(km)与所用时间t(h)的函数关系如图2所示.(1)求大巴离营地的路程s与所用时间t的函数表达式及a的值.(2)求部队官兵在仓库领取物资所用的时间.【答案】(1)大巴离营地的路程s与所用时间t的函数表达式为s=20+40t,a的值为2;(2)部队官兵在仓库领取物资所用的时间为h.【解答】解:(1)由函数图象可得,大巴速度为=40(km/h),∴s=20+40t;当s=100时,100=20+40t,解得t=2,∴a=2;∴大巴离营地的路程s与所用时间t的函数表达式为s=20+40t,a的值为2;(2)由函数图象可得,军车速度为60÷1=60(km/h),设部队官兵在仓库领取物资所用的时间为xh,根据题意得:60(2﹣x)=100,解得:x=,答:部队官兵在仓库领取物资所用的时间为h.四.待定系数法求二次函数解析式(共1小题)5.(2023•宁波)如图,已知二次函数y=x2+bx+c图象经过点A(1,﹣2)和B(0,﹣5).(1)求该二次函数的表达式及图象的顶点坐标.(2)当y≤﹣2时,请根据图象直接写出x的取值范围.【答案】(1)二次函数的表达式为y=x2+2x﹣5,顶点坐标为(﹣1,﹣6);(2)当y≤﹣2时,x的范围是﹣3≤x≤1.【解答】解:(1)把A(1,﹣2)和B(0,﹣5)代入y=x2+bx+c得:,解得,∴二次函数的表达式为y=x2+2x﹣5,∵y=x2+2x﹣5=(x+1)2﹣6,∴顶点坐标为(﹣1,﹣6);(2)如图:∵点A(1,﹣2)关于对称轴直线x=﹣1的对称点C(﹣3,﹣2),∴当y≤﹣2时,x的范围是﹣3≤x≤1.五.二次函数的应用(共1小题)6.(2022•宁波)为了落实劳动教育,某学校邀请农科院专家指导学生进行小番茄的种植,经过试验,其平均单株产量y千克与每平方米种植的株数x(2≤x≤8,且x为整数)构成一种函数关系.每平方米种植2株时,平均单株产量为4千克;以同样的栽培条件,每平方米种植的株数每增加1株,单株产量减少0.5千克.(1)求y关于x的函数表达式.(2)每平方米种植多少株时,能获得最大的产量?最大产量为多少千克?【答案】(1)y=﹣0.5x+5,(2≤x≤8,且x为整数);(2)每平方米种植5株时,能获得最大的产量,最大产量为12.5千克.【解答】解:(1)∵每平方米种植的株数每增加1株,单株产量减少0.5千克,∴y=4﹣0.5(x﹣2)=﹣0.5x+5,答:y关于x的函数表达式为y=﹣0.5x+5,(2≤x≤8,且x为整数);(2)设每平方米小番茄产量为W千克,根据题意得:W=x(﹣0.5x+5)=﹣0.5x2+5x=﹣0.5(x﹣5)2+12.5,∵﹣0.5<0,∴当x=5时,W取最大值,最大值为12.5,答:每平方米种植5株时,能获得最大的产量,最大产量为12.5千克.六.作图—复杂作图(共1小题)7.(2022•宁波)图1,图2都是由边长为1的小等边三角形构成的网格,每个小等边三角形的顶点称为格点,线段AB的端点均在格点上,分别按要求画出图形.(1)在图1中画出等腰三角形ABC,且点C在格点上.(画出一个即可)(2)在图2中画出以AB为边的菱形ABDE,且点D,E均在格点上.【答案】(1)见解答.(2)见解答.【解答】解:(1)如图所示:(答案不唯一).(2)如图所示:七.解直角三角形的应用-仰角俯角问题(共1小题)8.(2023•宁波)某综合实践研究小组为了测量观察目标时的仰角和俯角,利用量角器和铅锤自制了一个简易测角仪,如图1所示.(1)如图2,在P点观察所测物体最高点C,当量角器零刻度线上A,B两点均在视线PC 上时,测得视线与铅垂线所夹的锐角为α,设仰角为β,请直接用含α的代数式示β.(2)如图3,为了测量广场上空气球A离地面的高度,该小组利用自制简易测角仪在点B,C分别测得气球A的仰角∠ABD为37°,∠ACD为45°,地面上点B,C,D在同一水平直线上,BC=20m,求气球A离地面的高度AD.(参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)【答案】(1)β=90°﹣α;(2)气球A离地面的高度AD是60m.【解答】解:(1)根据题意得:β=90°﹣α;(2)设AD=xm,∵∠ACD=45°,∠ADB=90°,∴CD=AD=xm,∵BC=20m,∴BD=(20+x)m,在Rt△ABD中,tan∠ABD=,∴tan37°=,即0.75=,解得:x=60,∴AD=60(m),答:气球A离地面的高度AD是60m.八.频数(率)分布直方图(共1小题)9.(2023•宁波)宁波象山作为杭州亚运会分赛区,积极推进各项准备工作.某校开展了亚运知识的宣传教育活动,为了解这次活动的效果,从全校1200名学生中随机抽取部分学生进行知识测试(测试满分为100分,得分x均为不小于60的整数),并将测试成绩分为四个等第:合格(60≤x<70),一般(70≤x<80),良好(80≤x<90),优秀(90≤x≤100),制作了如下统计图(部分信息未给出).由图中给出的信息解答下列问题:(1)求测试成绩为一般的学生人数,并补全频数分布直方图.(2)求扇形统计图中“良好”所对应的扇形圆心角的度数.(3)这次测试成绩的中位数是什么等级?(4)如果全校学生都参加测试,请你根据抽样测试的结果,估计该校测试成绩为良好和优秀的学生共有多少人?【答案】(1)60人,补全图形见解答;(2)126°;(3)良好;(4)660人.【解答】解:(1)被调查的总人数为40÷20%=200(人),测试成绩为一般的学生人数为200﹣(30+40+70)=60(人),补全图形如下:(2)360°×=126°,答:扇形统计图中“良好”所对应的扇形圆心角的度数为126°;(3)这组数据的中位数是第100、101个数据的平均数,而这2个数据均落在良好等级,所以这次测试成绩的中位数是良好;(4)1200×=660(人),答:估计该校测试成绩为良好和优秀的学生共有660人.九.折线统计图(共1小题)10.(2022•宁波)小聪、小明参加了100米跑的5期集训,每期集训结束时进行测试.根据他们集训时间、测试成绩绘制成如下两个统计图.根据图中信息,解答下列问题:(1)这5期的集训共有多少天?(2)哪一期小聪的成绩比他上一期的成绩进步最多?进步了多少秒?(3)根据统计数据,结合体育运动的实际,从集训时间和测试成绩这两方面,简要说说你的想法.【答案】(1)这5期的集训共有55天.(2)第3期小聪的成绩比他上一期的成绩进步最多,进步了0.2秒.(3)个人测试成绩与很多因素有关,如集训时间不是越长越好,集训时间过长,可能会造成劳累,导致成绩下降;集训的时间为10天或14天时成绩最好.(言之有理即可).【解答】解:(1)4+7+10+14+20=55(天).答:这5期的集训共有55天.(2)11.72﹣11.52=0.2(秒).答:第3期小聪的成绩比他上一期的成绩进步最多,进步了0.2秒.(3)个人测试成绩与很多因素有关,如集训时间不是越长越好,集训时间过长,可能会造成劳累,导致成绩下降;集训的时间为10天或14天时成绩最好.。
浙江省宁波市鄞州区七校2024年中考三模数学试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。
选择题必须用2B 铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。
2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。
3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.如图,已知70AOC BOD ∠=∠=︒,30BOC ∠=︒,则AOD ∠的度数为( )A .100︒B .110︒C .130︒D .140︒2.如图,P 为⊙O 外一点,PA 、PB 分别切⊙O 于点A 、B ,CD 切⊙O 于点E ,分别交PA 、PB 于点C 、D ,若PA =6,则△PCD 的周长为( )A .8B .6C .12D .103.下列计算正确的是( )A .a 3•a 2=a 6B .(a 3)2=a 5C .(ab 2)3=ab 6D .a +2a =3a4.如图:已知AB ⊥BC ,垂足为B ,AB=3.5,点P 是射线BC 上的动点,则线段AP 的长不可能是( )A .3B .3.5C .4D .55.我国古代数学著作《增删算法统宗》记载”绳索量竿”问题:“一条竿子一条索,索比竿子长一托.折回索子却量竿,却比竿子短一托“其大意为:现有一根竿和一条绳索,用绳索去量竿,绳索比竿长5尺;如果将绳索对半折后再去量竿,就比竿短5尺.设绳索长x 尺,竿长y 尺,则符合题意的方程组是( )A .5{152x y x y =+=- B .5{1+52x y x y =+= C .5{2-5x y x y =+= D .-5{2+5x y x y ==6.若3x =是关于x 的方程2430x x m -+=的一个根,则方程的另一个根是( )A .9B .4C .43D .337.《九章算术》中注有“今两算得失相反,要令正负以名之”,意思是:今有两数若其意义相反,则分别叫做正数与负数,若气温为零上10℃记作+10℃,则﹣3℃表示气温为( )A .零上3℃B .零下3℃C .零上7℃D .零下7℃8.某商品价格为a 元,降价10%后,又降价10%,因销售量猛增,商店决定再提价20%,提价后这种商品的价格为( )A .0.96a 元B .0.972a 元C .1.08a 元D .a 元9.某春季田径运动会上,参加男子跳高的15名运动员的成绩如下表所示:成绩()m1.50 1.60 1.65 1.70 1.75 1.80 人数 1 2 4 3 32 这些运动员跳高成绩的中位数是( )A .1.65mB .1.675mC .1.70mD .1.75m10.如图,若AB ∥CD ,则α、β、γ之间的关系为( )A .α+β+γ=360°B .α﹣β+γ=180°C .α+β﹣γ=180°D .α+β+γ=180°11.已知二次函数y =ax 2+2ax +3a 2+3(其中x 是自变量),当x ≥2时,y 随x 的增大而增大,且−2≤x ≤1时,y 的最大值为9,则a 的值为A .1或−2B .−或C .D .1 12.如图,在△ABC 中,∠ACB=90°,点D 为AB 的中点,AC=3,cosA=13,将△DAC 沿着CD 折叠后,点A 落在点E 处,则BE 的长为( )A .5B .42C .7D .52二、填空题:(本大题共6个小题,每小题4分,共24分.)13.计算:2(2+12)=_____. 14.如图,在梯形ABCD 中,AD ∥BC ,∠A=90°,点E 在边AB 上,AD=BE ,AE=BC ,由此可以知道△ADE 旋转后能与△BEC 重合,那么旋转中心是_____.15.如图,将直尺与含30°角的三角尺摆放在一起,若∠1=20°,则∠2的度数是___.16.分解因式:2x 2﹣8=_____________17.在Rt △ABC 内有边长分别为2,x ,3的三个正方形如图摆放,则中间的正方形的边长x 的值为_____.18.2的平方根是_________.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图,四边形ABCD ,AD ∥BC ,DC ⊥BC 于C 点,AE ⊥BD 于E ,且DB =DA .求证:AE =CD .20.(6分)计算:|2﹣1|﹣2sin45°+38﹣21()2 21.(6分)已知抛物线F :y=x 1+bx+c 的图象经过坐标原点O ,且与x 轴另一交点为(﹣,0).(1)求抛物线F的解析式;(1)如图1,直线l:y=x+m(m>0)与抛物线F相交于点A(x1,y1)和点B(x1,y1)(点A在第二象限),求y1﹣y1的值(用含m的式子表示);(3)在(1)中,若m=,设点A′是点A关于原点O的对称点,如图1.①判断△AA′B的形状,并说明理由;②平面内是否存在点P,使得以点A、B、A′、P为顶点的四边形是菱形?若存在,求出点P的坐标;若不存在,请说明理由.22.(8分)问题背景:如图1,等腰△ABC中,AB=AC,∠BAC=120°,作AD⊥BC于点D,则D为BC的中点,∠BAD=12∠BAC=60°,于是BCAB=2BDAB=3迁移应用:如图2,△ABC和△ADE都是等腰三角形,∠BAC=∠DAE=120°,D,E,C三点在同一条直线上,连接BD.(1)求证:△ADB≌△AEC;(2)若AD=2,BD=3,请计算线段CD的长;拓展延伸:如图3,在菱形ABCD中,∠ABC=120°,在∠ABC内作射线BM,作点C关于BM的对称点E,连接AE并延长交BM于点F,连接CE,CF.(3)证明:△CEF是等边三角形;(4)若AE=4,CE=1,求BF的长.23.(8分)已知:如图,抛物线y=ax2+bx+c与坐标轴分别交于点A(0,6),B(6,0),C(﹣2,0),点P是线段AB上方抛物线上的一个动点.(1)求抛物线的解析式;(2)当点P运动到什么位置时,△PAB的面积有最大值?(3)过点P作x轴的垂线,交线段AB于点D,再过点P做PE∥x轴交抛物线于点E,连结DE,请问是否存在点P 使△PDE为等腰直角三角形?若存在,求出点P的坐标;若不存在,说明理由.24.(10分)如图,在平面直角坐标系中,△AOB的三个顶点坐标分别为A(1,0),O(0,0),B(2,2).以点O 为旋转中心,将△AOB逆时针旋转90°,得到△A1OB1.画出△A1OB1;直接写出点A1和点B1的坐标;求线段OB1的长度.25.(10分)已知:四边形ABCD是平行四边形,点O是对角线AC、BD的交点,EF过点O且与AB、CD分别相交于点E、F,连接EC、AF.(1)求证:DF=EB;(2)AF与图中哪条线段平行?请指出,并说明理由.26.(12分)(1)问题发现:如图①,在等边三角形ABC中,点M为BC边上异于B、C的一点,以AM为边作等边三角形AMN,连接CN,NC 与AB的位置关系为;(2)深入探究:如图②,在等腰三角形ABC中,BA=BC,点M为BC边上异于B、C的一点,以AM为边作等腰三角形AMN,使∠ABC=∠AMN,AM=MN,连接CN,试探究∠ABC与∠ACN的数量关系,并说明理由;(3)拓展延伸:如图③,在正方形ADBC中,AD=AC,点M为BC边上异于B、C的一点,以AM为边作正方形AMEF,点N为正方形AMEF的中点,连接CN,若BC=10,CN=2,试求EF的长.27.(12分)如图,已知A(3,0),B(0,﹣1),连接AB,过B点作AB的垂线段BC,使BA=BC,连接AC.如图1,求C点坐标;如图2,若P点从A点出发沿x轴向左平移,连接BP,作等腰直角△BPQ,连接CQ,当点P在线段OA上,求证:PA=CQ;在(2)的条件下若C、P,Q三点共线,求此时∠APB的度数及P点坐标.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1、B【解题分析】分析:根据∠AOC和∠BOC的度数得出∠AOB的度数,从而得出答案.详解:∵∠AOC=70°,∠BOC=30°,∴∠AOB=70°-30°=40°,∴∠AOD=∠AOB+∠BOD=40°+70°=110°,故选B.点睛:本题主要考查的是角度的计算问题,属于基础题型.理解各角之间的关系是解题的关键.2、C【解题分析】由切线长定理可求得PA=PB,AC=CE,BD=ED,则可求得答案.【题目详解】∵PA、PB分别切⊙O于点A、B,CD切⊙O于点E,∴PA=PB=6,AC=EC,BD=ED,∴PC+CD+PD=PC+CE+DE+PD=PA+AC+PD+BD=PA+PB=6+6=12,即△PCD的周长为12,故选:C.【题目点拨】本题主要考查切线的性质,利用切线长定理求得PA=PB、AC=CE和BD=ED是解题的关键.3、D【解题分析】根据同底数幂的乘法、积的乘方与幂的乘方及合并同类项的运算法则进行计算即可得出正确答案.【题目详解】解:A.x4•x4=x4+4=x8≠x16,故该选项错误;B.(a3)2=a3×2=a6≠a5,故该选项错误;C.(ab2)3=a3b6≠ab6,故该选项错误;D.a+2a=(1+2)a=3a,故该选项正确;故选D.考点:1.同底数幂的乘法;2.积的乘方与幂的乘方;3.合并同类项.4、A【解题分析】根据直线外一点和直线上点的连线中,垂线段最短的性质,可得答案.【题目详解】解:由AB⊥BC,垂足为B,AB=3.5,点P是射线BC上的动点,得AP≥AB,AP≥3.5,故选:A.【题目点拨】本题考查垂线段最短的性质,解题关键是利用垂线段的性质.5、A【解题分析】设索长为x尺,竿子长为y尺,根据“索比竿子长一托,折回索子却量竿,却比竿子短一托”,即可得出关于x、y的二元一次方程组.【题目详解】设索长为x尺,竿子长为y尺,根据题意得:515 2x yx y=+⎧⎪⎨=-⎪⎩.故选A.【题目点拨】本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.6、D【解题分析】解:设方程的另一个根为aa=解得a=故选D.7、B【解题分析】试题分析:由题意知,“-”代表零下,因此-3℃表示气温为零下3℃.故选B.考点:负数的意义8、B【解题分析】提价后这种商品的价格=原价×(1-降低的百分比)(1-百分比)×(1+增长的百分比),把相关数值代入求值即可.【题目详解】第一次降价后的价格为a×(1-10%)=0.9a元,第二次降价后的价格为0.9a×(1-10%)=0.81a元,∴提价20%的价格为0.81a×(1+20%)=0.972a元,故选B.【题目点拨】本题考查函数模型的选择与应用,考查列代数式,得到第二次降价后的价格是解决本题的突破点;得到提价后这种商品的价格的等量关系是解决本题的关键.9、C【解题分析】根据中位数的定义解答即可.【题目详解】解:在这15个数中,处于中间位置的第8个数是1.1,所以中位数是1.1.所以这些运动员跳高成绩的中位数是1.1.故选:C.【题目点拨】本题考查了中位数的意义.中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数.10、C【解题分析】过点E作EF∥AB,如图,易得CD∥EF,然后根据平行线的性质可得∠BAE+∠FEA=180°,∠C=∠FEC=γ,进一步即得结论.【题目详解】解:过点E作EF∥AB,如图,∵AB∥CD,AB∥EF,∴CD∥EF,∴∠BAE+∠FEA=180°,∠C=∠FEC=γ,∴∠FEA=β﹣γ,∴α+(β﹣γ)=180°,即α+β﹣γ=180°.故选:C.【题目点拨】本题考查了平行公理的推论和平行线的性质,属于常考题型,作EF∥AB、熟练掌握平行线的性质是解题的关键.11、D【解题分析】先求出二次函数的对称轴,再根据二次函数的增减性得出抛物线开口向上a>0,然后由-2≤x≤1时,y的最大值为9,可得x=1时,y=9,即可求出a.【题目详解】∵二次函数y=ax2+2ax+3a2+3(其中x是自变量),∴对称轴是直线x=-=-1,∵当x≥2时,y随x的增大而增大,∴a>0,∵-2≤x≤1时,y的最大值为9,∴x=1时,y=a+2a+3a2+3=9,∴3a2+3a-6=0,∴a=1,或a=-2(不合题意舍去).故选D.【题目点拨】本题考查了二次函数的性质,二次函数y=ax2+bx+c(a≠0)的顶点坐标是(-,),对称轴直线x=-,二次函数y=ax2+bx+c(a≠0)的图象具有如下性质:①当a>0时,抛物线y=ax2+bx+c(a≠0)的开口向上,x<-时,y随x的增大而减小;x>-时,y随x的增大而增大;x=-时,y取得最小值,即顶点是抛物线的最低点.②当a<0时,抛物线y=ax2+bx+c(a≠0)的开口向下,x<-时,y随x的增大而增大;x>-时,y随x的增大而减小;x=-时,y 取得最大值,即顶点是抛物线的最高点.12、C【解题分析】连接AE,根据余弦的定义求出AB,根据勾股定理求出BC,根据直角三角形的性质求出CD,根据面积公式出去AE,根据翻转变换的性质求出AF,根据勾股定理、三角形中位线定理计算即可.【题目详解】解:连接AE,∵AC=3,cos∠CAB=13,∴AB=3AC=9,由勾股定理得,,∠ACB=90°,点D 为AB 的中点,∴CD=12AB=92,S △ABC =12×3×, ∵点D 为AB 的中点,∴S △ACD =12S △ABC由翻转变换的性质可知,S 四边形ACED AE ⊥CD ,则12×CD×,解得,,∴,由勾股定理得,72, ∵AF=FE ,AD=DB ,∴BE=2DF=7,故选C .【题目点拨】本题考查的是翻转变换的性质、直角三角形的性质,翻转变换是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.二、填空题:(本大题共6个小题,每小题4分,共24分.)13、1.【解题分析】去括号后得到答案.【题目详解】=2+1=1,故答案为1. 【题目点拨】本题主要考查了去括号的概念,解本题的要点在于二次根式的运算.14、CD的中点【解题分析】根据旋转的性质,其中对应点到旋转中心的距离相等,于是得到结论.【题目详解】∵△ADE旋转后能与△BEC重合,∴△ADE≌△BEC,∴∠AED=∠BCE,∠B=∠A=90°,∠ADE=∠BEC,DE=EC,∴∠AED+∠BEC=90°,∴∠DEC=90°,∴△DEC是等腰直角三角形,∴D与E,E与C是对应顶点,∵CD的中点到D,E,C三点的距离相等,∴旋转中心是CD的中点,故答案为:CD的中点.【题目点拨】本题考查了旋转的性质,等腰直角三角形的性质,关键是明确旋转中心的概念.15、50°【解题分析】先根据三角形外角的性质求出∠BEF的度数,再根据平行线的性质得到∠2的度数.【题目详解】如图所示:∵∠BEF是△AEF的外角,∠1=20°,∠F=30°,∴∠BEF=∠1+∠F=50°,∵AB∥CD,∴∠2=∠BEF=50°,故答案是:50°.【题目点拨】考查了平行线的性质,解题的关键是掌握、运用三角形外角的性质(三角形的一个外角等于与它不相邻的两个内角的和).16、2(x+2)(x﹣2)【解题分析】先提公因式,再运用平方差公式.【题目详解】2x2﹣8,=2(x2﹣4),=2(x+2)(x﹣2).【题目点拨】考核知识点:因式分解.掌握基本方法是关键.17、1【解题分析】解:如图.∵在Rt△ABC中(∠C=90°),放置边长分别2,3,x的三个正方形,∴△CEF∽△OME∽△PFN,∴OE:PN=OM:PF.∵EF=x,MO=2,PN=3,∴OE=x﹣2,PF=x﹣3,∴(x﹣2):3=2:(x﹣3),∴x=0(不符合题意,舍去),x=1.故答案为1.点睛:本题主要考查相似三角形的判定和性质、正方形的性质,解题的关键在于找到相似三角形,用x的表达式表示出对应边是解题的关键.18、2±【解题分析】直接根据平方根的定义求解即可(需注意一个正数有两个平方根).【题目详解】解:2的平方根是2±故答案为2±【题目点拨】本题考查了平方根的定义.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19、证明见解析.【解题分析】由AD∥BC得∠ADB=∠DBC,根据已知证明△AED≌△DCB(AAS),即可解题.【题目详解】解:∵AD∥BC∴∠ADB=∠DBC∵DC⊥BC于点C,AE⊥BD于点E∴∠C=∠AED=90°又∵DB=DA∴△AED≌△DCB(AAS)∴AE=CD【题目点拨】本题考查了三角形全等的判定和性质,属于简单题,证明三角形全等是解题关键.20、﹣1【解题分析】直接利用负指数幂的性质以及绝对值的性质、特殊角的三角函数值分别化简得出答案.【题目详解】原式=(2﹣1)﹣2×22+2﹣4=2﹣1﹣2+2﹣4=﹣1.【题目点拨】此题主要考查了实数运算,正确化简各数是解题关键.21、(1)y=x1+x;(1)y1﹣y1=;(3)①△AA′B为等边三角形,理由见解析;②平面内存在点P,使得以点A、B、A′、P为顶点的四边形是菱形,点P的坐标为(1,)、(﹣)和(﹣,﹣1)【解题分析】(1)根据点的坐标,利用待定系数法即可求出抛物线F的解析式;(1)将直线l的解析式代入抛物线F的解析式中,可求出x1、x1的值,利用一次函数图象上点的坐标特征可求出y1、y1的值,做差后即可得出y1-y1的值;(3)根据m的值可得出点A、B的坐标,利用对称性求出点A′的坐标.①利用两点间的距离公式(勾股定理)可求出AB、AA′、A′B的值,由三者相等即可得出△AA′B为等边三角形;②根据等边三角形的性质结合菱形的性质,可得出存在符合题意得点P,设点P的坐标为(x,y),分三种情况考虑:(i)当A′B为对角线时,根据菱形的性质(对角线互相平分)可求出点P的坐标;(ii)当AB为对角线时,根据菱形的性质(对角线互相平分)可求出点P的坐标;(iii)当AA′为对角线时,根据菱形的性质(对角线互相平分)可求出点P的坐标.综上即可得出结论.【题目详解】(1)∵抛物线y=x1+bx+c的图象经过点(0,0)和(﹣,0),∴,解得:,∴抛物线F的解析式为y=x1+x.(1)将y=x+m代入y=x1+x,得:x1=m,解得:x1=﹣,x1=,∴y1=﹣+m,y1=+m,∴y1﹣y1=(+m)﹣(﹣+m)=(m>0).(3)∵m=,∴点A的坐标为(﹣,),点B的坐标为(,1).∵点A′是点A关于原点O的对称点,∴点A′的坐标为(,﹣).①△AA′B为等边三角形,理由如下:∵A(﹣,),B(,1),A′(,﹣),∴AA′=,AB=,A′B=,∴AA′=AB=A′B,∴△AA′B为等边三角形.②∵△AA′B为等边三角形,∴存在符合题意的点P,且以点A、B、A′、P为顶点的菱形分三种情况,设点P的坐标为(x,y).(i)当A′B为对角线时,有,解得,∴点P的坐标为(1,);(ii)当AB为对角线时,有,解得:,∴点P的坐标为(﹣,);(iii)当AA′为对角线时,有,解得:,∴点P的坐标为(﹣,﹣1).综上所述:平面内存在点P,使得以点A、B、A′、P为顶点的四边形是菱形,点P的坐标为(1,)、(﹣)和(﹣,﹣1).【题目点拨】本题考查了待定系数法求二次函数解析式、一次函数图象上点的坐标特征、等边三角形的判定与性质以及菱形的判定与性质,解题的关键是:(1)根据点的坐标,利用待定系数法求出二次函数解析式;(1)将一次函数解析式代入二次函数解析式中求出x1、x1的值;(3)①利用勾股定理(两点间的距离公式)求出AB、AA′、A′B的值;②分A′B为对角线、AB为对角线及AA′为对角线三种情况求出点P的坐标.22、(1)见解析;(2)CD =233;(3)见解析;(4)3【解题分析】试题分析:迁移应用:(1)如图2中,只要证明∠DAB=∠CAE,即可根据SAS解决问题;(2)结论:CD=3AD+BD.由△DAB≌△EAC,可知BD=CE,在Rt△ADH中,DH=AD•cos30°=32AD,由AD=AE,AH⊥DE,推出DH=HE,由CD=DE+EC=2DH+BD=3AD+BD,即可解决问题;拓展延伸:(3)如图3中,作BH⊥AE于H,连接BE.由BC=BE=BD=BA,FE=FC,推出A、D、E、C四点共圆,推出∠ADC=∠AEC=120°,推出∠FEC=60°,推出△EFC是等边三角形;(4)由AE=4,EC=EF=1,推出AH=HE=2,FH=3,在Rt△BHF中,由∠BFH=30°,可得HFBF=cos30°,由此即可解决问题.试题解析:迁移应用:(1)证明:如图2,∵∠BAC=∠DAE=120°,∴∠DAB=∠CAE,在△DAE和△EAC中,DA=EA,∠DAB=∠EAC,AB=AC,∴△DAB≌△EAC,(2)结论:CD=3AD+BD.理由:如图2-1中,作AH⊥CD于H.∵△DAB≌△EAC,∴BD=CE,在Rt△ADH中,3,∵AD=AE,AH⊥DE,∴DH=HE,∵CD=DE+EC=2DH+BD=3AD+BD=233+.拓展延伸:(3)如图3中,作BH⊥AE于H,连接BE.∵四边形ABCD是菱形,∠ABC=120°,∴△ABD,△BDC是等边三角形,∴BA=BD=BC,∵E、C关于BM对称,∴BC=BE=BD=BA,FE=FC,∴A、D、E、C四点共圆,∴∠ADC=∠AEC=120°,∴∠FEC=60°,∴△EFC是等边三角形,(4)∵AE=4,EC=EF=1,∴AH=HE=2,FH=3,在Rt△BHF中,∵∠BFH=30°,∴HFBF=cos30°,∴2332=.23、(1)抛物线解析式为y=﹣12x2+2x+6;(2)当t=3时,△PAB的面积有最大值;(3)点P(4,6).【解题分析】(1)利用待定系数法进行求解即可得;(2)作PM ⊥OB 与点M ,交AB 于点N ,作AG ⊥PM ,先求出直线AB 解析式为y=﹣x+6,设P (t ,﹣12t 2+2t+6),则N (t ,﹣t+6),由S △PAB =S △PAN +S △PBN =12PN•AG+12PN•BM=12PN•OB 列出关于t 的函数表达式,利用二次函数的性质求解可得; (3)由PH ⊥OB 知DH ∥AO ,据此由OA=OB=6得∠BDH=∠BAO=45°,结合∠DPE=90°知若△PDE 为等腰直角三角形,则∠EDP=45°,从而得出点E 与点A 重合,求出y=6时x 的值即可得出答案.【题目详解】(1)∵抛物线过点B (6,0)、C (﹣2,0),∴设抛物线解析式为y=a (x ﹣6)(x+2), 将点A (0,6)代入,得:﹣12a=6,解得:a=﹣12, 所以抛物线解析式为y=﹣12(x ﹣6)(x+2)=﹣12x 2+2x+6; (2)如图1,过点P 作PM ⊥OB 与点M ,交AB 于点N ,作AG ⊥PM 于点G ,设直线AB 解析式为y=kx+b ,将点A (0,6)、B (6,0)代入,得:660b k b =⎧⎨+=⎩, 解得:16k b =-⎧⎨=⎩, 则直线AB 解析式为y=﹣x+6,设P (t ,﹣12t 2+2t+6)其中0<t <6, 则N (t ,﹣t+6), ∴PN=PM ﹣MN=﹣12t 2+2t+6﹣(﹣t+6)=﹣12t 2+2t+6+t ﹣6=﹣12t 2+3t , ∴S △PAB =S △PAN +S △PBN=12PN•AG+12PN•BM=12PN•(AG+BM)=12 PN•OB=12×(﹣12t2+3t)×6=﹣32t2+9t=﹣32(t﹣3)2+272,∴当t=3时,△PAB的面积有最大值;(3)△PDE为等腰直角三角形,则PE=PD,点P(m,-12m2+2m+6),函数的对称轴为:x=2,则点E的横坐标为:4-m,则PE=|2m-4|,即-12m2+2m+6+m-6=|2m-4|,解得:m=4或-2或或(舍去-2和)故点P的坐标为:(4,6)或(-5).【题目点拨】本题考查了二次函数的综合问题,涉及到待定系数法、二次函数的最值、等腰直角三角形的判定与性质等,熟练掌握和灵活运用待定系数法求函数解析式、二次函数的性质、等腰直角三角形的判定与性质等是解题的关键.24、(1)作图见解析;(2)A1(0,1),点B1(﹣2,2).(3)【解题分析】(1)按要求作图.(2)由(1)得出坐标.(3)由图观察得到,再根据勾股定理得到长度.【题目详解】解:(1)画出△A1OB1,如图.(2)点A 1(0,1),点B 1(﹣2,2).(3)OB 1=OB ==2.【题目点拨】本题主要考查的是绘图、识图、勾股定理等知识点,熟练掌握方法是本题的解题关键.25、(1)见解析;(2)AF ∥CE ,见解析.【解题分析】(1)直接利用全等三角三角形判定与性质进而得出△FOC ≌△EOA (ASA ),进而得出答案;(2)利用平行四边形的判定与性质进而得出答案.【题目详解】(1)证明:∵四边形ABCD 是平行四边形,点O 是对角线AC 、BD 的交点,∴AO=CO ,DC ∥AB ,DC=AB ,∴∠FCA=∠CAB ,在△FOC 和△EOA 中FCO EAO CO AOCOF AOE ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴△FOC ≌△EOA (ASA ),∴FC=AE ,∴DC-FC=AB-AE ,即DF=EB ;(2)AF ∥CE ,理由:∵FC=AE ,FC ∥AE ,∴四边形AECF 是平行四边形,∴AF ∥CE .【题目点拨】此题主要考查了平行四边形的判定与性质以及全等三角形的判定与性质,正确得出△FOC ≌△EOA (ASA )是解题关键.26、(1)NC ∥AB ;理由见解析;(2)∠ABC=∠ACN ;理由见解析;(3)241; 【解题分析】(1)根据△ABC ,△AMN 为等边三角形,得到AB=AC ,AM=AN 且∠BAC=∠MAN=60°从而得到∠BAC-∠CAM=∠MAN-∠CAM ,即∠BAM=∠CAN ,证明△BAM ≌△CAN ,即可得到BM=CN .(2)根据△ABC ,△AMN 为等腰三角形,得到AB :BC=1:1且∠ABC=∠AMN ,根据相似三角形的性质得到AB AC AM AN=,利用等腰三角形的性质得到∠BAC=∠MAN ,根据相似三角形的性质即可得到结论; (3)如图3,连接AB ,AN ,根据正方形的性质得到∠ABC=∠BAC=45°,∠MAN=45°,根据相似三角形的性质得出BM AB CN AC=,得到BM=2,CM=8,再根据勾股定理即可得到答案. 【题目详解】(1)NC ∥AB ,理由如下:∵△ABC 与△MN 是等边三角形,∴AB=AC ,AM=AN ,∠BAC=∠MAN =60°,∴∠BAM=∠CAN ,在△ABM 与△ACN 中,AB AC BAM CAN AM AN =⎧⎪∠=∠⎨⎪=⎩,∴△ABM ≌△ACN (SAS ),∴∠B=∠ACN=60°,∵∠ANC+∠ACN+∠CAN=∠ANC+60°+∠CAN=180°,∴∠ANC+∠MAN+∠BAM=∠ANC+60°+∠CAN=∠BAN+∠ANC=180°,∴CN ∥AB ;(2)∠ABC=∠ACN ,理由如下:∵AB AM BC MN==1且∠ABC=∠AMN , ∴△ABC ~△AMN∴AB AC AM AN=, ∵AB=BC , ∴∠BAC=12(180°﹣∠ABC ), ∵AM=MN ∴∠MAN=12(180°﹣∠AMN ), ∵∠ABC=∠AMN ,∴∠BAC=∠MAN ,∴∠BAM=∠CAN ,∴△ABM ~△ACN ,∴∠ABC=∠ACN ;(3)如图3,连接AB ,AN ,∵四边形ADBC ,AMEF 为正方形,∴∠ABC=∠BAC=45°,∠MAN=45°,∴∠BAC ﹣∠MAC=∠MAN ﹣∠MAC即∠BAM=∠CAN ,∵AB AM BC AN== ∴AB AC AM AN =, ∴△ABM ~△ACN ∴BM AB CN AC=,∴CN AC BM AB ==cos45°∴2BM =, ∴BM=2,∴CM=BC ﹣BM=8,在Rt △AMC ,==,∴【题目点拨】本题是四边形综合题目,考查了正方形的性质、等边三角形的性质、等腰三角形的性质、全等三角形的性质定理和判定定理、相似三角形的性质定理和判定定理等知识;本题综合性强,有一定难度,证明三角形全等和三角形相似是解决问题的关键.27、(1)C(1,-4).(2)证明见解析;(3)∠APB=135°,P(1,0).【解题分析】(1)作CH⊥y轴于H,证明△ABO≌△BCH,根据全等三角形的性质得到BH=OA=3,CH=OB=1,求出OH,得到C点坐标;(2)证明△PBA≌△QBC,根据全等三角形的性质得到PA=CQ;(3)根据C、P,Q三点共线,得到∠BQC=135°,根据全等三角形的性质得到∠BPA=∠BQC=135°,根据等腰三角形的性质求出OP,得到P点坐标.【题目详解】(1)作CH⊥y轴于H,则∠BCH+∠CBH=90°,∵AB⊥BC,∴∠A BO+∠CBH=90°,∴∠ABO=∠BCH,在△ABO和△BCH中,ABO BCH AOB BHC AB BC ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ABO ≌△BCH ,∴BH=OA=3,CH=OB=1,∴OH=OB+BH=4,∴C 点坐标为(1,﹣4);(2)∵∠PBQ=∠ABC=90°,∴∠PBQ ﹣∠ABQ=∠ABC ﹣∠ABQ ,即∠PBA=∠QBC ,在△PBA 和△QBC 中,BP BQ PBA QBC BA BC =⎧⎪∠=∠⎨⎪=⎩,∴△PBA ≌△QBC ,∴PA=CQ ;(3)∵△BPQ 是等腰直角三角形,∴∠BQP=45°,当C 、P ,Q 三点共线时,∠BQC=135°,由(2)可知,△PBA ≌△QBC ,∴∠BPA=∠BQC=135°,∴∠OPB=45°,∴OP=OB=1,∴P 点坐标为(1,0).【题目点拨】本题考查的是全等三角形的判定和性质、三角形的外角的性质,掌握全等三角形的判定定理和性质定理是解题的关键.。
2013年中考数学复习专题讲座三:开放性问题一、中考专题诠释开放型问题是相对于有明确条件和明确结论的封闭型问题而言的,它是条件或结论给定不完全、答案不唯一的一类问题.这类试题已成为近年中考的热点,重在考查同学们分析、探索能力以及思维的发散性,但难度适中.根据其特征大致可分为:条件开放型、结论开放型、方法开放型和编制开放型等四类.二、解题策略与解法精讲解开放性的题目时,要先进行观察、试验、类比、归纳、猜测出结论或条件,然后严格证明;同时,通常要结合以下数学思想方法:分类讨论,数形结合,分析综合,归纳猜想,构建数学模型等。
三、中考考点精讲考点一:条件开放型条件开放题是指结论给定,条件未知或不全,需探求与结论相对应的条件.解这种开放问题的一般思路是:由已知的结论反思题目应具备怎样的条件,即从题目的结论出发,逆向追索,逐步探求.例1 (2012•义乌市)如图,在△ABC中,点D是BC的中点,作射线AD,在线段AD 及其延长线上分别取点E、F,连接CE、BF.添加一个条件,使得△BDF≌△CDE,并加以证明.你添加的条件是.(不添加辅助线).考点:全等三角形的判定。
810360专题:开放型。
分析:由已知可证∠ECD﹦∠FBD,又∠EDC﹦∠FDB,因为三角形全等条件中必须是三个元素,并且一定有一组对应边相等.故添加的条件是:DE=DF(或CE∥BF或∠ECD=∠DBF或∠DEC=∠DFB等);解答:解:(1)添加的条件是:DE=DF(或CE∥BF或∠ECD=∠DBF或∠DEC=∠DFB等).(2)证明:在△BDF和△CDE中∵∴△BDF≌△CDE.点评:三角形全等的判定是中考的热点,一般以考查三角形全等的方法为主,判定两个三角形全等,先根据已知条件或求证的结论确定三角形,然后再根据三角形全等的判定方法,看缺什么条件,再去证什么条件.考点二:结论开放型:给出问题的条件,让解题者根据条件探索相应的结论并且符合条件的结论往往呈现多样性,这些问题都是结论开放问题.这类问题的解题思路是:充分利用已知条件或图形特征,进行猜想、类比、联想、归纳,透彻分析出给定条件下可能存在的结论,然后经过论证作出取舍.例2 (2012•宁德)如图,点E、F分别是AD上的两点,AB∥CD,AB=CD,AF=DE.问:线段CE、BF有什么数量关系和位置关系?并加以证明.考点:全等三角形的判定与性质;平行线的性质;平行线的判定与性质。
【2019-2021年】浙江省宁波市中考真题分类汇编专题2 三角形、四边形、圆综合1.(2021·宁波)如图,在中,于点D,.若E,F分别为,的中点,则的长为()A. B. C. 1 D.【答案】C【解析】【解答】解:∵AD垂直BC,则△ABD和△ACD都是直角三角形,又因为∴AD= ,∵sin∠C= ,∴AC=2,∵EF为△ABC的中位线,∴EF= =1,故答案为:C.【分析】根据等腰直角三角形的性质求出AD,再根据含30°直角三角形的特点求出AC,然后根据三角形的中位线定理即可解答.2.(2021·宁波)如图是一个由5张纸片拼成的,相邻纸片之间互不重叠也无缝隙,其中两张等腰直角三角形纸片的面积都为,另两张直角三角形纸片的面积都为,中间一张矩形纸片的面积为,与相交于点O.当的面积相等时,下列结论一定成立的是()A. B. C. D.【答案】A【解析】【解答】解:由题意得,△AED和△BCG是等腰直角三角形,∴∵四边形ABCD是平行四边形,∴AD=BC,CD=AB,∠ADC=∠ABC,∠BAD=∠DCB∴∠HDC=∠FBA,∠DCH=∠BAF,∴△AED≌△CGB,△CDH≌ABF∴AE=DE=BG=CG∵四边形HEFG是矩形∴GH=EF,HE=GF设AE=DE=BG=CG=a,HE=GF= b,GH=EF= c过点O作OP⊥EF于点P,OQ⊥GF于点Q,∴OP//HE,OQ//EF∵点O是矩形HEFG的对角线交点,即HF和EG的中点,∴OP,OQ分别是△FHE和△EGF的中位线,∴,∵∵∴,即而,所以,,A符合题意,∴,B不符合题意,而于都不一定成立,故都不符合题意,故答案为:A【分析】根据等腰直角三角形的性质,平行四边形的性质以及四边形HEFG是矩形推出AE=DE=BG=CG=a,HE=GF,GH=EF,由于点O是矩形HEFG的中心,设AE=DE= BG=CG=a,HE=GF= b , GH=EF= c,过点O作OP⊥EF于点P , OQ⊥GF于点Q可得出OP、OQ分别是△FHE和△EGF的中位线,从而可表示OP , OQ的长,再分别把S1,S2 , S3表示出来,最后进行判断即可.3.(2021·宁波)抖空竹在我国有着悠久的历史,是国家级的非物质文化遗产之一.如示意图,分别与相切于点C,D,延长交于点P.若,的半径为,则图中的长为________ .(结果保留)【答案】2π【解析】【解答】连接OC、OD,∵分别与相切于点C,D,∴,∵,,∴,∴的长= (cm),故答案为:2π..【分析】连接OC、OD,利用切线的性质,结合四边形的内角和求出∠COD,然后根据弧长公式计算即可.4.(2021·宁波)如图,在矩形中,点E在边上,与关于直线对称,点B的对称点F在边上,G为中点,连结分别与交于M,N两点,若,,则的长为________,的值为________.【答案】2;【解析】【解答】解:与关于直线对称,矩形矩形为的中点,如图,四边形都是矩形,设则解得:经检验:是原方程的根,但不合题意,舍去,故答案为:【分析】根据对称的性质,再结合矩形的性质,可得△BEC≌△FEC,利用角角边定理证明△BCN≌△CFD,得出BN=CD,再根据平行线的性质,推出∠GMC=∠GCM,从而得出CG=MG=1,结合G为CD的中点,则知CD的长,则BN也可求;再根据矩形的性质和余角的性质再证明△AFE∽△CBG,根据相似三角形的性质列比例式,设构建方程求解,再求出AE和EF,最后利用三角函数定义计算即可.5.(2019·宁波)已知直线m∥n,将一块含45°角的直角三角板ABC按如图方式放置,其中斜边BC与直线n交于点D.若∠1=25°,则∠2的度数为()A. 60°B. 65°C. 70°D. 75°【答案】C【解析】【解答】解:设直线n与AB的交点为E。
2023年浙江省宁波市兴宁中学中考三模数学试题学校:___________姓名:___________班级:___________考号:___________....A.2B.8.明代《算法统宗》有一首饮酒数学诗:了一十九,三十三客醉颜生,试问高明能算士,几多醇酒几多醇?一瓶,可以醉倒3位客人;薄酒三瓶,可以醉倒们总共饮19瓶酒.试问:A.8S B.二、填空题11.请你写出一个小于﹣2的无理数__________.16.如图,反比例函数于点D ,过点A ,D 作则CDBD的值为_______三、解答题17.(1)计算:22()()a a b a b +-+(2)解不等式组1302251x x -⎧+≥⎪⎨⎪->⎩.18.图①、图②、图③都是由边长为1的小等边三角形构成的网格,每个小等边三角形的顶点称为格点.线段AB 的端点在格点上.看图回答以下问题:(1)从折线统计图看出甲的最大周销售量是_______,在第_______周达到;量是_______,在第_______周达到.(2)从折线统计图看出_______的销量在整体提升;从条形统计图看出_______不好.(1)如图(1),若C A ∠=∠,求证:DAB BCE ∽;【思考探究】(2)如图(2),若CE AD ∥,45C ∠=︒,若2AD AB =,求CEBC的值;【拓展延伸】(3)如图(3),连接AE ,若DAB DBE △∽△,2ABAD=,若AE =24.如图1,在菱形ABCD 中,25AB =,点P 是对角线BD 上的动点,(1)如图2,当PA PB=时,求证:BC是O切线;(2)延长AP交射线BC于点Q.①如图3,若BP为O直径,求CQ的长;②如图4,若点O、A、D三点共线,求APPQ的值;(3)当04x<<时,直接写出r与x的函数关系式:______.参考答案:②当点D 在BC 边上时,设CD DE x ==,∵D 与AB 相切,∴DE AB ⊥,∵90BAC ∠=︒,∴DE AC ∥,∴,BDE BCA ∠=∠∠∴BDE BCA ∽,∴DE BD AC BC=,即4x =解得:209x =,③当点D 在AB 边上时,不符合题意,舍去.综上:2CD =或209,设6G a a ⎛⎫ ⎪⎝⎭,,则OA a =,6AG a =,∵32BG GA =,∴9BG a=,∴15a DH AB AG BG ==+=,∴61515a D a ⎛⎫ ⎪⎝⎭,,∴615a CD =,915a BD =,∴62159315a CD a BD ==;∵DE AF ∥,∴EKO FAO ∠=∠,在OEK 和OFA 中,∵45C ∠=︒,∴9045135BFE ∠︒=︒︒=+,CFE ∠∴C CFE ∠=∠,∴22,CE EF CF CE EF ==+=∵CE AD ∥,∴18045135A ︒︒︒∠=-=,∴A BFE ∠=∠,由(1)可得:DAB BFE ∽,∴2BF AD EF AB==,设(0)CE EF a a ==>,则BF =∴22BC BF CF a =+=,则DAB BFE ∽,∴AD BD AB BF BE EF==,∵DAB DBE △∽△,∴22BD AD BE AB ==,∴22AD AB BF EF ==,设(0)AD m m =>,则2AB m =∴22AF AB BF m =+=,∴2EF AF AD AB==,又∵F AB ∠=∠,∴DAB EFA ∽,∴12BD AD AE EF ==,∴2AE BD =.【点睛】本题考查了相似三角形的判定与性质,∴OP AB ⊥,∴1+3=90∠∠︒,∵菱形ABCD ,∴12∠=∠,∵OB OP =,∴3OBP ∠∠=,∴290OBP ∠∠+=︒,∴BC 是O 切线.(2)①∵BP 为O 直径,∴PA AB ⊥,∵1tan tan 2ABP DBC ∠=∠=,25AB =,∴5AP =∴22(25)(5)5BP =+=,连接AC 交BD 于点E ,∵四边形ABCD 为菱形,∴25AB BC ==,∵1tan 2DBC ∠=,∴设CE a =,则2BE a =,∵222CE BE BC +=即()222425a a +=,解得:2a =,(负值舍去),∴4BE =,∴28BD BE ==,∴3PD =,∵AD BC ∥,∴PAD PQB ∽,∴2535BQ =,∴1053BQ =,∵AB AD =,∴ABD ADB ∠=∠,∵ABD G ∠∠=,∴ADB G ∠=∠,∴PG PD =,设2PG PD a ==,则24PH a =-,∴224(24)a a =+-,∴103a =,2(舍),∴203PD =,∴43PB BD PD =-=,∵AD BC ∥,∴PAD PQB ∽,∴5AP PQ=(3)解:∵由①得8BD =,4AC =,∴4,4,2BH HP x AH ==-=,∴()2244820AP x x x =-+=-+,∵ABP DBC AGP ∠∠∠==,数的定义,理解题意,作出相应辅助线,综合运用这些知识点是解题关键.。
浙江省宁波市中考数学第三次联合测评试卷 学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.已知△ABC 中,∠C = Rt ∠,co sA=13,则sinB 的值等于 ( ) A .13 B .1 C.3 D.62.一个滑轮起重装置如图所示,滑轮的半径是10cm,当重物上升10cm 时, 滑轮的一条半径OA 绕轴心O 按逆时针方向旋转的角度约为(假设绳索与滑轮之间没有滑动,π取3.14,结果精确到1°)( )A .115°B .60°C .57°D .29°3.一鞋店试销一种新款女鞋,一周内各种型号的鞋卖出的情况如下表所示:A .平均数B .众数C .中位数D .方差 4.下列轴对称图形中,对称轴条数最少的是( )A .等腰直角三角形B .长方形C .正方形D .圆 5.已知方程ax+by=10的两个解为1105x x y y =-=⎧⎧⎨⎨==⎩⎩与,则a 、b 的值为( ) A .10101010 (441)0a a a a B C D b b b b ==-==-⎧⎧⎧⎧⎨⎨⎨⎨=-===⎩⎩⎩⎩ 6.下列计算正确的是( ) A .222448a a a += B .()()2322366x x x -+=-C .()428428a b a b -=D .()222141x x +=+ 7.下列各组图形,可以经过平移变换由一个图形得到另一个图形的是( )A .B .C .D .8.若242(1)36x m x -++是完全平方式,则m 的值是( )A .11B .13±C .11±D .-13 或 11 9.方程213148x x --=-去分母后正确的结果是( ) A .2(21)83x x -=--B .2(21)1(3)x x -=--C .211(3)x x -=--D .2(21)8(3)x x -=-- 10.光年是天文学中的距离单位,1 光年大约是9 500 000 000 000千米,用科学记数法可表示为( )A .1095010⨯ 千米B .119510⨯千米C .129.510⨯千米D . 130.9510⨯千米11.某校有在校师生共2000人,如果每人借阅10册书,那么中国国家图书馆共2亿册书,可以供多少所这样的学校借阅? ( )A .100000所B .10000所C .1000所D .2000所二、填空题12.如果一个多边形内角和为 900°,那么这多边形是 边形.13.统计八年级部分同学的跳高测试成绩,得到如下频数分布直方图(图1):则跳高成绩在1.29m 以上的同学估计占八年级总人数的百分之 .(精确到1%)14.已知摄式温度(℃)与华式温度(℉)之间的转换关系是:华式温度=59×(华式温度-32).若华式温度是68℉,则摄式温度是 ℃.15.若a b <,则5a + 5b +,2a - 2b -.16.在“等边三角形、正方形、等腰梯形、正五边形、矩形、正六边形”中,任取其中一个图形,恰好既是中心对称图形,又是轴对称图形的概率为____________.17.△ABC 中,CD ⊥AB ,垂足为D ,以CD 为直径画圆,与这个圆相切的直线是 .18.已知112a b +=,则代数式200920082009a ab b ab-+的值为 . 19.a 5÷(a 7÷a 4)=________.20.当 m= 时,方程(1)4m x x m -=-的解是-4.21.一年期存款的年利率为 p ,利息个人所得税的税率为 20%. 某人存入的本金为 a 元,则到期支出时实得本利和为 元.三、解答题22.如图,∠PAQ 是直角,⊙O 与 AP 相切于点 T ,与 AQ 交于B 、C 两点.(1)BT 是否平分∠OBA ?说明你的理由.(2)若已知 AT=4,弦 BC=6,试求⊙O 的半径R.23.在△ABC 中,∠C=90°,∠A 、∠B 、∠C 所对的边分别为a 、b 、c.(1)如果b=15,∠A=600,你能求出a 的值吗?试一试.(2)如果,b=20,∠B=450,请你求出c 的长.24.王强在一次高尔夫球的练习中,在某处击球,其飞行路线满足抛物线21855y x x =-+,其中y (m )是球的飞行高度,x (m )是球飞出的水平距离,结果球离球洞的水平距离还有2m .(1)请写出抛物线的开口方向、顶点坐标、对称轴.(2)请求出球飞行的最大水平距离.(3)若王强再一次从此处击球,要想让球飞行的最大高度不变且球刚好进洞,则球飞行路线应满足怎样的抛物线,求出其解析式.25.如图,四边形ABCD 为正方形,E ,F 分别为AD ,BC 的中点.求证:(1)△ABE ≌△CDF ;(2)四边形BEDF 为平行四边形.26.写出下列命题的逆命题,并判断逆命题的真假,如果是假命题请反举例说明.(1)对顶角相等;(2)等腰三角形的两底角的平分线相等;(3)在三角形中,钝角所对的边最大.27.一个台阶如图,阶梯每一层的高为 15 cm ,宽为 25 cm ,长为 60 cm.一只蚂蚁从 A 点爬到B 点最短路程是多少?28.光明中学的甲、乙两支篮球队在集训期内进行了五场比赛,将比赛成进行统计后,绘制成如图所示的统计图. 已知甲队五场比赛成绩的平均分90x =分,方差241.2s =平方分. 甲、乙两球队比赛成绩折线统计图(1)请你计算乙队五场比赛成绩的平均分x乙;(2)就这五场比赛,计算乙队成绩的方差;(3)如果从甲、乙两队中选派一支球队参加市篮球锦标赛,根据上述统计情况,试从平均分、折线的走势、方差三个方面分别进行简要分析,你认为选派哪支球队参赛更能取得好成绩?29.如图,O是△ABC外一点,以点O为旋转中心,将△ABC逆时针方向旋转90°,作出经旋转变换后的像.30.先化简,再求值:(4)(2)(1)(3)x x x x----+,其中52x=-.O.B C【参考答案】学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.A2.C3.B4.A5.B6.A7.A8.D9.D10.C11.B二、填空题12.七13.约61%14.2015.<,>16.0.517.AB18.201019.a 220.421.125ap a +三、解答题22.(1) BT 平分∠OBA .理由如下:连结 OT ,则 OT ⊥AP.∵∠PAQ=90°,∴∠PAQ+∠OTA=180°∴OT ∥AQ ,∴∠OTB=∠ABT ,又∠OTB=∠OBT ,∴∠ABT=∠0BT ,∴BT 平分∠0BA(2)作 OE ⊥BC 于E 点,则 BE=3,四边形 AEOT 是矩形,∴ OE=AT=4,∴5R ==23.(1)315;(2)220.24.解:(1)21855y x x =-+2116(4)55x =--+, ∴抛物线21855y x x =-+开口向下,顶点为1645⎛⎫ ⎪⎝⎭,,对称轴为4x =. (2)令0y =,得:218055x x -+=,解得:10x =,28x =. ∴球飞行的最大水平距离是8m . (3)要让球刚好进洞而飞行最大高度不变,则球飞行的最大水平距离为10m ,∴抛物线的对称轴为5x =,顶点为1655⎛⎫ ⎪⎝⎭,. 设此时对应的抛物线解析式为216(5)5y a x =-+, 又点(00),在此抛物线上,162505a ∴+=,16125a =-. ∴21616(5)1255y x =--+ ,即2163212525y x x =-+. 25.略26.(1)逆命题:相等的角是对顶角,是假命题,举例略;(2)逆命题:若一个三角形有两个角的平分线相等,则这个三角形是等腰三角形,是真命题;(3)逆命题:在三角形中,最大边所对的角是钝角,是假命题.如直角三角形27.100 cm28.(1)90分 (2)111. 6平方分 (3)从平均分看,两队的平均分相同,实力大体相当;从折线的走势看,甲队比赛成绩呈上升趋势,而乙队比赛成绩呈下降趋势,所以适合选甲队参赛;从方差看,甲队比赛成绩比乙队比赛成绩波动小,甲队成绩教稳定. 所以,选派甲队参赛更脂取得好成绩29.略.30.-+,31x811。
2024学年浙江省宁波市镇海区中考联考数学试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。
用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。
将条形码粘贴在答题卡右上角"条形码粘贴处"。
2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。
答案不能答在试题卷上。
3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。
不按以上要求作答无效。
4.考生必须保证答题卡的整洁。
考试结束后,请将本试卷和答题卡一并交回。
一、选择题(共10小题,每小题3分,共30分)1.如图,四边形ABCD内接于⊙O,AD∥BC,BD平分∠ABC,∠A=130°,则∠BDC的度数为()A.100°B.105°C.110°D.115°2.如图,经过测量,C地在A地北偏东46°方向上,同时C地在B地北偏西63°方向上,则∠C的度数为()A.99°B.109°C.119°D.129°3.若直线y=kx+b图象如图所示,则直线y=−bx+k的图象大致是( )A.B.C.D.4.若代数式22xx有意义,则实数x的取值范围是()A .x =0B .x =2C .x≠0D .x≠25.已知A(x 1,y 1),B(x 2,y 2)是反比例函数y =(k≠0)图象上的两个点,当x 1<x 2<0时,y 1>y 2,那么一次函数y =kx -k 的图象不经过( )A .第一象限B .第二象限C .第三象限D .第四象限6.小文同学统计了某栋居民楼中全体居民每周使用手机支付的次数,并绘制了直方图.根据图中信息,下列说法: ①这栋居民楼共有居民140人②每周使用手机支付次数为28~35次的人数最多 ③有15的人每周使用手机支付的次数在35~42次 ④每周使用手机支付不超过21次的有15人其中正确的是( )A .①②B .②③C .③④D .④7.如图,等腰直角三角形纸片ABC 中,∠C=90°,把纸片沿EF 对折后,点A 恰好落在BC 上的点D 处,点CE=1,AC=4,则下列结论一定正确的个数是( )①∠CDE=∠DFB ;②BD >CE ;③BC=2CD ;④△DCE 与△BDF 的周长相等.A .1个B .2个C .3个D .4个 8.将抛物线23y x =向上平移3个单位,再向左平移2个单位,那么得到的抛物线的解析式为( )A .23(2)3y x =++B .23(2)3y x =-+C .23(2)3y x =+-D .23(2)3y x =--9.如图是二次函数y =ax 2+bx +c 的图象,其对称轴为x =1,下列结论:①abc >0;②2a +b =0;③4a +2b +c <0;④若(-,y 1),(,y 2)是抛物线上两点,则y 1<y 2,其中结论正确的是( )A.①②B.②③C.②④D.①③④10.在2014年5月崇左市教育局举行的“经典诗朗诵”演讲比赛中,有11名学生参加决赛,他们决赛的成绩各不相同,其中的一名学生想知道自己能否进入前6名,不仅要了解自己的成绩,还要了解这11名学生成绩的()A.众数B.中位数C.平均数D.方差二、填空题(本大题共6个小题,每小题3分,共18分)11.2018年3月2日,大型记录电影《厉害了,我的国》登陆全国各大院线.某影院针对这一影片推出了特惠活动:票价每人30元,团体购票超过10人,票价可享受八折优惠,学校计划组织全体教师观看此影片.若观影人数为a(a >10),则应付票价总额为_____元.(用含a的式子表示)12.如图,用10 m长的铁丝网围成一个一面靠墙的矩形养殖场,其养殖场的最大面积________m1.13.如图,在Rt△ABC中,∠ACB=90°,AB=5,AC=3,点D是BC上一动点,连接AD,将△ACD沿AD折叠,点C落在点E处,连接DE交AB于点F,当△DEB是直角三角形时,DF的长为_____.14.矩形ABCD中,AB=6,BC=8.点P在矩形ABCD的内部,点E在边BC上,满足△PBE∽△DBC,若△APD是等腰三角形,则PE的长为数___________.15.如图,直线a,b被直线c所截,a∥b,∠1=∠2,若∠3=40°,则∠4等于________.16.如图,矩形ABCD 中,AB=4,BC=8,P ,Q 分别是直线BC ,AB 上的两个动点,AE=2,△AEQ 沿EQ 翻折形成△FEQ ,连接PF ,PD ,则PF+PD 的最小值是____.三、解答题(共8题,共72分)17.(8分)如图,在平面直角坐标系中,抛物线y=ax 2+bx+c 的顶点坐标为P (2,9),与x 轴交于点A ,B ,与y 轴交于点C (0,5).(Ⅰ)求二次函数的解析式及点A ,B 的坐标;(Ⅱ)设点Q 在第一象限的抛物线上,若其关于原点的对称点Q′也在抛物线上,求点Q 的坐标;(Ⅲ)若点M 在抛物线上,点N 在抛物线的对称轴上,使得以A ,C ,M ,N 为顶点的四边形是平行四边形,且AC 为其一边,求点M ,N 的坐标.18.(8分)(1)计算:|﹣3|+(π﹣2 018)0﹣2sin 30°+(13)﹣1. (2)先化简,再求值:(x ﹣1)÷(21x +﹣1),其中x 为方程x 2+3x+2=0的根. 19.(8分)先化简,再求值:221121()1a a a a a a-+-÷++,其中a=3+1. 20.(8分)如图,ABC △中AB AC =,AD BC ⊥于D ,点E F 、分别是AB CD 、的中点.(1)求证:四边形AEDF 是菱形(2)如果10AB AC BC ===,求四边形AEDF 的面积S21.(8分)先化简,再求值:先化简22211x x x -+-÷(11x x -+﹣x +1),然后从﹣2<x <5的范围内选取一个合适的整数作为x 的值代入求值.22.(10分)如图(1),AB=CD ,AD=BC ,O 为AC 中点,过O 点的直线分别与AD 、BC 相交于点M 、N ,那么∠1与∠2有什么关系?请说明理由;若过O 点的直线旋转至图(2)、(3)的情况,其余条件不变,那么图(1)中的∠1与∠2的关系成立吗?请说明理由.23.(12分)为鼓励大学毕业生自主创业,某市政府出台了相关政策:由政府协调,本市企业按成本价提供产品给大学毕业生自主销售,成本价与出厂价之间的差价由政府承担.李明按照相关政策投资销售本市生产的一种新型节能灯.已知这种节能灯的成本价为每件元,出厂价为每件元,每月销售量(件)与销售单价(元)之间的关系近似满足一次函数:.李明在开始创业的第一个月将销售单价定为元,那么政府这个月为他承担的总差价为多少元?设李明获得的利润为(元),当销售单价定为多少元时,每月可获得最大利润?物价部门规定,这种节能灯的销售单价不得高于元.如果李明想要每月获得的利润不低于元,那么政府为他承担的总差价最少为多少元? 24.阅读(1)阅读理解:如图①,在△ABC 中,若AB=10,AC=6,求BC 边上的中线AD 的取值范围.解决此问题可以用如下方法:延长AD 到点E 使DE=AD ,再连接BE (或将△ACD 绕着点D 逆时针旋转180°得到△EBD ),把AB ,AC ,2AD 集中在△ABE 中,利用三角形三边的关系即可判断.中线AD 的取值范围是________;(2)问题解决:如图②,在△ABC中,D是BC边上的中点,DE⊥DF于点D,DE交AB于点E,DF交AC于点F,连接EF,求证:BE+CF>EF;(3)问题拓展:如图③,在四边形ABCD中,∠B+∠D=180°,CB=CD,∠BCD=140°,以C为顶点作一个70°角,角的两边分别交AB,AD于E,F两点,连接EF,探索线段BE,DF,EF之间的数量关系,并加以证明.参考答案一、选择题(共10小题,每小题3分,共30分)1、B【解题分析】根据圆内接四边形的性质得出∠C的度数,进而利用平行线的性质得出∠ABC的度数,利用角平分线的定义和三角形内角和解答即可.【题目详解】∵四边形ABCD内接于⊙O,∠A=130°,∴∠C=180°-130°=50°,∵AD∥BC,∴∠ABC=180°-∠A=50°,∵BD平分∠ABC,∴∠DBC=25°,∴∠BDC=180°-25°-50°=105°,故选:B.【题目点拨】本题考查了圆内接四边形的性质,关键是根据圆内接四边形的性质得出∠C的度数.2、B【解题分析】方向角是从正北或正南方向到目标方向所形成的小于90°的角,根据平行线的性质求得∠ACF与∠BCF的度数,∠ACF 与∠BCF的和即为∠C的度数.【题目详解】解:由题意作图如下∠DAC=46°,∠CBE=63°,由平行线的性质可得∠ACF=∠DAC=46°,∠BCF=∠CBE=63°,∴∠ACB=∠ACF+∠BCF=46°+63°=109°,故选B.【题目点拨】本题考查了方位角和平行线的性质,熟练掌握方位角的概念和平行线的性质是解题的关键.3、A【解题分析】根据一次函数y=kx+b的图象可知k>1,b<1,再根据k,b的取值范围确定一次函数y=−bx+k图象在坐标平面内的位置关系,即可判断.【题目详解】解:∵一次函数y=kx+b的图象可知k>1,b<1,∴-b>1,∴一次函数y=−bx+k的图象过一、二、三象限,与y轴的正半轴相交,故选:A.【题目点拨】本题考查了一次函数的图象与系数的关系.函数值y随x的增大而减小⇔k<1;函数值y随x的增大而增大⇔k>1;一次函数y=kx+b图象与y轴的正半轴相交⇔b>1,一次函数y=kx+b图象与y轴的负半轴相交⇔b<1,一次函数y=kx+b 图象过原点⇔b=1.4、D【解题分析】根据分式的分母不等于0即可解题. 【题目详解】解:∵代数式22xx-有意义,∴x-2≠0,即x≠2,故选D.【题目点拨】本题考查了分式有意义的条件,属于简单题,熟悉分式有意义的条件是解题关键.5、B【解题分析】试题分析:当x1<x2<0时,y1>y2,可判定k>0,所以﹣k<0,即可判定一次函数y=kx﹣k的图象经过第一、三、四象限,所以不经过第二象限,故答案选B.考点:反比例函数图象上点的坐标特征;一次函数图象与系数的关系.6、B【解题分析】根据直方图表示的意义求得统计的总人数,以及每组的人数即可判断.本题考查读频数分布直方图的能力和利用统计图获取信息的能力.利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解.【题目详解】解:①这栋居民楼共有居民3+10+15+22+30+25+20=125人,此结论错误;②每周使用手机支付次数为28~35次的人数最多,此结论正确;③每周使用手机支付的次数在35~42次所占比例为2511255=,此结论正确;④每周使用手机支付不超过21次的有3+10+15=28人,此结论错误;故选:B.【题目点拨】此题考查直方图的意义,解题的关键在于理解直方图表示的意义求得统计的数据7、D【解题分析】等腰直角三角形纸片ABC中,∠C=90°,∴∠A=∠B=45°,由折叠可得,∠EDF=∠A=45°,∴∠CDE+∠BDF=135°,∠DFB+∠B=135°,∴∠CDE=∠DFB ,故①正确;由折叠可得,DE=AE=3,∴CD=2222DE CE -=, ∴BD=BC ﹣DC=4﹣22>1,∴BD >CE ,故②正确;∵BC=4,2CD=4,∴BC=2CD ,故③正确;∵AC=BC=4,∠C=90°,∴AB=42,∵△DCE 的周长=1+3+22=4+22,由折叠可得,DF=AF ,∴△BDF 的周长=DF+BF+BD=AF+BF+BD=AB+BD=42+(4﹣22)=4+22,∴△DCE 与△BDF 的周长相等,故④正确;故选D .点睛:本题主要考查了折叠问题,折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.8、A【解题分析】直接根据“上加下减,左加右减”的原则进行解答即可.【题目详解】将抛物线23y x =向上平移3个单位,再向左平移2个单位,根据抛物线的平移规律可得新抛物线的解析式为23(2)3y x =++,故答案选A .9、C【解题分析】试题分析:根据题意可得:a 0,b 0,c 0,则abc 0,则①错误;根据对称轴为x=1可得:=1,则-b=2a ,即2a+b=0,则②正确;根据函数的轴对称可得:当x=2时,y0,即4a+2b+c 0,则③错误;对于开口向下的函数,离对称轴越近则函数值越大,则,则④正确.点睛:本题主要考查的就是二次函数的性质,属于中等题.如果开口向上,则a 0,如果开口向下,则a 0;如果对称轴在y 轴左边,则b 的符号与a 相同,如果对称轴在y 轴右边,则b 的符号与a 相反;如果题目中出现2a+b 和2a-b 的时候,我们要看对称轴与1或者-1的大小关系再进行判定;如果出现a+b+c ,则看x=1时y 的值;如果出现a-b+c ,则看x=-1时y 的值;如果出现4a+2b+c ,则看x=2时y 的值,以此类推;对于开口向上的函数,离对称轴越远则函数值越大,对于开口向下的函数,离对称轴越近则函数值越大.10、B【解题分析】解:11人成绩的中位数是第6名的成绩.参赛选手要想知道自己是否能进入前6名,只需要了解自己的成绩以及全部成绩的中位数,比较即可.故选B .【题目点拨】本题考查统计量的选择,掌握中位数的意义是本题的解题关键.二、填空题(本大题共6个小题,每小题3分,共18分)11、24a【解题分析】根据题意列出代数式即可.【题目详解】根据题意得:30a×0.8=24a , 则应付票价总额为24a 元,故答案为24a.【题目点拨】考查了列代数式,弄清题意是解本题的关键.12、2【解题分析】设与墙平行的一边长为xm ,则另一面为202x - , 其面积=2201·1022x x x x -=--, ∴最大面积为241005042ac b a -== ; 即最大面积是2m 1.故答案是2.【题目点拨】求二次函数的最大(小)值有三种方法,第一种可由图象直接得出,第二种是配方法,第三种是公式法,常用的是后两种方法,当二次系数a的绝对值是较小的整数时,用配方法较好,如y=-x1-1x+5,y=3x1-6x+1等用配方法求解比较简单.13、32或34【解题分析】试题分析:如图4所示;点E与点C′重合时.在Rt△ABC中,BC=22AB AC-=4.由翻折的性质可知;AE=AC=3、DC=DE.则EB=2.设DC=ED=x,则BD=4﹣x.在Rt△DBE中,DE2+BE2=DB2,即x2+22=(4﹣x)2.解得:x=32.∴DE=32.如图2所示:∠EDB=90时.由翻折的性质可知:AC=AC′,∠C=∠C′=90°.∵∠C=∠C′=∠CDC′=90°,∴四边形ACDC′为矩形.又∵AC=AC′,∴四边形ACDC′为正方形.∴CD=AC=3.∴DB=BC﹣DC=4﹣3=4.∵DE∥AC,∴△BDE∽△BCA.∴14DE DBAC CB==,即134ED=.解得:DE=34.点D在CB上运动,∠DBC′<90°,故∠DBC′不可能为直角.考点:翻折变换(折叠问题).14、3或1.2【解题分析】【分析】由△PBE∽△DBC,可得∠PBE=∠DBC,继而可确定点P在BD上,然后再根据△APD是等腰三角形,分DP=DA、AP=DP两种情况进行讨论即可得.【题目详解】∵四边形ABCD是矩形,∴∠BAD=∠C=90°,CD=AB=6,∴BD=10,∵△PBE∽△DBC,∴∠PBE=∠DBC,∴点P在BD上,如图1,当DP=DA=8时,BP=2,∵△PBE∽△DBC,∴PE:CD=PB:DB=2:10,∴PE:6=2:10,∴PE=1.2;如图2,当AP=DP时,此时P为BD中点,∵△PBE∽△DBC,∴PE:CD=PB:DB=1:2,∴PE:6=1:2,∴PE=3;综上,PE的长为1.2或3,故答案为:1.2或3.【题目点拨】本题考查了相似三角形的性质,等腰三角形的性质,矩形的性质等,确定出点P在线段BD上是解题的关键.15、70°【解题分析】试题分析:由平角的定义可知,∠1+∠2+∠3=180°,又∠1=∠2,∠3=40°,所以∠1=(180°-40°)÷2=70°,因为a∥b,所以∠4=∠1=70°.故答案为70°.考点:角的计算;平行线的性质.16、1【解题分析】如图作点D关于BC的对称点D′,连接PD′,ED′,由DP=PD′,推出PD+PF=PD′+PF,又EF=EA=2是定值,即可推出当E、F、P、D′共线时,PF+PD′定值最小,最小值=ED′﹣EF.【题目详解】如图作点D关于BC的对称点D′,连接PD′,ED′,在Rt△EDD′中,∵DE=6,DD′=1,∴ED′=22=10,68∵DP=PD′,∴PD+PF=PD′+PF,∵EF=EA=2是定值,∴当E、F、P、D′共线时,PF+PD′定值最小,最小值=10﹣2=1,∴PF+PD的最小值为1,故答案为1.【题目点拨】本题考查翻折变换、矩形的性质、勾股定理等知识,解题的关键是学会利用轴对称,根据两点之间线段最短解决最短问题.三、解答题(共8题,共72分)17、(1)y=﹣x2+4x+5,A(﹣1,0),B(5,0);(2)Q55;(3)M(1,8),N(2,13)或M′(3,8),N′(2,3).【解题分析】(1)设顶点式,再代入C点坐标即可求解解析式,再令y=0可求解A和B点坐标;(2)设点Q(m,﹣m2+4m+5),则其关于原点的对称点Q′(﹣m,m2﹣4m﹣5),再将Q′坐标代入抛物线解析式即可求解m的值,同时注意题干条件“Q在第一象限的抛物线上”;(3)利用平移AC的思路,作MK⊥对称轴x=2于K,使MK=OC,分M点在对称轴左边和右边两种情况分类讨论即可.【题目详解】(Ⅰ)设二次函数的解析式为y=a(x﹣2)2+9,把C(0,5)代入得到a=﹣1,∴y=﹣(x﹣2)2+9,即y=﹣x2+4x+5,令y=0,得到:x2﹣4x﹣5=0,解得x=﹣1或5,∴A (﹣1,0),B (5,0).(Ⅱ)设点Q (m ,﹣m 2+4m+5),则Q′(﹣m ,m 2﹣4m ﹣5).把点Q′坐标代入y=﹣x 2+4x+5,得到:m 2﹣4m ﹣5=﹣m 2﹣4m+5,∴m=5或5-(舍弃),∴Q (5,45).(Ⅲ)如图,作MK ⊥对称轴x=2于K .①当MK=OA ,NK=OC=5时,四边形ACNM 是平行四边形.∵此时点M 的横坐标为1,∴y=8,∴M (1,8),N (2,13),②当M′K=OA=1,KN′=OC=5时,四边形ACM′N′是平行四边形,此时M′的横坐标为3,可得M′(3,8),N′(2,3).【题目点拨】本题主要考查了二次函数的应用,第3问中理解通过平移AC 可应用“一组对边平行且相等”得到平行四边形.18、(1)6;(2)﹣(x+1),1.【解题分析】(1)原式=3+1﹣2×12+3=6(2)由题意可知:x 2+3x+2=0,解得:x=﹣1或x=﹣2原式=(x ﹣1)÷11x x -+ =﹣(x+1)当x=﹣1时,x+1=0,分式无意义,当x=﹣2时,原式=119、13【解题分析】原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,把a 的值代入计算即可求出值.【题目详解】原式=()()()211·11a a a a a a a ++-+- =()211a -,当+1时,原式=13. 【题目点拨】 本题考查了分式的化简求值,熟练掌握分式混合运算的运算顺序以及运算法则是解题的关键.20、 (1)证明见解析;. 【解题分析】(1)先根据直角三角形斜边上中线的性质,得出DE=12AB=AE ,DF=12AC=AF ,再根据AB=AC ,点E 、F 分别是AB 、AC 的中点,即可得到AE=AF=DE=DF ,进而判定四边形AEDF 是菱形;(2)根据等边三角形的性质得出EF=5,,进而得到菱形AEDF 的面积S .【题目详解】解:(1)∵AD ⊥BC ,点E 、F 分别是AB 、AC 的中点,∴Rt △ABD 中,DE=12AB=AE , Rt △ACD 中,DF=12AC=AF , 又∵AB=AC ,点E 、F 分别是AB 、AC 的中点,∴AE=AF ,∴AE=AF=DE=DF ,∴四边形AEDF 是菱形;(2)如图,∵AB=AC=BC=10,∴EF=5,3∴菱形AEDF的面积S=12EF•AD=12×5×3253【题目点拨】本题考查菱形的判定与性质的运用,解题时注意:四条边相等的四边形是菱形;菱形的面积等于对角线长乘积的一半.21、﹣1x,﹣12.【解题分析】根据分式的减法和除法可以化简题目中的式子,然后在-2<x5后的式子即可求出最后答案,值得注意的是,本题答案不唯一,x的值可以取-2、2中的任意一个. 【题目详解】原式=2x-11(1)(1) x+1(1)1x x xx x---+÷-+()()=2x-1x+1x+1x-1-x+1⋅=x-1-x x-1()=1x-,∵-2<x5x为整数)且分式要有意义,所以x+1≠0,x-1≠0,x≠0,即x≠-1,1,0,因此可以选取x=2时,此时原式=-1 2 .【题目点拨】本题主要考查了求代数式的值,解本题的要点在于在化解过程中,求得x的取值范围,从而再选取x=2得到答案.22、详见解析.【解题分析】(1)根据全等三角形判定中的“SSS”可得出△ADC≌△CBA,由全等的性质得∠DAC=∠BCA,可证AD∥BC,根据平行线的性质得出∠1=∠1;(1)(3)和(1)的证法完全一样.先证△ADC≌△CBA得到∠DAC=∠BCA,则DA∥BC,从而∠1=∠1.【题目详解】证明:∠1与∠1相等.在△ADC与△CBA中,AD BC CD AB AC CA =⎧⎪=⎨⎪=⎩,∴△ADC ≌△CBA .(SSS )∴∠DAC=∠BCA .∴DA ∥BC .∴∠1=∠1.②③图形同理可证,△ADC ≌△CBA 得到∠DAC=∠BCA ,则DA ∥BC ,∠1=∠1.23、(1)政府这个月为他承担的总差价为644元;(2)当销售单价定为34元时,每月可获得最大利润144元;(3)销售单价定为25元时,政府每个月为他承担的总差价最少为544元.【解题分析】试题分析:(1)把x=24代入y=﹣14x+544求出销售的件数,然后求出政府承担的成本价与出厂价之间的差价;(2)由利润=销售价﹣成本价,得w=(x ﹣14)(﹣14x+544),把函数转化成顶点坐标式,根据二次函数的性质求出最大利润;(3)令﹣14x 2+644x ﹣5444=2,求出x 的值,结合图象求出利润的范围,然后设设政府每个月为他承担的总差价为p 元,根据一次函数的性质求出总差价的最小值.试题解析:(1)当x=24时,y=﹣14x+544=﹣14×24+544=344, 344×(12﹣14)=344×2=644元, 即政府这个月为他承担的总差价为644元;(2)依题意得,w=(x ﹣14)(﹣14x+544)=﹣14x 2+644x ﹣5444=﹣14(x ﹣34)2+144∵a=﹣14<4,∴当x=34时,w 有最大值144元.即当销售单价定为34元时,每月可获得最大利润144元;(3)由题意得:﹣14x 2+644x ﹣5444=2,解得:x 1=24,x 2=1.∵a=﹣14<4,抛物线开口向下,∴结合图象可知:当24≤x≤1时,w≥2.又∵x≤25,∴当24≤x≤25时,w≥2.设政府每个月为他承担的总差价为p元,∴p=(12﹣14)×(﹣14x+544)=﹣24x+3.∵k=﹣24<4.∴p随x的增大而减小,∴当x=25时,p有最小值544元.即销售单价定为25元时,政府每个月为他承担的总差价最少为544元.考点:二次函数的应用.24、(1)2<AD<8;(2)证明见解析;(3)BE+DF=EF;理由见解析.【解题分析】试题分析:(1)延长AD至E,使DE=AD,由SAS证明△ACD≌△EBD,得出BE=AC=6,在△ABE中,由三角形的三边关系求出AE的取值范围,即可得出AD的取值范围;(2)延长FD至点M,使DM=DF,连接BM、EM,同(1)得△BMD≌△CFD,得出BM=CF,由线段垂直平分线的性质得出EM=EF,在△BME中,由三角形的三边关系得出BE+BM>EM即可得出结论;(3)延长AB至点N,使BN=DF,连接CN,证出∠NBC=∠D,由SAS证明△NBC≌△FDC,得出CN=CF,∠NCB=∠FCD,证出∠ECN=70°=∠ECF,再由SAS证明△NCE≌△FCE,得出EN=EF,即可得出结论.试题解析:(1)解:延长AD至E,使DE=AD,连接BE,如图①所示:∵AD是BC边上的中线,∴BD=CD,在△BDE和△CDA中,BD=CD,∠BDE=∠CDA,DE=AD,∴△BDE≌△CDA(SAS),∴BE=AC=6,在△ABE中,由三角形的三边关系得:AB﹣BE<AE<AB+BE,∴10﹣6<AE<10+6,即4<AE<16,∴2<AD<8;故答案为2<AD<8;(2)证明:延长FD至点M,使DM=DF,连接BM、EM,如图②所示:同(1)得:△BMD≌△CFD(SAS),∴BM=CF,∵DE⊥DF,DM=DF,∴EM=EF,在△BME中,由三角形的三边关系得:BE+BM>EM,∴BE+CF>EF;(3)解:BE+DF=EF;理由如下:延长AB至点N,使BN=DF,连接CN,如图3所示:∵∠ABC+∠D=180°,∠NBC+∠ABC=180°,∴∠NBC=∠D,在△NBC和△FDC中,BN=DF,∠NBC =∠D,BC=DC,∴△NBC≌△FDC(SAS),∴CN=CF,∠NCB=∠FCD,∵∠BCD=140°,∠ECF=70°,∴∠BCE+∠FCD=70°,∴∠ECN=70°=∠ECF,在△NCE和△FCE中,CN=CF,∠ECN=∠ECF,CE=CE,∴△NCE≌△FCE(SAS),∴EN=EF,∵BE+BN=EN,∴BE+DF=EF.考点:全等三角形的判定和性质;三角形的三边关系定理.。
浙江省宁波市2021-2023三年中考数学真题分类汇编-03解答题(提升题)知识点分类一.一次函数的应用(共1小题)1.(2021•宁波)某通讯公司就手机流量套餐推出三种方案,如下表:A方案B方案C方案每月基本费用(元)2056266每月免费使用流量(兆)1024m无限超出后每兆收费(元)n nA,B,C三种方案每月所需的费用y(元)与每月使用的流量x(兆)之间的函数关系如图所示.(1)请直接写出m,n的值.(2)在A方案中,当每月使用的流量不少于1024兆时,求每月所需的费用y(元)与每月使用的流量x(兆)之间的函数关系式.(3)在这三种方案中,当每月使用的流量超过多少兆时,选择C方案最划算?二.反比例函数与一次函数的交点问题(共1小题)2.(2022•宁波)如图,正比例函数y=﹣x的图象与反比例函数y=(k≠0)的图象都经过点A(a,2).(1)求点A的坐标和反比例函数表达式.(2)若点P(m,n)在该反比例函数图象上,且它到y轴距离小于3,请根据图象直接写出n的取值范围.三.抛物线与x轴的交点(共1小题)3.(2021•宁波)如图,二次函数y=(x﹣1)(x﹣a)(a为常数)的图象的对称轴为直线x=2.(1)求a的值.(2)向下平移该二次函数的图象,使其经过原点,求平移后图象所对应的二次函数的表达式.四.四边形综合题(共2小题)4.(2021•宁波)【证明体验】(1)如图1,AD为△ABC的角平分线,∠ADC=60°,点E在AB上,AE=AC.求证:DE平分∠ADB.【思考探究】(2)如图2,在(1)的条件下,F为AB上一点,连结FC交AD于点G.若FB=FC,DG=2,CD=3,求BD的长.【拓展延伸】(3)如图3,在四边形ABCD中,对角线AC平分∠BAD,∠BCA=2∠DCA,点E在AC上,∠EDC=∠ABC.若BC=5,CD=2,AD=2AE,求AC的长.5.(2023•宁波)定义:有两个相邻的内角是直角,并且有两条邻边相等的四边形称为邻等四边形,相等两邻边的夹角称为邻等角.(1)如图1,在四边形ABCD中,AD∥BC,∠A=90°,对角线BD平分∠ADC.求证:四边形ABCD为邻等四边形.(2)如图2,在6×5的方格纸中,A,B,C三点均在格点上,若四边形ABCD是邻等四边形,请画出所有符合条件的格点D.(3)如图3,四边形ABCD是邻等四边形,∠DAB=∠ABC=90°,∠BCD为邻等角,连结AC,过B作BE∥AC交DA的延长线于点E.若AC=8,DE=10,求四边形EBCD 的周长.五.圆的综合题(共3小题)6.(2022•宁波)如图1,⊙O为锐角三角形ABC的外接圆,点D在上,AD交BC于点E,点F在AE上,满足∠AFB﹣∠BFD=∠ACB,FG∥AC交BC于点G,BE=FG,连结BD,DG.设∠ACB=α.(1)用含α的代数式表示∠BFD.(2)求证:△BDE≌△FDG.(3)如图2,AD为⊙O的直径.①当的长为2时,求的长.②当OF:OE=4:11时,求cosα的值.7.(2021•宁波)如图1,四边形ABCD内接于⊙O,BD为直径,上存在点E,满足=,连结BE并延长交CD的延长线于点F,BE与AD交于点G.(1)若∠DBC=α,请用含α的代数式表示∠AGB.(2)如图2,连结CE,CE=BG.求证:EF=DG.(3)如图3,在(2)的条件下,连结CG,AD=2.①若tan∠ADB=,求△FGD的周长.②求CG的最小值.8.(2023•宁波)如图1,锐角△ABC内接于⊙O,D为BC的中点,连结AD并延长交⊙O 于点E,连结BE,CE,过C作AC的垂线交AE于点F,点G在AD上,连结BG,CG,若BC平分∠EBG且∠BCG=∠AFC.(1)求∠BGC的度数.(2)①求证:AF=BC.②若AG=DF,求tan∠GBC的值.(3)如图2,当点O恰好在BG上且OG=1时,求AC的长.六.作图—应用与设计作图(共1小题)9.(2021•宁波)如图是由边长为1的小正方形构成的6×4的网格,点A,B均在格点上.(1)在图1中画出以AB为边且周长为无理数的▱ABCD,且点C和点D均在格点上(画出一个即可).(2)在图2中画出以AB为对角线的正方形AEBF,且点E和点F均在格点上.七.作图-旋转变换(共1小题)10.(2023•宁波)在4×4的方格纸中,请按下列要求画出格点三角形(顶点均在格点上).(1)在图1中先画出一个以格点P为顶点的等腰三角形PAB,再画出该三角形向右平移2个单位后的△P′A′B′.(2)将图2中的格点△ABC绕点C按顺时针方向旋转90°,画出经旋转后的△A′B′C.八.相似形综合题(共1小题)11.(2022•宁波)【基础巩固】(1)如图1,在△ABC中,D,E,F分别为AB,AC,BC上的点,DE∥BC,BF=CF,AF交DE于点G,求证:DG=EG.【尝试应用】(2)如图2,在(1)的条件下,连结CD,CG.若CG⊥DE,CD=6,AE=3,求的值.【拓展提高】(3)如图3,在▱ABCD中,∠ADC=45°,AC与BD交于点O,E为AO上一点,EG ∥BD交AD于点G,EF⊥EG交BC于点F.若∠EGF=40°,FG平分∠EFC,FG=10,求BF的长.九.解直角三角形的应用(共2小题)12.(2022•宁波)每年的11月9日是我国的“全国消防安全教育宣传日”,为了提升全民防灾减灾意识,某消防大队进行了消防演习.如图1,架在消防车上的云梯AB可伸缩(最长可伸至20m),且可绕点B转动,其底部B离地面的距离BC为2m,当云梯顶端A在建筑物EF所在直线上时,底部B到EF的距离BD为9m.(1)若∠ABD=53°,求此时云梯AB的长.(2)如图2,若在建筑物底部E的正上方19m处突发险情,请问在该消防车不移动位置的前提下,云梯能否伸到险情处?请说明理由.(参考数据:sin53°≈0.8,cos53°≈0.6,tan53°≈1.3)13.(2021•宁波)我国纸伞的制作工艺十分巧妙.如图1,伞不管是张开还是收拢,伞柄AP 始终平分同一平面内两条伞骨所成的角∠BAC,且AB=AC,从而保证伞圈D能沿着伞柄滑动.如图2是伞完全收拢时伞骨的示意图,此时伞圈D已滑动到点D'的位置,且A,B,D′三点共线,AD′=40cm,B为AD′中点.当∠BAC=140°时,伞完全张开.(1)求AB的长.(2)当伞从完全张开到完全收拢,求伞圈D沿着伞柄向下滑动的距离.(参考数据:sin70°≈0.94,cos70°≈0.34,tan70°≈2.75)一十.条形统计图(共1小题)14.(2021•宁波)图1表示的是某书店今年1~5月的各月营业总额的情况,图2表示的是该书店“党史”类书籍的各月营业额占书店当月营业总额的百分比情况.若该书店1~5月的营业总额一共是182万元,观察图1、图2,解答下列问题:(1)求该书店4月份的营业总额,并补全条形统计图.(2)求5月份“党史”类书籍的营业额.(3)请你判断这5个月中哪个月“党史”类书籍的营业额最高,并说明理由.浙江省宁波市2021-2023三年中考数学真题分类汇编-03解答题(提升题)知识点分类参考答案与试题解析一.一次函数的应用(共1小题)1.(2021•宁波)某通讯公司就手机流量套餐推出三种方案,如下表:A方案B方案C方案每月基本费用(元)2056266每月免费使用流量(兆)1024m无限超出后每兆收费(元)n nA,B,C三种方案每月所需的费用y(元)与每月使用的流量x(兆)之间的函数关系如图所示.(1)请直接写出m,n的值.(2)在A方案中,当每月使用的流量不少于1024兆时,求每月所需的费用y(元)与每月使用的流量x(兆)之间的函数关系式.(3)在这三种方案中,当每月使用的流量超过多少兆时,选择C方案最划算?【答案】(1)m=3072,0.3;(2)y=0.3x﹣287.2(x≥1024);(3)当每月使用的流量超过3772兆时,选择C方案最划算.【解答】解:(1)根据题意,m=3072,n=(56﹣20)÷(1144﹣1024)=0.3;(2)设在A方案中,当每月使用的流量不少于1024兆时,每月所需的费用y(元)与每月使用的流量x(兆)之间的函数关系式为y=kx+b(k≠0),把(1024,20),(1144,56)代入,得:,解得,∴y关于x的函数关系式为y=0.3x﹣287.2(x≥1024);(3)花费266元A方案可用流量:1024+(266﹣20)÷0.3=1844(兆),花费266元B方案可用流量:3072+(266﹣56)÷0.3=3772(兆),由图象得,当每月使用的流量超过3772兆时,选择C方案最划算.二.反比例函数与一次函数的交点问题(共1小题)2.(2022•宁波)如图,正比例函数y=﹣x的图象与反比例函数y=(k≠0)的图象都经过点A(a,2).(1)求点A的坐标和反比例函数表达式.(2)若点P(m,n)在该反比例函数图象上,且它到y轴距离小于3,请根据图象直接写出n的取值范围.【答案】(1)A(﹣3,2),y=﹣;(2)n>2或n<﹣2.【解答】解:(1)把A(a,2)的坐标代入y=﹣x,即2=﹣a,解得a=﹣3,∴A(﹣3,2),又∵点A(﹣3,2)是反比例函数y=的图象上,∴k=﹣3×2=﹣6,∴反比例函数的关系式为y=﹣;(2)∵点P(m,n)在该反比例函数图象上,且它到y轴距离小于3,∴﹣3<m<0或0<m<3,当m=﹣3时,n==2,当m=3时,n==﹣2,由图象可知,若点P(m,n)在该反比例函数图象上,且它到y轴距离小于3,n的取值范围为n>2或n<﹣2.三.抛物线与x轴的交点(共1小题)3.(2021•宁波)如图,二次函数y=(x﹣1)(x﹣a)(a为常数)的图象的对称轴为直线x=2.(1)求a的值.(2)向下平移该二次函数的图象,使其经过原点,求平移后图象所对应的二次函数的表达式.【答案】见试题解答内容【解答】解:(1)由二次函数y=(x﹣1)(x﹣a)(a为常数)知,该抛物线与x轴的交点坐标是(1,0)和(a,0).∵对称轴为直线x=2,∴=2.解得a=3;(2)由(1)知,a=3,则该抛物线解析式是:y=x²﹣4x+3.∴抛物线向下平移3个单位后经过原点.∴平移后图象所对应的二次函数的表达式是y=x²﹣4x.四.四边形综合题(共2小题)4.(2021•宁波)【证明体验】(1)如图1,AD为△ABC的角平分线,∠ADC=60°,点E在AB上,AE=AC.求证:DE平分∠ADB.【思考探究】(2)如图2,在(1)的条件下,F为AB上一点,连结FC交AD于点G.若FB=FC,DG=2,CD=3,求BD的长.【拓展延伸】(3)如图3,在四边形ABCD中,对角线AC平分∠BAD,∠BCA=2∠DCA,点E在AC 上,∠EDC=∠ABC.若BC=5,CD=2,AD=2AE,求AC的长.【答案】(1)证明过程见解答;(2);(3).【解答】(1)证明:如图1,∵AD平分∠BAC,∴∠EAD=∠CAD,∵AE=AC,AD=AD,∴△EAD≌△CAD(SAS),∴∠ADE=∠ADC=60°,∵∠BDE=180°﹣∠ADE﹣∠ADC=180°﹣60°﹣60°=60°,∴∠BDE=∠ADE,∴DE平分∠ADB.(2)如图2,∵FB=FC,∴∠EBD=∠GCD;∵∠BDE=∠CDG=60°,∴△BDE∽△CDG,∴;∵△EAD≌△CAD,∴DE=CD=3,∵DG=2,∴BD===.(3)如图3,在AB上取一点F,使AF=AD,连结CF.∵AC平分∠BAD,∴∠FAC=∠DAC,∵AC=AC,∴△AFC≌△ADC(SAS),∴CF=CD,∠FCA=∠DCA,∠AFC=∠ADC,∵∠FCA+∠BCF=∠BCA=2∠DCA,∴∠DCA=∠BCF,即∠DCE=∠BCF,∵∠EDC=∠ABC,即∠EDC=∠FBC,∴△DCE∽△BCF,∴,∠DEC=∠BFC,∵BC=5,CF=CD=2,∴CE===4;∵∠AED+∠DEC=180°,∠AFC+∠BFC=180°,∴∠AED=∠AFC=∠ADC,∵∠EAD=∠DAC(公共角),∴△EAD∽△DAC,∴=,∴AC=2AD,AD=2AE,∴AC=4AE=CE=×4=.5.(2023•宁波)定义:有两个相邻的内角是直角,并且有两条邻边相等的四边形称为邻等四边形,相等两邻边的夹角称为邻等角.(1)如图1,在四边形ABCD中,AD∥BC,∠A=90°,对角线BD平分∠ADC.求证:四边形ABCD为邻等四边形.(2)如图2,在6×5的方格纸中,A,B,C三点均在格点上,若四边形ABCD是邻等四边形,请画出所有符合条件的格点D.(3)如图3,四边形ABCD是邻等四边形,∠DAB=∠ABC=90°,∠BCD为邻等角,连结AC,过B作BE∥AC交DA的延长线于点E.若AC=8,DE=10,求四边形EBCD 的周长.【答案】(1)证明过程见解答;(2)图形见解答;(3)38﹣6.【解答】(1)证明:在四边形ABCD中,AD∥BC,∠A=90°,∴∠ABC=180°﹣∠A=90°,∵对角线BD平分∠ADC,∴∠ADB=∠CDB,∵AD∥BC,∴∠ADB=∠CBD,∴∠CBD=∠CDB,∴CD=CB,∴四边形ABCD为邻等四边形;(2)解:如下3个图,点D′、D、D″即为所求;(3)解:如图3,四边形ABCD是邻等四边形,∴CD=CB,∵∠DAB=∠ABC=90°,∴AD∥BC,∵BE∥AC,∴四边形AEBC是平行四边形,∴EB=AC=8,AE=BC,∴AE=BC=DC,设AE=BC=DC=x,∵DE=10,∴AD=DE﹣AE=10﹣x,过点D作DF⊥BC于点F,得矩形ABFD,∴AB=DF,AD=BF=10﹣x,∴CF=BC﹣BF=x﹣(10﹣x)=2x﹣10,在Rt△ABE和Rt△DFC中,根据勾股定理得:BE2﹣AE2=AB2,CD2﹣CF2=DF2,∴BE2﹣AE2=CD2﹣CF2,∴82﹣x2=x2﹣(2x﹣10)2,整理得x2﹣20x+82=0,解得x1=10﹣3,x2=10+3(不符合题意,舍去),∴CD=CB=10﹣3,∴四边形EBCD的周长=BE+DE+2CD=8+10+2×(10﹣3)=38﹣6.五.圆的综合题(共3小题)6.(2022•宁波)如图1,⊙O为锐角三角形ABC的外接圆,点D在上,AD交BC于点E,点F在AE上,满足∠AFB﹣∠BFD=∠ACB,FG∥AC交BC于点G,BE=FG,连结BD,DG.设∠ACB=α.(1)用含α的代数式表示∠BFD.(2)求证:△BDE≌△FDG.(3)如图2,AD为⊙O的直径.①当的长为2时,求的长.②当OF:OE=4:11时,求cosα的值.【答案】(1)90°﹣;(2)证明见解答过程;(3)①3;②.【解答】解:(1)∵∠AFB﹣∠BFD=∠ACB=α,①又∵∠AFB+∠BFD=180°,②②﹣①,得2∠BFD=180°﹣α,∴∠BFD=90°﹣;(2)由(1)得∠BFD=90°﹣,∵∠ADB=∠ACB=α,∴∠FBD=180°﹣∠ADB﹣∠BFD=90°﹣,∴DB=DF,∵FG∥AC,∴∠CAD=∠DFG,∵∠CAD=∠DBE,∴∠DFG=∠DBE,在△BDE和△FDG中,,∴△BDE≌△FDG(SAS);(3)①∵△BDE≌△FDG,∴∠FDG=∠BDE=α,∴∠BDG=∠BDF+∠EDG=2α,∵DE=DG,∴∠DGE=(180°﹣∠FDG)=90°﹣,∴∠DBG=180°﹣∠BDG﹣∠DGE=90°﹣,∵AD是⊙O的直径,∴∠ABD=90°,∴∠ABC=∠ABD﹣∠DBG=,∴与所对的圆心角度数之比为3:2,∴与的长度之比为3:2,∵=2,∴=3;②如图,连接BO,∵OB=OD,∴∠OBD=∠ODB=α,∴∠BOF=∠OBD+∠ODB=2α,∵∠BDG=2α,∴∠BOF=∠BDG,∵∠BGD=∠BFO=90°﹣,∴△BDG∽△BOF,设△BDG与△BOF的相似比为k,∴,∵,∴设OF=4x,则OE=11x,DE=DG=4kx,∴OB=OD=OE+DE=11x+4kx,BD=DF=OF+OD=15x+4kx,∴==,由=k,得4k2+7k﹣15=0,解得k=或﹣3(舍去),∴OD=11x+4kx=16x,BD=15x+4kx=20x,∴AD=2OD=32x,在Rt△ABD中,cos∠ADB==,∴cosα=.方法二:连接OB,作BM⊥AD于M,由题意知,△BDF和△BEF都是等腰三角形,∴EM=MF,设OE=11,OF=4,设DE=m,则OB=m+11,OM=3.5,BD=m+15,DM=m+7.5,∴OB2﹣OM2=BD2﹣DM2,即(m+11)2﹣3.52=(m+15)2﹣(m+7.5)2,解得m=5或m=﹣12(舍去),∴cosα=.7.(2021•宁波)如图1,四边形ABCD内接于⊙O,BD为直径,上存在点E,满足=,连结BE并延长交CD的延长线于点F,BE与AD交于点G.(1)若∠DBC=α,请用含α的代数式表示∠AGB.(2)如图2,连结CE,CE=BG.求证:EF=DG.(3)如图3,在(2)的条件下,连结CG,AD=2.①若tan∠ADB=,求△FGD的周长.②求CG的最小值.【答案】(1)∠AGB=90°﹣α;(2)见解析;(3)①;②.【解答】解:(1)∵BD为⊙O的直径,∴∠BAD=90°,∵=,∴∠ABG=∠DBC=α,∴∠AGB=90°﹣α;(2)∵BD为⊙O的直径,∴∠BCD=90°,∴∠BEC=∠BDC=90°﹣α,∴∠BEC=∠AGB,∵∠CEF=180°﹣∠BEC,∠BGD=180°﹣∠AGB,∴∠CEF=∠BGD,又∵CE=BG,∠ECF=∠GBD,∴△CFE≌△BDG(ASA),∴EF=DG;(3)①如图,连接DE,∵BD为⊙O的直径,∴∠A=∠BED=90°,在Rt△ABD中,tan∠ADB=,AD=2,∴AB=×AD=,∵=,∴+=+,即=,∴AD=CE,∵CE=BG,∴BG=AD=2,∵在Rt△ABG中,sin∠AGB==,∴∠AGB=60°,AG=BG=1,∴EF=DG=AD﹣AG=1,∵在Rt△DEG中,∠EGD=60°,∴EG=DG=,DE=DG=,在Rt△FED中,DF==,∴FG+DG+DF=,∴△FGD的周长为;②如图,过点C作CH⊥BF于H,∵△BDG≌△CFE,∴BD=CF,∠CFH=∠BDA,∵∠BAD=∠CHF=90°,∴△BAD≌△CHF(AAS),∴FH=AD,∵AD=BG,∴FH=BG,∵∠BCF=90°,∴∠BCH+∠HCF=90°,∵∠BCH+∠HBC=90°,∴∠HCF=∠HBC,∵∠BHC=∠CHF=90°,∴△BHC∽△CHF,∴=,设GH=x,∴BH=2﹣x,∴CH2=2(2﹣x),在Rt△GHC中,CG2=GH2+CH2,∴CG2=x2+2(2﹣x)=(x﹣1)2+3,当x=1时,CG2的最小值为3,∴CG的最小值为.8.(2023•宁波)如图1,锐角△ABC内接于⊙O,D为BC的中点,连结AD并延长交⊙O 于点E,连结BE,CE,过C作AC的垂线交AE于点F,点G在AD上,连结BG,CG,若BC平分∠EBG且∠BCG=∠AFC.(1)求∠BGC的度数.(2)①求证:AF=BC.②若AG=DF,求tan∠GBC的值.(3)如图2,当点O恰好在BG上且OG=1时,求AC的长.【答案】(1)∠BGC=90°;(2)①证明过程见解答;②tan∠GBC的值为;(3)AC的长为.【解答】(1)解:∵BC平分∠EBG,∴∠EBC=∠CBG,∵∠EBC=∠EAC,∴∠CBG=∠EAC,∵AC⊥FC,∴∠AFC+∠EAC=90°,∵∠BCG=∠AFC,∴∠BCG+∠CBG=90°,∴∠BGC=90°;(2)①证明:∵∠BGC=90°,D为BC中点,∴GD=CD,∴∠DGC=∠DCG,∵∠BCG=∠AFC,∴∠DGC=∠AFC,∴CF=CG,∵∠ACF=∠BGC=90°,∴△ACF≌△BGC(ASA),∴AF=BC;②解:如图1,过点C作CH⊥EG于点H,设AG=DF=2x,∵△ACF≌△BGC,∴AF=BC=2DG,∴CD=DG=AG+DF=4x,∵CF=CG,∴HG=HF=3x,∴DH=x,AH=5x,∴CH===x,∴tan∠GBC=tan∠CAF==,∴tan∠GBC的值为;(3)解:如图2,过点O作OM⊥BE于点M,连结OC交AE于点N,∵OB=OC,∴∠CBE=∠OBC=∠OCB,∴OC∥BE,∵BD=CD,∠BDE=∠CDN,∴△EBD≌△NCD(ASA),∴BE=CN,∵OC∥BE,∴∠GOC=∠MBO,∵∠CGO=∠OMB=90°,OC=OB,∴△COG≌△OBM(AAS),∴BM=OG=1,∵OM⊥BE,∴CN=BE=2BM=2,设OB=OC=r,∵OC∥BE,∴△GON∽△GBE,∴=,∴=,解得r=或r=(舍去),由(2)知:△ACF≌△BGC,∴AC=BG=BO+OG=r+1=.∴AC的长为.六.作图—应用与设计作图(共1小题)9.(2021•宁波)如图是由边长为1的小正方形构成的6×4的网格,点A,B均在格点上.(1)在图1中画出以AB为边且周长为无理数的▱ABCD,且点C和点D均在格点上(画出一个即可).(2)在图2中画出以AB为对角线的正方形AEBF,且点E和点F均在格点上.【答案】(1)(2)作图见解析部分.【解答】解:(1)如图1中,四边形ABCD即为所求(答案不唯一).(2)如图2中,四边形AEBF即为所求.七.作图-旋转变换(共1小题)10.(2023•宁波)在4×4的方格纸中,请按下列要求画出格点三角形(顶点均在格点上).(1)在图1中先画出一个以格点P为顶点的等腰三角形PAB,再画出该三角形向右平移2个单位后的△P′A′B′.(2)将图2中的格点△ABC绕点C按顺时针方向旋转90°,画出经旋转后的△A′B′C.【答案】图形见解答.【解答】解:(1)如图1,△P′A′B′即为所求;(2)如图2,△A′B′C即为所求.八.相似形综合题(共1小题)11.(2022•宁波)【基础巩固】(1)如图1,在△ABC中,D,E,F分别为AB,AC,BC上的点,DE∥BC,BF=CF,AF交DE于点G,求证:DG=EG.【尝试应用】(2)如图2,在(1)的条件下,连结CD,CG.若CG⊥DE,CD=6,AE=3,求的值.【拓展提高】(3)如图3,在▱ABCD中,∠ADC=45°,AC与BD交于点O,E为AO上一点,EG ∥BD交AD于点G,EF⊥EG交BC于点F.若∠EGF=40°,FG平分∠EFC,FG=10,求BF的长.【答案】(1)证明见解答过程;(2);(3)5+5.【解答】(1)证明:∵DE∥BC,∴△AGD∽△AFB,△AFC∽△AGE,∴=,=,∴=,∵BF=CF,∴DG=EG;(2)解:∵DG=EG,CG⊥DE,∴CE=CD=6,∵DE∥BC,∴△ADE∽△ABC,∴===;(3)解:延长GE交AB于M,连接MF,过点M作MN⊥BC于N,∵四边形ABCD为平行四边形,∴OB=OD,∠ABC=∠ADC=45°,∵MG∥BD,∴ME=GE,∵EF⊥EG,∴FM=FG=10,在Rt△GEF中,∠EGF=40°,∴∠EFG=90°﹣40°=50°,∵FG平分∠EFC,∴∠GFC=∠EFG=50°,∵FM=FG,EF⊥GM,∴∠MFE=∠EFG=50°,∴∠MFN=30°,∴MN=MF=5,∴NF==5,∵∠ABC=45°,∴BN=MN=5,∴BF=BN+NF=5+5.九.解直角三角形的应用(共2小题)12.(2022•宁波)每年的11月9日是我国的“全国消防安全教育宣传日”,为了提升全民防灾减灾意识,某消防大队进行了消防演习.如图1,架在消防车上的云梯AB可伸缩(最长可伸至20m),且可绕点B转动,其底部B离地面的距离BC为2m,当云梯顶端A在建筑物EF所在直线上时,底部B到EF的距离BD为9m.(1)若∠ABD=53°,求此时云梯AB的长.(2)如图2,若在建筑物底部E的正上方19m处突发险情,请问在该消防车不移动位置的前提下,云梯能否伸到险情处?请说明理由.(参考数据:sin53°≈0.8,cos53°≈0.6,tan53°≈1.3)【答案】(1)此时云梯AB的长为15m;(2)在该消防车不移动位置的前提下,云梯能伸到险情处,理由见解答.【解答】解:(1)在Rt△ABD中,∠ABD=53°,BD=9m,∴AB=≈=15(m),∴此时云梯AB的长为15m;(2)在该消防车不移动位置的前提下,云梯能伸到险情处,理由:由题意得:DE=BC=2m,∵AE=19m,∴AD=AE﹣DE=19﹣2=17(m),在Rt△ABD中,BD=9m,∴AB===(m),∵m<20m,∴在该消防车不移动位置的前提下,云梯能伸到险情处.13.(2021•宁波)我国纸伞的制作工艺十分巧妙.如图1,伞不管是张开还是收拢,伞柄AP 始终平分同一平面内两条伞骨所成的角∠BAC,且AB=AC,从而保证伞圈D能沿着伞柄滑动.如图2是伞完全收拢时伞骨的示意图,此时伞圈D已滑动到点D'的位置,且A,B,D′三点共线,AD′=40cm,B为AD′中点.当∠BAC=140°时,伞完全张开.(1)求AB的长.(2)当伞从完全张开到完全收拢,求伞圈D沿着伞柄向下滑动的距离.(参考数据:sin70°≈0.94,cos70°≈0.34,tan70°≈2.75)【答案】(1)AB=20cm;(2)26.4cm.【解答】解:(1)∵B为AD′中点,∴AB=AD′,∵AD′=40cm,∴AB=20cm;(2)如图,过点B作BE⊥AD于点E,∵AB=BD,∴AD=2AE,∵AP平分∠BAC,∠BAC=140°,∴∠BAE=BAC=70°,在Rt△ABE中,AB=20cm∴AE=AB•cos70°≈20×0.34=6.8(cm),∴AD=2AE=13.6(cm),∵AD′=40cm,∴40﹣13.6=26.4(cm).∴伞圈D沿着伞柄向下滑动的距离为26.4cm.一十.条形统计图(共1小题)14.(2021•宁波)图1表示的是某书店今年1~5月的各月营业总额的情况,图2表示的是该书店“党史”类书籍的各月营业额占书店当月营业总额的百分比情况.若该书店1~5月的营业总额一共是182万元,观察图1、图2,解答下列问题:(1)求该书店4月份的营业总额,并补全条形统计图.(2)求5月份“党史”类书籍的营业额.(3)请你判断这5个月中哪个月“党史”类书籍的营业额最高,并说明理由.【答案】(1)45万元,补图见解答;(2)10.5万元;(3)5月份“党史”类书籍的营业额最高.【解答】解:(1)该书店4月份的营业总额是:182﹣(30+40+25+42)=45(万元),补全统计图如下:(2)42×25%=10.5(万元),答:5月份“党史”类书籍的营业额是10.5万元;(3)4月份“党史”类书籍的营业额是45×20%=9(万元),∵10.5>9,且1﹣3月份的营业总额以及“党史”类书籍的营业额占当月营业额的百分比都低于4、5月份,∴5月份“党史”类书籍的营业额最高.。
2024年浙江省宁波市九年级学业水平考试数学适应性三模试卷一、选择题:本题共10小题,每小题3分,共30分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.2024的倒数是()A. B.2024 C. D.2.如图所示的几何体由一个圆柱体和一个长方体组成,它的主视图是()A. B. C. D.3.在比例尺为的宁波地图上,量得杭州湾大桥在地图上的距离为厘米,则桥实际长度用科学记数法可表示为米A. B. C. D.4.某校参加课外兴趣小组的学生人数统计图如图所示.若信息技术小组有60人,则劳动实践小组有()A.75人B.90人C.108人D.150人5.不等式组的解集在数轴上可表示为()A. B.C. D.6.在创建“文明校园”的活动中,班级决定从四名同学两名男生,两名女生中随机抽取两名同学担任本周的值周长,那么抽取的两名同学恰好是一名男生和一名女生的概率是()A. B. C. D.7.如图是某同学参加的滑雪项目,斜坡滑雪道与水平面的夹角为,当他沿斜坡滑雪道直线滑行80米,则他下降的高度为()A.米B.米C.米D.米8.《算法统宗》是中国古代数学名著,作者是明代数学家程大位.书中记载了一道“荡秋千”问题:“平地秋千未起,踏板一尺离地;送行二步与人齐,五尺人高曾记;仕女佳人争蹴,终朝笑语欢嬉;良工高士素好奇,算出索长有几?”译文:“秋千静止的时候,踏板高地1尺,将它往前推送两步两步尺时,此时踏板升高到离地5尺,秋千的绳索始终拉得很直,试问秋千绳索有多长?”如图,若设秋千绳索长为x 尺,则可列方程为()A. B.C. D.9.如图,点A、B、在上,,连接BO并延长,交于点D,连接、,若,则的大小为()A. B. C. D.10.如图,在中,,以其三边为边向外作正方形,连结CF,作于点于点于点K,交CF于点若正方形ABGF与正方形JKLM的面积之比为5,则的值等于()A. B.4 C. D.二、填空题:本题共6小题,每小题3分,共18分。
【2019-2021年】浙江省宁波市中考真题分类汇编专题3 函数1.(2021·宁波)如图,正比例函数的图象与反比例函数的图象相交于A,B两点,点B的横坐标为2,当时,x的取值范围是()A. 或B. 或C. 或D. 或【答案】C【解析】【解答】解:∵正比例函数与反比例函数都关于原点对称,∴点A与点B关于原点对称,∵点B的横坐标为2,∴点A的横坐标为-2,由图象可知,当或时,正比例函数的图象在反比例函数的图象的上方,∴当或时,,故答案为:C.【分析】先根据函数图象的关于原点对称确定A点的横坐标,然后结合图象找出正比例函数图象在反比例函数图象的部分的x的范围即可.2.(2021·宁波)在平面直角坐标系中,对于不在坐标轴上的任意一点,我们把点称为点A的“倒数点”.如图,矩形的顶点C为,顶点E在y轴上,函数的图象与交于点A.若点B是点A的“倒数点”,且点B在矩形的一边上,则的面积为________.【答案】或【解析】【解答】解:根据题意,∵点称为点的“倒数点”,∴,,∴点B不可能在坐标轴上;∵点A在函数的图象上,设点A为,则点B为,∵点C为,∴,①当点B在边DE上时;点A与点B都在边DE上,∴点A与点B的纵坐标相同,即,解得:,经检验,是原分式方程的解;∴点B为,∴的面积为:;②当点B在边CD上时;点B与点C的横坐标相同,∴,解得:,经检验,是原分式方程的解;∴点B为,∴的面积为:;故答案为:或.【分析】设点A的坐标为,由“倒数点”的m定义,则点B为,则知点B在某个反比例函数图象上,然后分两种情况讨论:即①当点B在ED上,由ED∥x轴,根据点A与点B的纵坐标相同构建方程求解,然后求点B的坐标,再求的面积即可;②当点B在DC上,根据点B与点C的横坐标相同构建方程求解,再求出点B的坐标,然后求的面积.3.(2019·宁波)如图,过原点的直线与反比例函数y= (k>0)的图象交于A,B两点,点A在第一象限点C在x轴正半轴上,连结AC交反比例函数图象于点D.AE为∠BAC的平分线,过点B作AE的垂线,垂足为E,连结DE.若AC=3DC,△ADE的面积为8,则k的值为________.【答案】 6【解析】【解答】解:连接OE,OD,过点A作AN⊥x轴于点N,过点D作DM⊥x轴于点M,根据正比例函数与反比例函数的对称性得出OA=OB,∵BE⊥AE,∴∠AEB=90°,在Rt△ABE中,∵AO=BO,∴OE=OA, ∴∠OEA =∠OAE,∵AE平分∠BAC,∴∠OAE=∠CAE, ∴∠CAE=∠OEA,∴OE∥AC,∴△ADO的面积=△ADE的面积,∵△ADO的面积=梯形ADMN的面积,∴梯形ADMN的面积=8,∵AN⊥x轴,DM⊥x轴,∴AN∥DM, ∴△CDM∽△CAN, ∴DM∶AN=CD∶AC=1∶3,∴设DM为a,则AN=3a,∴A( ,3a),D(,a)∴ON= ,OM= ,MN=OM-ON= ;∵梯形ADMN的面积=(a+3a) ·MN×=8,∴k=6.故答案为:6【分析】连接OE,OD,过点A作AN⊥x轴于点N,过点D作DM⊥x轴于点M,根据正比例函数与反比例函数的对称性得出OA=OB,根据直角三角形斜边上的中线等于斜边的一半得出OE=OA,根据等边对等角及角平分线的定义得出∠CAE=∠OEA, 根据内错角相等二直线平行得出OE∥AC, 根据同底等高的三角形的面积相等得出△ADO的面积=△ADE的面积,根据反比例函数k的几何意义及割补法得出△ADO的面积=梯形ADMN的面积,从而得出梯形ADMN的面积=8,根据同一平面内垂直于同一直线的两条直线互相平行得出AN∥DM, 根据平行于三角形一边的直线截其它两边,所截的三角形与原三角形相似得出△CDM∽△CAN, 根据相似三角形对应边成比例得出DM∶AN=CD∶AC=1∶3,设DM为a,则AN=3a,进而表示出A,D两点的坐标,得出ON,OM,MN的长,再根据梯形的面积计算方法建立方程,求解即可。
2013年中考数学复习专题讲座三:开放性问题一、中考专题诠释开放型问题是相对于有明确条件和明确结论的封闭型问题而言的,它是条件或结论给定不完全、答案不唯一的一类问题.这类试题已成为近年中考的热点,重在考查同学们分析、探索能力以及思维的发散性,但难度适中.根据其特征大致可分为:条件开放型、结论开放型、方法开放型和编制开放型等四类.二、解题策略与解法精讲解开放性的题目时,要先进行观察、试验、类比、归纳、猜测出结论或条件,然后严格证明;同时,通常要结合以下数学思想方法:分类讨论,数形结合,分析综合,归纳猜想,构建数学模型等。
三、中考考点精讲考点一:条件开放型条件开放题是指结论给定,条件未知或不全,需探求与结论相对应的条件.解这种开放问题的一般思路是:由已知的结论反思题目应具备怎样的条件,即从题目的结论出发,逆向追索,逐步探求.例1 (2012•义乌市)如图,在△ABC中,点D是BC的中点,作射线AD,在线段AD 及其延长线上分别取点E、F,连接CE、BF.添加一个条件,使得△BDF≌△CDE,并加以证明.你添加的条件是.(不添加辅助线).考点:全等三角形的判定。
810360专题:开放型。
分析:由已知可证∠ECD﹦∠FBD,又∠EDC﹦∠FDB,因为三角形全等条件中必须是三个元素,并且一定有一组对应边相等.故添加的条件是:DE=DF(或CE∥BF或∠ECD=∠DBF或∠DEC=∠DFB等);解答:解:(1)添加的条件是:DE=DF(或CE∥BF或∠ECD=∠DBF或∠DEC=∠DFB等).(2)证明:在△BDF和△CDE中∵∴△BDF≌△CDE.点评:三角形全等的判定是中考的热点,一般以考查三角形全等的方法为主,判定两个三角形全等,先根据已知条件或求证的结论确定三角形,然后再根据三角形全等的判定方法,看缺什么条件,再去证什么条件.考点二:结论开放型:给出问题的条件,让解题者根据条件探索相应的结论并且符合条件的结论往往呈现多样性,这些问题都是结论开放问题.这类问题的解题思路是:充分利用已知条件或图形特征,进行猜想、类比、联想、归纳,透彻分析出给定条件下可能存在的结论,然后经过论证作出取舍.例2 (2012•宁德)如图,点E、F分别是AD上的两点,AB∥CD,AB=CD,AF=DE.问:线段CE、BF有什么数量关系和位置关系?并加以证明.考点:全等三角形的判定与性质;平行线的性质;平行线的判定与性质。
810360专题:探究型。
分析:CE和BF的关系是CE=BF(数量关系),CE∥BF(位置关系),理由是根据平行线性质求出∠A=∠D,根据SAS证△ABF≌△DCE,推出CE=BF,∠AFB=∠DEC即可.解答:CE和BF的数量关系是CE=BF,位置关系是CE∥BF,证明:∵AB∥CD,∴∠A=∠D,∵在△ABF和△DCE中,∴△ABF≌△DCE,∴CE=BF,∠AFB=∠DEC,∴CE∥BF,即CE和BF的数量关系是CE=BF,位置关系是CE∥BF.点评:本题考查了全等三角形的性质和判定,平行线的性质和判定,主要考查学生运用性质进行推理的能力.考点三:条件和结论都开放的问题:此类问题没有明确的条件和结论,并且符合条件的结论具有多样性,因此必须认真观察与思考,将已知的信息集中分析,挖掘问题成立的条件或特定条件下的结论,多方面、多角度、多层次探索条件和结论,并进行证明或判断.例3 (2012•广元)如图,在△AEC和△DFB中,∠E=∠F,点A、B、C、D在同一直线上,有如下三个关系式:①AE∥DF,②A B=CD,③CE=BF.(1)请用其中两个关系式作为条件,另一个作为结论,写出你认为正确的所有命题(用序号写出命题书写形式:“如果…,那么…”)(2)选择(1)中你写出的一个命题,说明它正确的理由.考点:全等三角形的判定与性质。
810360专题:开放型。
分析:(1)如果①②作为条件,③作为结论,得到的命题为真命题;如果①③作为条件,②作为结论,得到的命题为真命题,写成题中要求的形式即可;(2)若选择(1)中的如果①②,那么③,由AE与DF平行,利用两直线平行内错角相等得到一对角相等,再由AB=DC,等式左右两边都加上BC,得到AC=DB,又∠E=∠F,利用AAS 即可得到三角形ACE与三角形DBF全等,根据全等三角形的对应边相等得到CE=BF,得证;若选择如果①③,那么②,由AE与FD平行,利用两直线平行内错角相等得到一对角相等,再由∠E=∠F,CE=BF,利用AAS可得出三角形ACE与三角形DBF全等,根据全等三角形的对应边相等可得出AC=BD,等式左右两边都减去BC,得到AB=CD,得证.解答:解:(1)如果①②,那么③;如果①③,那么②;(2)若选择如果①②,那么③,证明:∵AE∥DF,∴∠A=∠D,∵AB=CD,∴AB+BC=BC+CD,即AC=DB,在△ACE和△DBF中,,∴△ACE≌△DBF(AAS),∴CE=BF;若选择如果①③,那么②,证明:∵AE∥DF,∴∠A=∠D,在△ACE和△DBF中,,∴△ACE≌△DBF(AAS),∴AC=DB,∴AC﹣BC=DB﹣BC,即AB=CD.点评:此题考查了全等三角形的判定与性质,平行线的性质,利用了转化的数学思想,熟练掌握全等三角形的判定与性质是解本题的关键.考点四:编制开放型:此类问题是指条件、结论、解题方法都不全或未知,而仅提供一种问题情境,需要我们补充条件,设计结论,寻求解法的一类题,它更具有开放性.例4 (2012•南京)看图说故事.请你编写一个故事,使故事情境中出现的一对变量x、y满足图示的函数关系,要求:①指出变量x和y的含义;②利用图中的数据说明这对变量变化过程的实际意义,其中须涉及“速度”这个量.考点:函数的图象。
专题:开放型。
分析:①结合实际意义得到变量x和y的含义;②由于函数须涉及“速度”这个量,只要叙述清楚时间及相应的路程,体现出函数的变化即可.解答:解:本题答案不唯一,下列解法供参考.①该函数图象表示小明骑车离出发地的路程y(单位:km)与他所用的时间x(单位:min)的关系.②小明以400m/min的速度匀速骑了5min,在原地休息了6min,然后以500m/min的速度匀速骑车回出发地.点评:对于此类编制开放型问题,是一类新型的开放型问题,它要求学生的思维较发散,写出符合题意的正确答案即可,难度要求不大,但学生容易犯想当然的错误,叙述不够准确,如单位的问题、符合实际等要求,在解题中应该注意防范..四、中考真题演练一、填空题1.(2012•娄底)写出一个x的值,使|x﹣1|=x﹣1成立,你写出的x的值是.考点:绝对值。
专题:开放型。
分析:根据非负数的绝对值等于它本身,那么可得x﹣1≥0,解得x≥1,故答案是2(答案不唯一).解答:解:∵|x﹣1|=x﹣1成立,∴x﹣1≥0,解得x≥1,故答案是2(答案不唯一).点评:本题考查了绝对值,解题的关键是知道负数的绝对值等于其相反数,非负数的绝对值等于它本身.2.(2012•宁波)写出一个比4小的正无理数.考点:实数大小比较。
专题:开放型。
分析:根据实数的大小比较法则计算即可.解答:解:此题答案不唯一,举例如:、π等.故答案为:π(答案不唯一).点评:本题考查了实数的大小比较,解题的关键是理解正无理数这一概念.3.(2012•连云港)写一个比大的整数是.考点:实数大小比较;估算无理数的大小。
专题:开放型。
分析:先估算出的大小,再找出符合条件的整数即可.解答:解:∵1<3<4,∴1<<2,∴符合条件的数可以是:2(答案不唯一).故答案为:2(答案不唯一).点评:本题考查的是实数的大小比较,根据题意估算出的大小是解答此题的关键.4.(2012•天津)将正比例函数y=﹣6x的图象向上平移,则平移后所得图象对应的函数解析式可以是(写出一个即可).考点:一次函数图象上点的坐标特征。
810360专题:开放型。
分析:根据“上加下减”的原则在函数解析式后加一个大于0的数即可.解答:解:“上加下减”的原则可知该函数的解析式可以是:y=﹣6x+1(答案不唯一).故答案为:y=﹣6x+1(答案不唯一).点评:本题考查了一次函数的性质,只要比例系数k相同,则直线平行,保证k不变的条件下,b的正负决定平移的方向.5.(2012•益阳)写出一个在实数范围内能用平方差公式分解因式的多项式:.考点:实数范围内分解因式。
专题:开放型。
分析:显然答案不唯一.只需符合平方差公式的应用特征即可.解答:解:答案不唯一,如x2﹣3=x2﹣()2=(x+)(x﹣).故可填 x2﹣3.点评:此题考查在实数范围内分解因式,属开放型试题,比较简单.6.(2012•湛江)请写出一个二元一次方程组,使它的解是.考点:二元一次方程组的解。
专题:开放型。
分析:根据二元一次方程解的定义,可知在求解时,应先围绕x=2,y=﹣1列一组算式,然后用x,y代换即可列不同的方程组.答案不唯一,符合题意即可.解答:解:此题答案不唯一,如:,,①+②得:2x=4,解得:x=2,将x=2代入①得:y=﹣1,∴一个二元一次方程组的解为:.故答案为:此题答案不唯一,如:.点评:本题主要考查了二元一次方程组的解的定义.此题属于开放题,注意正确理解定义是解题的关键.7.(2012•镇江)写出一个你喜欢的实数k的值,使得反比例函数y=的图象在每一个象限内,y随x的增大而增大.考点:反比例函数的性质。
810360专题:开放型。
分析:根据反比例函数的性质得出关于k的不等式,求出k的取值范围,在此取值范围内找出一个符合条件的k的值即可.解答:解:∵反比例函数y=的图象在每一个象限内,y随x的增大而增大,∴k﹣2<0,解得k<2.∴k可以为:1(答案不唯一).故答案为:1(答案不唯一).点评:本题考查的是反比例函数的性质,根据题意得出关于k的不等式,求出k的取值范围是解答此题的关键.8.(2012•陕西)在同一平面直角坐标系中,若一个反比例函数的图象与一次函数y=﹣2x+6的图象无公共点,则这个反比例函数的表达式是(只写出符合条件的一个即可).考点:反比例函数与一次函数的交点问题。
专题:开放型。
分析:两个函数在同一直角坐标系中的图象无公共点,其k要满足﹣2x2﹣6x﹣k=0,△<0即可.解答:解:设反比例函数的解析式为:y=,∵一次函数y=﹣2x+6与反比例函数y=图象无公共点,则,∴﹣2x2﹣6x﹣k=0,即△=(﹣6)2﹣8k<0解得k>,则这个反比例函数的表达式是y=;故答案为:y=.点评:此题考查了反比例函数与一次函数的交点问题.解题的关键是:两个函数在同一直角坐标系中的图象无公共点,其k要满足﹣2x2﹣6x﹣k=0,△<0.9.(2012•广西)请写出一个图象在第二、第四象限的反比例函数解析式,你所写的函数解析式是.考点:反比例函数的性质。