全国2006年4月高等教育自学考试高等数学(一)试题
- 格式:doc
- 大小:62.00 KB
- 文档页数:3
2006年普通高等学校招生全国统一考试数学(理工农医类)Ⅰ卷共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.参考公式:如果事件A 、B 互斥,那么 球的表面积公式)()()(B P A P B A P +=+ 24R S π=如果事件A 、B 相互独立,那么其中R 表示球的半径 )()()(B P A P B A P ⋅=⋅球的体积公式如果事件A 在一次试验中发生的概率是P ,那么 334R V π= n 次独立重复试验中恰好发生k 次的概率其中R 表示球的半径 k n k kn n P P C k P --=)1()(一、选择题(1)已知集合}065|{2≤+-=x x x A ,集合}3|12|{>-=x x B ,则集合B A ⋂= (A )}32|{≤≤x x (B )}32|{<≤x x (C )}32|{≤<x x(D )}31|{<<-x x (2)复数3)1(i -的虚部为(A )3(B )-3(C )2(D )-2(3)已知⎩⎨⎧=≠+=1,21,32)(x x x x f ,下面结论正确的是(A )1)(=x x f 在处连续 (B )5)1(=f(C )2)(lim 1=→x f x(D )5)(lim 1=→x f x(4)已知二面角βα--l 的大小为60°,m 、n 为异面直线,且βα⊥⊥n m ,,则m 、n 所 成的角为(A )30° (B )60° (C )90° (D )120°(5)下列函数中,图象的一部分如右图所示的是 (A ))6sin(π+=x y (B ))62sin(π-=x y(C ))34cos(π-=x y (D ))62cos(π-=x y (6)已知两定点A (-2,0)、B (1,0),如果动点P 满足|PA|=2|PB|,则点P 的轨迹所包围的图形的面积等于(7)如图,已知正六边形P 1P 2P 3P 4P 5P 6,下列向量的 数量积中最大的是 (A )3121P P P P ⋅(B )4121P P P P ⋅(C )5121P P P P ⋅(D )6121P P P P ⋅(8)某厂生产甲产品每千克需用原料A 和原料B 分别为a 1、b 1千克,生产乙产品每千克需用原料A 和原料B 分别为a 2、b 2千克. 甲、乙产品每千克可获利润分别为d 1、d 2元. 月 初一次性购进本月用原料A 、B 各c 1、c 2千克.要计划本月生产甲产品和乙产品各多少 千克才能使月利润总额达到最大. 在这个问题中,设全月生产甲、乙两种产品分别为x 千克、y 千克,月利润总额为z 元,那么,用于求使总利润y d x d z 21+=最大的数学模 型中,约束条件为(A )⎪⎪⎩⎪⎪⎨⎧≥≥≥+≥+00221121y x cy b x b c y a x a (B )⎪⎪⎩⎪⎪⎨⎧≥≥≤+≤+00222111y x c y b x a c y b x a(C )⎪⎪⎩⎪⎪⎨⎧≥≥≤+≤+00221121y x c y b x b c y a x a (D )⎪⎪⎩⎪⎪⎨⎧≥≥=+=+00221121y x c y b x b c y a x a(9)直线3-=x y 与抛物线x y 42=交于A 、B 两点,过A 、B 两点向抛物线的准线作垂线,垂足分别为P 、Q ,则梯形APQB 的面积为 (A )48 (B )56 (C )64 (D )72(10)已知球O 的半径是1,A 、B 、C 三点都在球面上,A 、B 两点和A 、C 两点的球面距离都是,4πB 、C 两点的球面距离是3π,则二面角B —OA —C 的大小是(A )4π(B )3π (C )2π(D )32π(11)设a 、b 、c 分别是△ABC 的三个内角A 、B 、C 所对的边,则)(2c b b a +=是A=2B 的(A )充要条件 (B )充分而不必要条件 (C )必要而不充分条件 (D )既不充分又不必要条件(12)从0到9这10个数字中任取3个数学组成一个没有重复数字的三位数,这个数不能被 3整除的概率为 (A )5419 (B )5435 (C )5438 (D )6041数 学(理工农医类)第Ⅱ卷二、填空题:本大题共4小题,每小题4分,共16分,把答案填在题中横线上.(13)在三棱锥O —ABC 中,三条棱OA 、OB 、OC 两两互相垂直,且OA=OB=OC ,M 是(14)设离散型随机变量ξ可能取的值为1,2,3,4.).4,3,2,1()(=+==k b ak k P ξ 又ξ的数学期望E ξ=3,则b a += .(15)如图,把椭圆1162522=+y x 的长轴AB 分成8等分,过每 个分点作x 轴的垂线交椭圆的上半部分于P 1、P 2、…、 P 7七个点,E 是椭圆的一个焦点,则|P 1F|+|P 1F|+…+|P 7F|= .(16)非空集合G 关于运算○+满足:(1)对任意a 、G b ∈,都有a ○+G b ∈;(2)存在G e ∈,使得对一切G a ∈,都有a a e e a =⊕=⊕,则称G 关于运算○+为“融洽集”.现给出下列集合和运算:①G={非负整数},○+为整数的加法. ②G={偶数},○+为整数的乘法. ③G={平面向量},○+为平面向量的加法. ④G={二次三项式},○+为多项式的加法. ⑤G={虚数},○+为复数的乘法. 其中G 关于运算○+为“融洽集”的是 .(写出所有“融洽集”的序号) 三、解答题:本大题共6小题,共74分.解答应写出文字说明,证明过程或演算步骤. (17)(本小题满分12分)已知A 、B 、C 是△ABC 的三内角,向量)sin ,(cos ),3,1(A A n m =-=,且m ·n=1. (Ⅰ)求角A ; (Ⅱ)若3sin cos 2sin 122-=-+BB B,求tanC.(18分)(本小题满分12分)某课程考核分理论与实验两部分进行,每部分考核成绩只记“合格”与“不合格”,两部分考核都“合格”则该课程考核“合格”,甲、乙、丙三人在理论考核中合格的概率分别为0.9、0.8、0.7;在实验考核中合格的概率分别为0.8、0.7、0.9.所有考核是否合格相互之间没有影响.(Ⅰ)求甲、乙、丙三人在理论考核中至少有两人合格的概率;(Ⅱ)求这三人该课程考核都合格的概率.(结果保留三位小数)如图,在长方体ABCD—A1B1C1D1中,E、P 分别是BC、A1D1的中点,M、N分别是AE、CD1的中点,AD=AA1=a,AB=2a.(Ⅰ)求证:MN//面ADD1A1;(Ⅱ)求二面角P—AE—C的大小;(Ⅲ)求三棱锥P—DEN的体积.已知数列{a n },其中a 1=1,a 2=3,2 a n = a n+1+ a n -1(n ≥2).记数列{ a n }的前n 项和为S n ,数列}{ln n S 的前n 项和为U n . (Ⅰ)求U n ;(Ⅱ)设∑=''=>=nk k k k n nU n x F x F x F x T x x n n e x F n 122)()(( )()( ),0( )!(2)(为其中的导函数),计算)()(lim 1x T x T n n n +∞→.已知两定点)0,2( ),0,2(21F F -,满足条件2||||12=-PF PF 的点P 的轨迹是曲线 E ,直线1-=kx y 与曲线E 交于A 、B 两点.如果|AB|=36,且曲线E 上存在点C ,使m =+,求m 的值和△ABC 的面积S.已知函数)( ),0( ln 2)(2x f x x a xx x f >++=的导函数是).(x f '对任意两个不相等的正数1x 、2x ,证明:(Ⅰ)当,0时≤a )2(2)()(2121x x f x f x f +>+;(Ⅱ)当4≤a 时,.|||)()(|2121x x x f x f ->'-'2006年普通高等学校招生全国统一考试数学(理工农医类)参考答案一、选择题:本题考查基本知识和基本运算.每小题5分,满分60分. (1)C (2)D (3)D (4)B (5)D (6)B (7)A (8)C (9)A (10)C (11)A (12)B二、填空题:本题考查基本知识和基本运算.每小题4分,共16分. (13)2arctan (14)101(15)35 (16)① ③ 三、解答题(17)本小题主要考查三角函数概念、同角三角函数的关系、两角和与差的三角函数的公式以及倍角公式,考查应用、分析和计算能力.满分12分. 解:(Ⅰ)∵m ·n=1,∴.1)sin ,(cos )3,1(=⋅-A A 即1cos sin 3=-A A ,,1)21cos 23(sin 2=⋅-⋅A A .21)6sin(=-πA∵6566,0ππππ<-<-<<A A , ∴.66ππ=-A∴.3π=A (Ⅱ)由题知3sin cos cos sin 2122-=-+B B BB ,整理得 .0cos 2cos sin sin 22=--B B B B∵02tan tan ,0cos 2=--∴≠B B B∴2tan =B ,或.1tan -=B (舍去) ∴tanB=2..1135832132tan tan 1tan tan )tan()](tan[tan +=-+-=-+-=+-=+-=B A B A B A B A C π(18)本小题主要考查相互独立事件、互斥事件、对立事件等概率的计算方法,考查运用概率知识解决实际问题的能力.满分12分.解:记“甲理论考核合格”为事件A 1;“乙理论考核合格”为事件A 2;“丙理论考核合格”为事件A 3;记事件i A 的对立事件,i =1,2,3.记“甲实验考核合格”为事件B 1:“乙实验考核合格”为事件B 2;“丙实验考核合格”为事件B 3. (Ⅰ)记“理论考核中至少有两人合格”为事件C ,记C 为事件C 的对立事件. 解法1:.902.0)7.02.01.03.08.01.07.02.09.03.08.09.0)()()()()()(321321321321321321321321=⨯⨯+⨯⨯+⨯⨯+⨯⨯=+++=+++=A A A P A A A P A A A P A A A P A A A A A A A A A A A A P C P解法2:.902.0098.01)7.02.01.03.08.01.03.02.09.03.02.01.0(1)]()()()([1)(1)(1)(321321321321321321321321=-=⨯⨯+⨯⨯+⨯⨯+⨯⨯-=+++-=+++-=-=A A A P A A A P A A A P A A A P A A A A A A A A A A A A P C P C P所以,理论考核中至少有两个合格的概率为0.902. (Ⅱ)记“三人该课程都合格”为事件D.254.0254016.09.07.07.08.08.09.0)()()()()()()()()()]()()[()(33221133211332211≈=⨯⨯⨯⨯⨯=⋅⋅⋅⋅⋅=⋅⋅⋅⋅⋅=⋅⋅⋅⋅⋅=B P A P B P A P B P A P B A P B A P B A P B A B A B A P D P B 所以,这三人该课程考核都合格的概率约为0.254.(19)本小题主要考查长方体的概念、直线和平面、平面和平面的关系等基础知识,以及空间想象能力和推理运算能力.满分12分. 解法一:(Ⅰ)证明:取CD 的中点K ,连结MK 、NK.∵M 、N 、K 分别为AE 、CD 1、CD 的中点, ∴MK//AD ,NK//DD 1.∴MK//面ADD 1A 1,NK//面ADD 1A 1. ∴面MNK//面ADD 1A 1. ∴MN//面ADD 1A 1.∵P 为A 1D 1的中点,∴PF//D 1D ∴PF ⊥面ABCD.作FH ⊥AE ,交AE 于H ,连接PH ,则由三垂线 定理得AE ⊥PH.从而∠PHF 为二面角P —AE —D 的平面角. 在Rt △AEF 中,.217 ,2 ,2===AE a EF a AF .17221722a a aa AE EF AF FH =⋅=⋅= 在Rt △PFH 中,.217tan 1===∠FH DD FH PF PHF 故二面角P —AE —D 的大小是.217arctan (Ⅲ).4544141212221CD 1a a a a CD BC S S P E NEP =+⋅⋅=⋅==∆矩形 作DQ ⊥CD 1,交CD 1交CD 1于Q ,由A 1D 1⊥面CDD 1C 1,得A 1D 1⊥DQ , ∴DQ ⊥面BCD 1A 1. 在Rt △CDD 1中,a a a a CD DD CD DQ 525211=⋅=⋅=,∴.65245313132a a a DQ S V V NEP NEP D DEN P =⋅⋅=⋅==∆-- 解法二:以D 为原点,DA 、DC 、DD 1所在直线分别为x 轴、y 轴、z 轴,建立直角坐标系.则A (a , 0, 0),B (a , 2 a , 0),C (0, 2 a , 0),A 1(a , 0, a ),D 1(0, 0, a ). ∵E 、P 、M 、N 分别是BC 、A 1D 1、AE 、CD 1的中点.∴),0,2( ),0,2,2(a a P a a E)2,,0(),0,,43(a a N a a M(Ⅰ)),2,0,43(aa MN -=取n=(0,1,0),显然n ⊥面ADD 1A 1,n MN n MN ⊥∴=⋅ ,0又⊄MN 面ADD 1A 1,∴MN//面ADD 1A 1.(Ⅱ)过P 作PH ⊥AE ,交AE 于H.取AD 的中点F ,则)0,0,2(a F 设).0,,2(),,,2(),0,,(y x a a y x a y x H --=--=则 又)0,2,2(a a -=,由,0=⋅AE HP 及H 在直线AE 上,可得 ⎪⎩⎪⎨⎧=+=-+-.44,02242a y x ay x aa 解得 a y a x 172 ,3433==∴)0,172,178( ),,172,178(a a HF a a a HP --=--=∴0=⋅AE HF 即 .AE HF ⊥∴与所夹的角等于二面角P —AE —D 的大小..212||||=⋅=HF HP故二面角P —AE —D 的大小等于.21212arccos(Ⅲ)设),,(1111z y x n =为平面DEN 的法向量,则.,11n n ⊥⊥又 ).,0,2(),2,,0(),0,2,2(a aa a a a ===∴⎩⎨⎧-=-=⎪⎪⎩⎪⎪⎨⎧=+=+.2,4 .022,02211111111y z y x z a ay ay x a即 ∴可取n 1=(4,-1,2).∴P 点到平面DEN 的距离为 2144116|22|||||11aa a n n d =+++=⋅=∵.858==∴.8521=∴,821||||212a S DEN =⋅⋅=∆∴.6214821313132a a a d S V DEN DEN P =⨯⨯=⋅=∆-(20)本小题主要考查等差数列、等比数列的基础知识,以及对数运算、导数运算和极限运算的能力,同时考查分类讨论的思想方法,满分12分.解:(Ⅰ)由题意,}{n a 是首项为1、公差为2的等差数列.前n 项和.ln 2ln ln ,2)1(21122n n S n n n S n n ===⋅-++=).!ln(2)ln 2ln 1(ln 2n n U n =+++=(Ⅱ).2)!(2)!()!(2)(222222n x x n n n x n n e x F n n n U n n =⋅=⋅= 12)(-='n n x x F⎪⎪⎪⎩⎪⎪⎪⎨⎧>--=<<--=='=∑∑=-=).1( 1)1(),1( ),10( 1)1()(22221121x xx x x n x x x x x x F T n n k k n k k n ⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎨⎧>=--==+<<=--=∞→∞→+∞→+∞→).1( 1)1(1)1(lim),1(11lim ),10(111lim )()(lim 22222221x x x x x x n n x x x x T x T n n n n n nn n n n (21)本小题主要考查双曲线的定义和性质,直线与双曲线的关系,点到直线的距离等知识以及解析几何的基本思想、方法和综合解决问题的能力.满分12分.解:由双曲线的定义可知,曲线E 是以)0,2(),0,2(21F F -为焦点的双曲线的左支,且.1 .1 ,2===b a c 易知故曲线E 的方程为).0(122<=-x y x 设),(),,(2211y x B y x A ,由题意建立方程组 ⎩⎨⎧=--=1122y x kx y 消去y ,得022)1(22=-+-kx x k又已知直线与双曲线左支交于A 、B 两点,有 ⎪⎪⎪⎩⎪⎪⎪⎨⎧>--=<--=+>-+=∆≠-.012,012,0)1(8)2(,01221221222k x x k k x x k k k解得.12-<<-k 又||1||212x x k AB -+=.)1()2)(1(2124)12(14)(122222222212212k k k k k k k x x x x k --+=--⨯---⋅+=-+⋅+= 依题意得 .36)1()2)(1(22222=--+k k k 整理后得 025552824=+-k k ∴.45 ,7522==k k 但.25,12-=∴-<<-k k 故直线AB 的方程为.0125=++y x 设),(e e y x C ,由已知),(),(),(,2211e e my mx y x y x OC m OB OA =+=+得,∴)0( ),,(),(2121≠++=m m y y m x x y x e e 又8122122)(,54122222121221=-=--=-+=+-=-=+k k k x x k y y k k x x . ∴点).8,54(mm C - 将点C 的坐标代入曲线E 的方程,得.1648022=-mm得4±=m .但当m=-4时,所得的点在双曲线的右支上,不合题意. ∴m=4. C 点坐标为)2,5(-.C 到AB 距离为.311)25(|12)5(25|22=+++-⨯∴△ABC 的面积3313621=⨯⨯=S(22)本小题主要考查导数的基本性质和应用,函数的性质和平均值不等式等知识及综合分析、推理论证的能力.满分14分. 证明:(Ⅰ)由,ln 2)(2x a xx x f ++=得)ln (ln 2)11()(212)()(2121222121x x a x x x x x f x f +++++=+.ln )(212121212221x x a x x x x x x ++++= .2ln 4)2()2(212122121x x a x x x x x x f +++++=+ 而2212122212221)2(]2)[(41)(21x x x x x x x x +=++>+ ① 又2121222122142)()(x x x x x x x x >++=+∴2121214x x x x x x +>+ ② ∵.2lnln ,221212121x x x x x x x x +<∴+<∵2lnln,02121x x a x x a a +≥∴≤ ③ 由①、②、③,得.2ln 4)2(ln )(2121212212121212221x x a x x x x x x a x x x x x x +++++>++++ 即)2(2)()(2121x x f x f x f +>+(Ⅱ)证法一:由x a x x x f ln 2)(2++=,得 ,22)(2x a x x x f +-='∴|)22()22(||)()(|2222121121x ax x x a x x x f x f +--+-='-' |)(22|||2122212121x x ax x x x x x -++⋅-= .1|)(22||||)()(|212221212121>-++⇔->'-'x x ax x x x x x x f x f 下面证明对任意两个不相等的正数1x 、2x ,有1)(2221222121>-++x x ax x x x 恒成立. 即证212121)(2x x x x x x a ++<成立.∵21212121214)(2x x x x x x x x x x +>++,设),0(4)( ,221>+==t tt t u x x t则242)(tt t u -='令32 ,0)(=='t t u 得.列表如下:.)(2212121a x x x x x x >++∴∴对任意两个不相等的正数1x 、2x ,恒有.|||)()(|2121x x x f x f ->'-'证法二:由x a x x x f ln 2)(2++=,得.22)(2x a xx x f +-=' |)22()22(||)()(|2222121121x ax x x a x x x f x f +--+-='-'∴.|)(22|||2122212121x x ax x x x x x -++⋅- 1x 、2x 是两个不相等的正数2132121222121)(42)(22x x a x x x x a x x x x -+>-++∴.4)(4221321x x x x -+≥ 设).0(442)(,12321>-+==t t t t u x x t则)23(4)(-='t t t u ,列表:.127>≥∴u 即 .1)(2221222121>-++x x ax x x x .|||)(22||||)()(|21212221212121x x x x ax x x x x x x f x f ->-++⋅-='-'∴。
2006年普通高等学校招生全国统一考试文科数学本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
第Ⅰ卷1至2页。
第Ⅱ卷3至4页。
考试结束后,将本试卷和答题卡一并交回。
第Ⅰ卷注意事项:1.答题前,考生在答题卡上务必用黑色签字笔将自己的姓名、准考证号填写清楚,并贴好条形码。
请认真核准条形码上的准考证号、姓名和科目。
2.每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号,在试题卷上作答无效。
3.本卷共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
参考公式:如果时间A、B互斥,那么如果时间A、B相互独立,那么如果事件A在一次试验中发生的概率是P,那么n次独立重复试验中恰好发生k次的概率球的表面积公式,其中R表示球的半径球的体积公式,其中R表示球的半径一、选择题⑴、已知向量满足,且,则与的夹角为A. B. C. D.⑵、设集合,,则A. B.C. D.⑶、已知函数的图象与函数的图象关于直线对称,则A. B.C. D.⑷、双曲线的虚轴长是实轴长的2倍,则A. B. C. D.⑸、设是等差数列的前项和,若,则A. B. C. D.⑹、函数的单调增区间为A. B.C. D.⑺、从圆外一点向这个圆作两条切线,则两切线夹角的余弦值为A. B. C. D.⑻、的内角A、B、C的对边分别为a、b、c,若a、b、c成等比数列,且,则A. B. C. D.⑼、已知各顶点都在一个球面上的正四棱柱高为4,体积为16,则这个球的表面积是A. B. C. D.抛物线上的点到直线距离的最小值是A. B. C. D.⑽、在的展开式中,的系数为A. B. C. D.⑾、抛物线上的点到直线距离的最小值是A. B. C. D.⑿、用长度分别为2、3、4、5、6(单位:)的5根细木棒围成一个三角形(允许连接,但不允许折断),能够得到的三角形的最大面积为A. B. C. D.2006年普通高等学校招生全国统一考试理科数学第Ⅱ卷注意事项:1.答题前,考生在答题卡上务必用黑色签字笔将自己的姓名、准考证号填写清楚,并贴好条形码。
2006年全国统一高考数学试卷(理科)(全国卷Ⅰ)一、选择题(共12小题,每小题5分,满分60分)1.(5分)设集合M={x|x2﹣x<0},N={x||x|<2},则()A.M∩N=∅ B.M∩N=M C.M∪N=M D.M∪N=R2.(5分)已知函数y=e x的图象与函数y=f(x)的图象关于直线y=x对称,则()A.f(2x)=e2x(x∈R)B.f(2x)=ln2•lnx(x>0)C.f(2x)=2e x(x∈R)D.f(2x)=lnx+ln2(x>0)3.(5分)双曲线mx2+y2=1的虚轴长是实轴长的2倍,则m=()A.B.﹣4 C.4 D.4.(5分)如果复数(m2+i)(1+mi)是实数,则实数m=()A.1 B.﹣1 C.D.5.(5分)函数的单调增区间为()A.B.(kπ,(k+1)π),k∈ZC.D.6.(5分)△ABC的内角A、B、C的对边分别为a、b、c,若a、b、c成等比数列,且c=2a,则cosB=()A.B.C.D.7.(5分)已知各顶点都在一个球面上的正四棱柱高为4,体积为16,则这个球的表面积是()A.16πB.20πC.24πD.32π8.(5分)抛物线y=﹣x2上的点到直线4x+3y﹣8=0距离的最小值是()A.B.C.D.39.(5分)设平面向量1、2、3的和1+2+3=0.如果向量1、2、3,满足|i|=2|i|,且i顺时针旋转30°后与i同向,其中i=1,2,3,则()A.﹣1+2+3=0 B.1﹣2+3=0 C.1+2﹣3=0 D.1+2+3=010.(5分)设{a n}是公差为正数的等差数列,若a1+a2+a3=15,a1a2a3=80,则a11+a12+a13=()A.120 B.105 C.90 D.7511.(5分)用长度分别为2、3、4、5、6(单位:cm)的5根细木棒围成一个三角形(允许连接,但不允许折断),能够得到的三角形的最大面积为()A.B.C.D.20cm212.(5分)设集合I={1,2,3,4,5}.选择I的两个非空子集A和B,要使B 中最小的数大于A中最大的数,则不同的选择方法共有()A.50种B.49种C.48种D.47种二、填空题(共4小题,每小题4分,满分16分)13.(4分)已知正四棱锥的体积为12,底面对角线长为,则侧面与底面所成的二面角等于°.14.(4分)设z=2y﹣x,式中变量x、y满足下列条件:,则z的最大值为.15.(4分)安排7位工作人员在5月1日至5月7日值班,每人值班一天,其中甲、乙二人都不安排在5月1日和2日.不同的安排方法共有种(用数字作答).16.(4分)设函数.若f(x)+f′(x)是奇函数,则φ=.三、解答题(共6小题,满分74分)17.(12分)ABC的三个内角为A、B、C,求当A为何值时,取得最大值,并求出这个最大值.18.(12分)A、B是治疗同一种疾病的两种药,用若干试验组进行对比试验.每个试验组由4只小白鼠组成,其中2只服用A,另2只服用B,然后观察疗效.若在一个试验组中,服用A有效的小白鼠的只数比服用B有效的多,就称该试验组为甲类组.设每只小白鼠服用A有效的概率为,服用B有效的概率为.(Ⅰ)求一个试验组为甲类组的概率;(Ⅱ)观察3个试验组,用ξ表示这3个试验组中甲类组的个数,求ξ的分布列和数学期望.19.(12分)如图,l1、l2是互相垂直的异面直线,MN是它们的公垂线段.点A、B在l1上,C在l2上,AM=MB=MN.(Ⅰ)证明AC⊥NB;(Ⅱ)若∠ACB=60°,求NB与平面ABC所成角的余弦值.20.(12分)在平面直角坐标系xOy中,有一个以和为焦点、离心率为的椭圆,设椭圆在第一象限的部分为曲线C,动点P在C上,C在点P处的切线与x、y轴的交点分别为A、B,且向量.求:(Ⅰ)点M的轨迹方程;(Ⅱ)的最小值.21.(14分)已知函数.(Ⅰ)设a>0,讨论y=f(x)的单调性;(Ⅱ)若对任意x∈(0,1)恒有f(x)>1,求a的取值范围.22.(12分)设数列{a n}的前n项的和,n=1,2,3,…(Ⅰ)求首项a1与通项a n;(Ⅱ)设,n=1,2,3,…,证明:.2006年全国统一高考数学试卷(理科)(全国卷Ⅰ)参考答案与试题解析一、选择题(共12小题,每小题5分,满分60分)1.(5分)(2006•全国卷Ⅰ)设集合M={x|x2﹣x<0},N={x||x|<2},则()A.M∩N=∅ B.M∩N=M C.M∪N=M D.M∪N=R【分析】M、N分别是二次不等式和绝对值不等式的解集,分别解出再求交集合并集.【解答】解:集合M={x|x2﹣x<0}={x|0<x<1},N={x||x|<2}={x|﹣2<x<2},∴M∩N=M,故选:B.2.(5分)(2006•全国卷Ⅰ)已知函数y=e x的图象与函数y=f(x)的图象关于直线y=x对称,则()A.f(2x)=e2x(x∈R)B.f(2x)=ln2•lnx(x>0)C.f(2x)=2e x(x∈R)D.f(2x)=lnx+ln2(x>0)【分析】本题考查反函数的概念、互为反函数的函数图象的关系、求反函数的方法等相关知识和方法.根据函数y=e x的图象与函数y=f(x)的图象关于直线y=x对称可知f(x)是y=e x 的反函数,由此可得f(x)的解析式,进而获得f(2x).【解答】解:函数y=e x的图象与函数y=f(x)的图象关于直线y=x对称,所以f(x)是y=e x的反函数,即f(x)=lnx,∴f(2x)=ln2x=lnx+ln2(x>0),选D.3.(5分)(2006•全国卷Ⅰ)双曲线mx2+y2=1的虚轴长是实轴长的2倍,则m=()A.B.﹣4 C.4 D.【分析】由双曲线mx2+y2=1的虚轴长是实轴长的2倍,可求出该双曲线的方程,从而求出m的值.【解答】解:双曲线mx2+y2=1的虚轴长是实轴长的2倍,∴m<0,且双曲线方程为,∴m=,故选:A.4.(5分)(2006•全国卷Ⅰ)如果复数(m2+i)(1+mi)是实数,则实数m=()A.1 B.﹣1 C.D.【分析】注意到复数a+bi(a∈R,b∈R)为实数的充要条件是b=0【解答】解:复数(m2+i)(1+mi)=(m2﹣m)+(1+m3)i是实数,∴1+m3=0,m=﹣1,选B.5.(5分)(2006•全国卷Ⅰ)函数的单调增区间为()A.B.(kπ,(k+1)π),k∈ZC.D.【分析】先利用正切函数的单调性求出函数单调增时x+的范围i,进而求得x 的范围.【解答】解:函数的单调增区间满足,∴单调增区间为,故选C6.(5分)(2006•全国卷Ⅰ)△ABC的内角A、B、C的对边分别为a、b、c,若a、b、c成等比数列,且c=2a,则cosB=()A.B.C.D.【分析】根据等比数列的性质,可得b=a,将c、b与a的关系结合余弦定理分析可得答案.【解答】解:△ABC中,a、b、c成等比数列,则b2=ac,由c=2a,则b=a,=,故选B.7.(5分)(2006•全国卷Ⅰ)已知各顶点都在一个球面上的正四棱柱高为4,体积为16,则这个球的表面积是()A.16πB.20πC.24πD.32π【分析】先求正四棱柱的底面边长,然后求其对角线,就是球的直径,再求其表面积.【解答】解:正四棱柱高为4,体积为16,底面积为4,正方形边长为2,正四棱柱的对角线长即球的直径为2,∴球的半径为,球的表面积是24π,故选C.8.(5分)(2006•全国卷Ⅰ)抛物线y=﹣x2上的点到直线4x+3y﹣8=0距离的最小值是()A.B.C.D.3【分析】设抛物线y=﹣x2上一点为(m,﹣m2),该点到直线4x+3y﹣8=0的距离为,由此能够得到所求距离的最小值.【解答】解:设抛物线y=﹣x2上一点为(m,﹣m2),该点到直线4x+3y﹣8=0的距离为,分析可得,当m=时,取得最小值为,故选B.9.(5分)(2006•全国卷Ⅰ)设平面向量1、2、3的和1+2+3=0.如果向量1、2、3,满足|i|=2|i|,且i顺时针旋转30°后与i同向,其中i=1,2,3,则()A.﹣1+2+3=0 B.1﹣2+3=0 C.1+2﹣3=0 D.1+2+3=0【分析】三个向量的和为零向量,在这三个向量前都乘以相同的系数,我们可以把系数提出公因式,括号中各项的和仍是题目已知中和为零向量的三个向量,当三个向量都按相同的方向和角度旋转时,相对关系不变.【解答】解:向量1、2、3的和1+2+3=0,向量1、2、3顺时针旋转30°后与1、2、3同向,且|i|=2|i|,∴1+2+3=0,故选D.10.(5分)(2006•全国卷Ⅰ)设{a n}是公差为正数的等差数列,若a1+a2+a3=15,a1a2a3=80,则a11+a12+a13=()A.120 B.105 C.90 D.75【分析】先由等差数列的性质求得a2,再由a1a2a3=80求得d即可.【解答】解:{a n}是公差为正数的等差数列,∵a1+a2+a3=15,a1a2a3=80,∴a2=5,∴a1a3=(5﹣d)(5+d)=16,∴d=3,a12=a2+10d=35∴a11+a12+a13=105故选B.11.(5分)(2006•全国卷Ⅰ)用长度分别为2、3、4、5、6(单位:cm)的5根细木棒围成一个三角形(允许连接,但不允许折断),能够得到的三角形的最大面积为()A.B.C.D.20cm2【分析】设三角形的三边分别为a,b,c,令p=,则p=10.海伦公式S=≤=故排除C,D,由于等号成立的条件为10﹣a=10﹣b=10﹣c,故“=”不成立,推测当三边长相等时面积最大,故考虑当a,b,c三边长最接近时面积最大,进而得到答案.【解答】解:设三角形的三边分别为a,b,c,令p=,则p=10.由海伦公式S=知S=≤=<20<3由于等号成立的条件为10﹣a=10﹣b=10﹣c,故“=”不成立,∴S<20<3.排除C,D.由以上不等式推测,当三边长相等时面积最大,故考虑当a,b,c三边长最接近时面积最大,此时三边长为7,7,6,用2、5连接,3、4连接各为一边,第三边长为7组成三角形,此三角形面积最大,面积为,故选B.12.(5分)(2006•全国卷Ⅰ)设集合I={1,2,3,4,5}.选择I的两个非空子集A和B,要使B中最小的数大于A中最大的数,则不同的选择方法共有()A.50种B.49种C.48种D.47种【分析】解法一,根据题意,按A、B的元素数目不同,分9种情况讨论,分别计算其选法种数,进而相加可得答案;解法二,根据题意,B中最小的数大于A中最大的数,则集合A、B中没有相同的元素,且都不是空集,按A、B中元素数目这和的情况,分4种情况讨论,分别计算其选法种数,进而相加可得答案.【解答】解:解法一,若集合A、B中分别有一个元素,则选法种数有C52=10种;若集合A中有一个元素,集合B中有两个元素,则选法种数有C53=10种;若集合A中有一个元素,集合B中有三个元素,则选法种数有C54=5种;若集合A中有一个元素,集合B中有四个元素,则选法种数有C55=1种;若集合A中有两个元素,集合B中有一个元素,则选法种数有C53=10种;若集合A中有两个元素,集合B中有两个元素,则选法种数有C54=5种;若集合A中有两个元素,集合B中有三个元素,则选法种数有C55=1种;若集合A中有三个元素,集合B中有一个元素,则选法种数有C54=5种;若集合A中有三个元素,集合B中有两个元素,则选法种数有C55=1种;若集合A中有四个元素,集合B中有一个元素,则选法种数有C55=1种;总计有49种,选B.解法二:集合A、B中没有相同的元素,且都不是空集,从5个元素中选出2个元素,有C52=10种选法,小的给A集合,大的给B集合;从5个元素中选出3个元素,有C53=10种选法,再分成1、2两组,较小元素的一组给A集合,较大元素的一组的给B集合,共有2×10=20种方法;从5个元素中选出4个元素,有C54=5种选法,再分成1、3;2、2;3、1两组,较小元素的一组给A集合,较大元素的一组的给B集合,共有3×5=15种方法;从5个元素中选出5个元素,有C55=1种选法,再分成1、4;2、3;3、2;4、1两组,较小元素的一组给A集合,较大元素的一组的给B集合,共有4×1=4种方法;总计为10+20+15+4=49种方法.选B.二、填空题(共4小题,每小题4分,满分16分)13.(4分)(2006•全国卷Ⅰ)已知正四棱锥的体积为12,底面对角线长为,则侧面与底面所成的二面角等于60°.【分析】先根据底面对角线长求出边长,从而求出底面积,再由体积求出正四棱锥的高,求出侧面与底面所成的二面角的平面角的正切值即可.【解答】解:正四棱锥的体积为12,底面对角线的长为,底面边长为2,底面积为12,所以正四棱锥的高为3,则侧面与底面所成的二面角的正切tanα=,∴二面角等于60°,故答案为60°14.(4分)(2006•全国卷Ⅰ)设z=2y﹣x,式中变量x、y满足下列条件:,则z的最大值为11.【分析】先根据约束条件画出可行域,再利用几何意义求最值,z=2y﹣x表示直线在y轴上的截距,只需求出可行域直线在y轴上的截距最大值即可.【解答】解:,在坐标系中画出图象,三条线的交点分别是A(0,1),B(7,1),C(3,7),在△ABC中满足z=2y﹣x的最大值是点C,代入得最大值等于11.故填:11.15.(4分)(2006•全国卷Ⅰ)安排7位工作人员在5月1日至5月7日值班,每人值班一天,其中甲、乙二人都不安排在5月1日和2日.不同的安排方法共有2400种(用数字作答).【分析】本题是一个分步计数问题,先安排甲、乙两人在假期的后5天值班,有A52种排法,其余5人再进行排列,有A55种排法,根据分步计数原理得到结果.【解答】解:由题意知本题是一个分步计数问题,首先安排甲、乙两人在假期的后5天值班,有A52=20种排法,其余5人再进行排列,有A55=120种排法,∴根据分步计数原理知共有20×120=2400种安排方法.故答案为:240016.(4分)(2006•全国卷Ⅰ)设函数.若f(x)+f′(x)是奇函数,则φ=.【分析】对函数求导结合两角差的正弦公式,代入整理可得,,根据奇函数的性质可得x=0时函数值为0,代入可求φ的值【解答】解:,则f(x)+f′(x)=,为奇函数,令g(x)=f(x)+f′(x),即函数g(x)为奇函数,g(0)=0⇒2sin(φ)=0,∵0<φ<π,∴φ=.故答案为:.三、解答题(共6小题,满分74分)17.(12分)(2006•全国卷Ⅰ)ABC的三个内角为A、B、C,求当A为何值时,取得最大值,并求出这个最大值.【分析】利用三角形中内角和为π,将三角函数变成只含角A,再利用三角函数的二倍角公式将函数化为只含角,利用二次函数的最值求出最大值【解答】解:由A+B+C=π,得=﹣,所以有cos=sin.cosA+2cos=cosA+2sin=1﹣2sin2+2sin=﹣2(sin﹣)2+当sin=,即A=时,cosA+2cos取得最大值为故最大值为18.(12分)(2006•全国卷Ⅰ)A、B是治疗同一种疾病的两种药,用若干试验组进行对比试验.每个试验组由4只小白鼠组成,其中2只服用A,另2只服用B,然后观察疗效.若在一个试验组中,服用A有效的小白鼠的只数比服用B有效的多,就称该试验组为甲类组.设每只小白鼠服用A有效的概率为,服用B 有效的概率为.(Ⅰ)求一个试验组为甲类组的概率;(Ⅱ)观察3个试验组,用ξ表示这3个试验组中甲类组的个数,求ξ的分布列和数学期望.【分析】(1)由题意知本题是一个独立重复试验,根据所给的两种药物对小白鼠有效的概率,计算出小白鼠有效的只数的概率,对两种药物有效的小白鼠进行比较,得到甲类组的概率.(2)由题意知本试验是一个甲类组的概率不变,实验的条件不变,可以看做是一个独立重复试验,所以变量服从二项分布,根据二项分布的性质写出分布列和期望.【解答】解:(1)设A i表示事件“一个试验组中,服用A有效的小鼠有i只“,i=0,1,2,B i表示事件“一个试验组中,服用B有效的小鼠有i只“,i=0,1,2,依题意有:P(A1)=2××=,P(A2)=×=.P(B0)=×=,P(B1)=2××=,所求概率为:P=P(B0•A1)+P(B0•A2)+P(B1•A2)=×+×+×=(Ⅱ)ξ的可能值为0,1,2,3且ξ~B(3,).P(ξ=0)=()3=,P(ξ=1)=C31××()2=,P(ξ=2)=C32×()2×=,P(ξ=3)=()3=∴ξ的分布列为:ξ0123P∴数学期望Eξ=3×=.19.(12分)(2006•全国卷Ⅰ)如图,l1、l2是互相垂直的异面直线,MN是它们的公垂线段.点A、B在l1上,C在l2上,AM=MB=MN.(Ⅰ)证明AC⊥NB;(Ⅱ)若∠ACB=60°,求NB与平面ABC所成角的余弦值.【分析】(1)欲证AC⊥NB,可先证BN⊥面ACN,根据线面垂直的判定定理只需证AN⊥BN,CN⊥BN即可;(2)易证N在平面ABC内的射影H是正三角形ABC的中心,连接BH,∠NBH 为NB与平面ABC所成的角,在Rt△NHB中求出此角即可.【解答】解:(Ⅰ)由已知l2⊥MN,l2⊥l1,MN∩l1=M,可得l2⊥平面ABN.由已知MN⊥l1,AM=MB=MN,可知AN=NB且AN⊥NB.又AN为AC在平面ABN内的射影.∴AC⊥NB(Ⅱ)∵AM=MB=MN,MN是它们的公垂线段,由中垂线的性质可得AN=BN,∴Rt△CAN≌Rt△CNB,∴AC=BC,又已知∠ACB=60°,因此△ABC为正三角形.∵Rt△ANB≌Rt△CNB,∴NC=NA=NB,因此N在平面ABC内的射影H是正三角形ABC的中心,连接BH,∠NBH为NB与平面ABC所成的角.在Rt△NHB中,cos∠NBH===.20.(12分)(2006•全国卷Ⅰ)在平面直角坐标系xOy中,有一个以和为焦点、离心率为的椭圆,设椭圆在第一象限的部分为曲线C,动点P在C上,C在点P处的切线与x、y轴的交点分别为A、B,且向量.求:(Ⅰ)点M的轨迹方程;(Ⅱ)的最小值.【分析】(1)利用相关点法求轨迹方程,设P(x0,y0),M(x,y),利用点M 的坐标来表示点P的坐标,最后根据x0,y0满足C的方程即可求得;(2)先将用含点M的坐标的函数来表示,再利用基本不等式求此函数的最小值即可.【解答】解:(I)椭圆方程可写为:+=1式中a>b>0,且得a2=4,b2=1,所以曲线C的方程为:x2+=1(x>0,y>0).y=2(0<x<1)y'=﹣设P(x0,y0),因P在C上,有0<x0<1,y0=2,y'|x=x0=﹣,得切线AB的方程为:y=﹣(x﹣x0)+y0.设A(x,0)和B(0,y),由切线方程得x=,y=.由=+得M的坐标为(x,y),由x0,y0满足C的方程,得点M的轨迹方程为:+=1(x>1,y>2)(Ⅱ)||2=x2+y2,y2==4+,∴||2=x2﹣1++5≥4+5=9.且当x2﹣1=,即x=>1时,上式取等号.故||的最小值为3.21.(14分)(2006•全国卷Ⅰ)已知函数.(Ⅰ)设a>0,讨论y=f(x)的单调性;(Ⅱ)若对任意x∈(0,1)恒有f(x)>1,求a的取值范围.【分析】(Ⅰ)根据分母不为0得到f(x)的定义域,求出f'(x),利用a的范围得到导函数的正负讨论函数的增减性即可得到f(x)的单调区间;(Ⅱ)若对任意x∈(0,1)恒有f(x)>1即要讨论当0<a≤2时,当a>2时,当a≤0时三种情况讨论得到a的取值范围.【解答】解:(Ⅰ)f(x)的定义域为(﹣∞,1)∪(1,+∞).对f(x)求导数得f'(x)=e﹣ax.(ⅰ)当a=2时,f'(x)=e﹣2x,f'(x)在(﹣∞,0),(0,1)和(1,+∞)均大于0,所以f(x)在(﹣∞,1),(1,+∞)为增函数.(ⅱ)当0<a<2时,f'(x)>0,f(x)在(﹣∞,1),(1,+∞)为增函数.(ⅲ)当a>2时,0<<1,令f'(x)=0,解得x1=,x2=.当x变化时,f′(x)和f(x)的变化情况如下表:x(1,+∞)f′(x)+﹣++f(x)↑↓↑↑f(x)在(﹣∞,),(,1),(1,+∞)为增函数,f(x)在(,)为减函数.(Ⅱ)(ⅰ)当0<a≤2时,由(Ⅰ)知:对任意x∈(0,1)恒有f(x)>f(0)=1.(ⅱ)当a>2时,取x0=∈(0,1),则由(Ⅰ)知f(x0)<f(0)=1(ⅲ)当a≤0时,对任意x∈(0,1),恒有>1且e﹣ax≥1,得f(x)=e ﹣ax≥>1.综上当且仅当a∈(﹣∞,2]时,对任意x∈(0,1)恒有f(x)>1.22.(12分)(2006•全国卷Ⅰ)设数列{a n}的前n项的和,n=1,2,3,…(Ⅰ)求首项a1与通项a n;(Ⅱ)设,n=1,2,3,…,证明:.【分析】对于(Ⅰ)首先由数列{a n}的前n项的和求首项a1与通项a n,可先求,然后有a n=S n﹣S n﹣1,公比为4的等比数列,从而求解;出S n﹣1对于(Ⅱ)已知,n=1,2,3,…,将a n=4n﹣2n代入S n=a n﹣×2n+1+,n=1,2,3,得S n=×(4n﹣2n)﹣×2n+1+=×(2n+1﹣1)(2n+1﹣2)然后再利用求和公式进行求解.【解答】解:(Ⅰ)由S n=a n﹣×2n+1+,n=1,2,3,①得a1=S1=a1﹣×4+所以a1=2.=a n﹣1﹣×2n+,n=2,3,4,再由①有S n﹣1将①和②相减得:a n=S n﹣S n﹣1=(a n﹣a n﹣1)﹣×(2n+1﹣2n),n=2,3,整理得:a n+2n=4(a n﹣1+2n﹣1),n=2,3,因而数列{a n+2n}是首项为a1+2=4,公比为4的等比数列,即:a n+2n=4×4n﹣1=4n,n=1,2,3,因而a n=4n﹣2n,n=1,2,3,(Ⅱ)将a n=4n﹣2n代入①得S n=×(4n﹣2n)﹣×2n+1+=×(2n+1﹣1)(2n+1﹣2)=×(2n+1﹣1)(2n﹣1)T n==×=×(﹣)所以,=﹣)=×(﹣)<(1﹣)参与本试卷答题和审题的老师有:wdlxh;liuerq;zlzhan;rxl;zhwsd;danbo7801;qiss;涨停;wodeqing;minqi5;yhx01248;吕静;wdnah;sllwyn;zhiyuan(排名不分先后)菁优网2017年2月5日。
华东交通大学2006—2007学年第一学期考试卷承诺:我将严格遵守考场纪律,知道考试违纪、作弊的严重性,还知道请他人代考或代他人考者将被开除学籍和因作弊受到记过及以上处分将不授予学士学位,愿承担由此引起的一切后果。
专业 班级 学号 学生签名:试卷编号: (A )卷《高等数学(A)Ⅰ》 课程 (工科本科06级) 课程类别:必闭卷(√) 考试日期:2007.1.15 题号 一 二三四 五 总分 12 3 4 5 6 7 1 2分值 10 15 7777777998阅卷人 (全名)考生注意事项:1、本试卷共 6 页,总分 100 分,考试时间 120 分钟。
2、考试结束后,考生不得将试卷、答题纸和草稿纸带出考场。
一、填空题(每题2分,共10分)______)1(34)( 122=-+-=x x x x x x f 第一类间断点为设函数、___________ 11 2 02=+=⎰dy dt t y x则,设、_______)1 1(1 3==K xy 处的曲率,在点等边双曲线、_________141=+⎰dx x x、__________ } 3 2{}2 1 1{ 5==-=λλ则垂直,,,与,,已知向量、b a二、选择题(每题 3分,共15分)∞=--+∞→ D. 2 C. 1 B. 0 . A )B ()sin 11( 122limx x x x x 、22222221 D. )1(2 C. 12 B. 2 A.) C ( )()1ln(arctan 2t t t dxy d x y y t y t x -++==⎩⎨⎧+==则,确定设、 得分 评阅人得分 评阅人1dx x211+222ln 1-21xx ex e x x x e x xxsin D. C. )ln(1 B. 1 A.)D (0 3><>++<>时成立的是当下列各式中,、1cos D. 1cos C. 1sin B. 1sinA.) A ()1(1sin )( 42C x C x C x C x dx xf xx x f ++-++-='=⎰则,设、⎩⎨⎧==-+⎩⎨⎧==-+⎩⎨⎧==-+=-+⎩⎨⎧=+=++822 D. 0 822 C.0 822 B. 822 A.)D ( 19522222222222z y y x y y y x x y y x y y x xoy z y z y x 为平面上的投影曲线方程在曲线、三、计算题(每题 7分,共49分)x x x ex x 222sin 112lim--→、21 42 21422 1 2222limlimlimlim23042==-=-=--=→→→→xxe xe x xxe x x ex x xx x x xx 原式解:)22(2lim n n n n n --+∞→、 2 21214 224 limlim=-++=-++=∞→∞→nn nn n n nn n 原式解:得分 评阅人得分评阅人y e e y xx '++=求,设、 )1ln( 32 xx x x xxxx x x x e ee e e e e e e ee y 222122221 ]2)1(21[11 )1(11+=⋅++++='++++='-解:dxx x ⎰-2214、Cx x xCt t dtt tdttdttttdt dx t x +---=+--=-=====⎰⎰⎰arcsin 1 cot )1(csccot cos sincos cos sin 2222原式则,令解:dxx x ⎰1arctan 5、)1(arctan 121+=⎰x d x 原式解:得分 评阅人得分 评阅人得分 评阅人分扣缺1C。
自考高数(一)试题及答案自考高等数学(一)试题及答案一、选择题(每题3分,共30分)1. 下列函数中,哪个不是基本初等函数?A. 正弦函数B. 常数函数C. 指数函数D. 绝对值函数答案:D2. 函数f(x) = x^2 + 3x + 2在区间(-∞,-2)上的单调性是:A. 单调递增B. 单调递减C. 不确定D. 非单调答案:B3. 微积分基本定理指出:A. 定积分可以转化为不定积分求解B. 不定积分是定积分的基础C. 定积分的值等于其原函数的不定积分的差值D. 所有连续函数都有原函数答案:C4. 曲线y = x^3在点(1,1)处的切线斜率是:A. 0B. 1C. 3D. 2答案:C5. 以下哪个级数是发散的?A. 1 + 1/2 + 1/3 + ...B. (1/2) + (1/4) + (1/8) + ...C. 1 - 1/2 + 1/3 - 1/4 + ...D. 1 - 1/2^2 + 1/3^2 - 1/4^2 + ...答案:A6. 微分方程dy/dx = x^2 - y^2的解的形式是:A. y = x^2B. y = C/xC. y = x + CD. y = Cx^2答案:B7. 函数f(x) = e^x在x=0处的泰勒展开式的前两项是:A. 1 + xB. 1 - xC. 1 + x^2D. 1 + x + x^2答案:A8. 以下哪个选项是二元函数f(x, y) = x^2 + y^2的极值点?A. (0, 0)B. (1, 1)C. (-1, -1)D. (2, -2)答案:A9. 曲线积分∮(x^2 + y^2) ds 在圆周x^2 + y^2 = 1上的值是:A. 0B. 1C. 2πD. 4π答案:D10. 以下哪个选项是函数f(x) = sin(x)的傅里叶变换?A. 1/2B. 1/2δ(x - π)C. 1/2δ(x)D. δ(x - π)答案:C二、填空题(每题4分,共20分)11. 极限lim (x→0) (sin(x)/x) 的值是 _______。
2006年4月高等教育自学考试全国统一命题考试
高等数学(一) 试卷
(课程代码0020)
一、单项选择题(本大题共5小题,每小题2分,共10分)
在每小题列出的四个备选项中只有一个是符合题目要求的。
请将其代码填写在题后的括号内。
错选、多选或未选均无分。
二、填空题(大题共10小题,每小题3分,共30分)
请在每小题的空格中填上正确答案。
错填、不填均无分。
三、计算题(一)(本大题共5小题,每小题5分,共25分)
四、计算题(二)(本大题共3小题,每小题7分,共21分)
22.将一长为l的铁丝截成两段,并将其中一段围成正方形,另一段围成圆形,为使正方形
与圆形面积之和最小,问这两段铁丝的长应各为多少?
五、应用题(本大题9分)
六、证明题(本大题5分)。
全国2006年4月高等教育自学考试高等数学(一)试题课程代码:00020一、单项选择题(本大题共5小题,每小题2分,共10分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。
错选、多选或未选均无分。
1.已知f(x)的定义域是[0,3a],则f(x+a)+f(x-a)的定义域是( )A .[a,3a]B .[a,2a]C .[-a,4a]D .[0,2a]2.=→x sin x 1sin x lim 20x () A .1 B .∞C .不存在D .03.设D=D (p )是市场对某一商品的需求函数,其中p 是商品价格,D 是市场需求量,则需求价格弹性是() A .)p ('D p D- B .)p ('D D p-C .)D ('p p D- D .)D ('p D p-4.=⎰→x tdtcos lim 0x 20x ( )A .0B .1C .-1D .∞5.⎰⎰≤+=222y x dxdy ( )A .πB .4C .2πD .2二、填空题(本大题共10小题,每小题3分,共30分)请在每小题的空格中填上正确答案。
错填、不填均无分。
6.若f(x+1)=x+cosx 则f(1)=__________.7..__________1n 5n )n 1(lim 233x =++-∞→8.若f(x)在x=x 0处可导,且.__________)x ('f ,3h )h 5x (f )x(f lim 0000h ==+-→则9.曲线y=x 3-5x 2+3x+5的拐点是__________.10.曲线y=xe -x 为凹的区间是__________.11.⎰=.__________xdx ln 12.微分方程e x y ′-1=0的通解是__________.13.⎰-=-31.__________dx |x 2|14.⎰+∞=+12.__________x x dx 15.设z=.__________sin 2=∂∂yz x y 则 三、计算题(一)(本大题共5小题,每小题5分,共25分)16.设y='.11333y x x 求-+17.求极限.)x2x (lim x 3x +∞→ 18.计算不定积分.dx e 1x 2⎰-19.计算定积分⎰+10.dx x 1x20.设z=f(.,),dz f yx 求可微且 四、计算题(二)(本大题共3小题,每小题7分,共21分)21.设y=x 2(lnx-1)-(1-x 2)lnx,求ex dx dy =. 22.将一长为l 的铁丝截成两段,并将其中一段围成正方形,另一段围成圆形,为使正方形与圆形面积之和最小,问这两段铁丝的长应各为多少?23.设D 是由x 轴,y=x-4和y=⎰⎰D .x ydx dy .x 2试求所围成的闭区域 五、应用题(本大题9分)24.已知某企业生产某种产品q 件时,MC=5千元/件,MR=10-0.02q 千元/件,又知当q=10件时,总成本为250千元,求最大利润.(其中边际成本函数MC=,dq dC 边际收益函数MR=)dqdR 六、证明题(本大题5分)25.设f(x)=⎰⎰-===x t dx x f t t dt t t ππ00.2)(),1sin (sin 证明定义。
2006年普通高等学校招生全国统一考试文科数学全国Ⅰ卷 (广西、河南等地区)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
第Ⅰ卷1至2页。
第Ⅱ卷3至4页。
考试结束后,将本试卷和答题卡一并交回。
第Ⅰ卷注意事项:1.答题前,考生在答题卡上务必用黑色签字笔将自己的姓名、准考证号填写清楚,并贴好条形码。
请认真核准条形码上的准考证号、姓名和科目。
2.每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号,在试题卷上作答无效。
3.本卷共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
参考公式:如果时间A 、B 互斥,那么()()()P A B P A P B +=+ 如果时间A 、B 相互独立,那么()()()P A B P A P B =如果事件A 在一次试验中发生的概率是P ,那么n 次独立重复试验中恰好发生k 次的概率()()1n kkkn n P k C P P -=-球的表面积公式24S R π=,其中R 表示球的半径 球的体积公式343V R π=,其中R 表示球的半径 一、选择题⑴、已知向量a b 、满足1,4,a b ==,且2a b =,则a 与b 的夹角为 A .6π B .4π C .3π D .2π ⑵、设集合{}20M x x x =-<,{}2N x x =<,则 A .M N =∅ B .M N M = C .MN M = D .MN R =⑶、已知函数x y e =的图象与函数()y f x =的图象关于直线y x =对称,则 A .()22()x f x e x R =∈ B .()2ln 2ln (0)f x x x =>C .()22()x f x e x R =∈D .()2ln ln 2(0)f x x x =+> ⑷、双曲线221mx y +=的虚轴长是实轴长的2倍,则m =A .14-B .4-C .4D .14⑸、设n S 是等差数列{}n a 的前n 项和,若735S =,则4a =A .8B .7C .6D .5⑹、函数()tan 4f x x π⎛⎫=+ ⎪⎝⎭的单调增区间为A .,,22k k k Z ππππ⎛⎫-+∈ ⎪⎝⎭ B .()(),1,k k k Z ππ+∈C .3,,44k k k Z ππππ⎛⎫-+∈ ⎪⎝⎭D .3,,44k k k Z ππππ⎛⎫-+∈ ⎪⎝⎭⑺、从圆222210x x y y -+-+=外一点()3,2P 向这个圆作两条切线,则两切线夹角的余弦值为A .12B .35C .2D .0⑻、ABC ∆的内角A 、B 、C 的对边分别为a 、b 、c ,若a 、b 、c 成等比数列,且2c a =,则cos B =A .14 B .34C .4D .3⑼、已知各顶点都在一个球面上的正四棱柱高为4,体积为16,则这个球的表面积是A .16πB .20πC .24πD .32π抛物线2y x =-上的点到直线4380x y +-=距离的最小值是 A .43 B .75C .85D .3⑽、在1012x x ⎛⎫- ⎪⎝⎭的展开式中,4x 的系数为A .120-B .120C .15-D .15 ⑾、抛物线2y x =-上的点到直线4380x y +-=距离的最小值是 A .43 B .75C .85D .3⑿、用长度分别为2、3、4、5、6(单位:cm )的5根细木棒围成一个三角形(允许连接,但不允许折断),能够得到的三角形的最大面积为A .2B .2C .2D .220cm2006年普通高等学校招生全国统一考试理科数学 第Ⅱ卷注意事项:1.答题前,考生在答题卡上务必用黑色签字笔将自己的姓名、准考证号填写清楚,并贴好条形码。
2006年全国统一高考数学试卷(理科)(全国卷一)及答案2006年全国统一高考数学试卷(理科)(全国卷Ⅰ)一、选择题(共12小题,每小题5分,满分60分)1.设集合 $M=\{x|x^2-x<0\}$,$N=\{x||x|<2\}$,则()。
A。
$M\cap N=\varnothing$B。
$M\cap N=M$C。
$M\cup N=\mathbb{R}$XXX2.已知函数 $y=e^x$ 的图象与函数 $y=f(x)$ 的图象关于直线 $y=x$ 对称,则()。
A。
$f(2x)=e^{2x}$($x\in\mathbb{R}$)B。
$f(2x)=\ln2\cdot\ln x$($x>0$)C。
$f(2x)=2e^x$($x\in\mathbb{R}$)D。
$f(2x)=\ln x+\ln 2$($x>0$)3.双曲线 $mx^2+y^2=1$ 的虚轴长是实轴长的2倍,则$m=$()。
A。
$\dfrac{3}{4}$B。
$1$C。
$-4$D。
$4$4.如果复数 $(m^2+i)(1+mi)$ 是实数,则实数 $m=$()。
A。
$1$B。
$-1$C。
$0$D。
不存在实数 $m$ 满足条件。
5.函数$y=\dfrac{\sin x}{1+\cos x}$ 的单调增区间为()。
A。
$(2k\pi,(2k+1)\pi)$,$k\in\mathbb{Z}$B。
$(2k\pi,(2k+1)\pi)$,$k\in\mathbb{N}$C。
$(2k\pi+\pi,(2k+1)\pi)$,$k\in\mathbb{Z}$D。
$(2k\pi+\pi,(2k+1)\pi+\pi)$,$k\in\mathbb{Z}$6.$\triangle ABC$ 的内角 $A$、$B$、$C$ 的对边分别为$a$、$b$、$c$,若 $a$、$b$、$c$ 成等比数列,且 $c=2a$,则 $\cos B=$()。
自考高等数学一综合测验题库附答案《高等数学(一)》综合测验题库一、单项选择题1.下列函数中,图形关于y轴对称的是()A.y=sinxB.y=xsinxC.y=exD.y=lnx2.函数f(x)=ln(sinx)在区间[∏/6,5∏/6]上满足罗尔定理中的ξ等于()A.∏/2B.- ∏/2C.3∏/2D.- ∏/33.计算()A.-1B.0C.1D.3/24.若a>1,计算=()A.-1B.0C.1D.3/25.极限=()A.-1B.0C.1D.26.计算等于()A.-3/2B.-1/2C.1/2D.3/27.已知函数y=x3+ax2+bx+c的拐点为(1,-1),在x=0取得极大值,那么a,b,c=()A.a=3,b=1,c=-3B.a=-1,b=2,c=3C.a=-3,b=0,c=1D.a=-3,b=1,c=-28.以下说法错误的是()9.已知在x=1处可导,求a,b()A.a=-2,b=-1B.a=2,b=-1C.a=-1,b=2D.a=-3,b=-210.f(x)为偶函数,且f′(0)存在,则f′(0)= ()A.3B.2C.1D.011.函数在x=0处()A.不连续B.可导C.不可微D.连续但不可导12.计算()A.-2B.-1C.0D.113.函数的间断点()A.x=2是无穷间断点B.x=0是可去间断点C.x=1是无穷间断点D.x=-2是可去间断点14.计算等于()A.-1B.0C.1D.215.函数的间断点为()A.x=-1是可去间断点, x=1是无穷间断点B.x=0是可去间断点, x=2是无穷间断点C.x=0是可去间断点, x=1是无穷间断点D.x=-2是可去间断点, x=-1是无穷间断点16.计算等于()17.试确定k的值,使f(x)在x=1处连续,其中()A.k=-2B.k=-1C.k=0D.k=218.分段函数的连续区间为()A.f(x)在(-∞,1)上连续B.f(x)在(-1,+∞)上连续C.f(x)在(-∞,0)∪(0,+∞)上连续D.f(x)在(-∞,+∞)上连续19.计算=()A.4B.8C.16D.3220.当时,将下列无穷小量与x进行比较,下列哪个是x的高阶无穷小()A.(x2+x3)B.2x+x2C.sinxD.tanx21.已知,那么a=()A.ln2B.lne2C.ln1/eD.ln2/e22.计算=()A.e-2B.e-1C.eD.e223.计算()A.-1B.0C.1D.224.极限()(a>0)A.-1B.0C.1D.225.极限()A.1/7B.2/7C.3/7D.4/726.极限()A.1B.2C.3D.527.以下说法错误的是()28.极限()A.-1B.0C.1D.229.以下说法错误的是()30.适当选取a、b的值,使f(x)在x=0处连续,其中那么a,b=()A.a=-1,b=-1B.a=0,b=0C.a=1,b=1D.a=2,b=-131.极限()A.-2B.-1C.0D.132.极限等于()A.-2B.-1C.0D.133.以下说法错误的是()34.函数f(x)=|sinx|的周期为()35.函数f(x)=sin(1/3)x+tan(1/4)x的周期()36.函数f(x)=1/x()37.函数()A.奇函数B.偶函数C.非奇非偶函数D.无法判断38.以下说法正确的是()A.y=sinx在(-∞,0)上是无界的B.y=sinx在(0,+ ∞)上是无界的C.y=arctanx在(-∞,+∞)上有界D.y=1/x在(-∞,+∞)上有界39.下列各对函数相同的是()40.设有一块边长为a的正方形薄板,将它的四角剪去边长相等的小正方形制作一只无盖盒子,试将盒子的体积表示成小正方形边长的函数.()41.由函数y=u3,u=tanx复合而成的函数为()A.y=tan3xB.y=tan-3xC.y=cotx3D.y=arctanx42.以下说法错误的是()43.以下说法错误的是()A.y=sinx是奇函数B.y=cosx是偶函数C.y=cosx+1是偶函数D.y=cosx-sinx是偶函数44.对于函数f(x)=-2x+1下列说法正确的是()A.在(0,+∞)上是增函数B.在(-∞,0)上是增函数C.在(-∞,+ ∞)是减函数D.在(-∞,+ ∞)是增函数45.设A={0,1,2},B={-1,1},那么A∪B等于()A.{-2,-1,0,1}B.{-1,1,2,3}C.{0,1,2,3}D.{-1,0,1,2}46.下列是无限集合的是()A.大于2且小于12的偶数B.由全体正奇数组成的集合C.方程x2-x-2=0的解集D.方程x2-1=0的集合47.已知函数,那么f(x)=()A.x2-xB.x2-1C.x2+xD.x2¬-248.如果,那么f(x)=()49.确定的定义域为()50.确定的定义域为()A.[-2,2]B.[-1,1]C.[-1,0]D.[0,2]51.确定的定义域为()52.平行于xoz面且过点(1,-3,2)的平面方程为()A.x-3y+2z=0B.x=1C.y=-3D.z=253.设z=cos(3y-x),则z对x的偏导数等于()A.sin(3y-x)B.-sin(3y-x)C.3sin(3y-x)D.-3sin(3y-x)54. ()A.必连续B.偏导数必存在C.必可微D.必有极值55.A.y-xB.x+yC.-x-yD.x-y56.设f(x,y)=x+xy,则f(x+y,xy)= ()A.x+y+x2y+xy2B.x+yC.x2y+xy2D.2x+2y57.A.9B.4C.3D.158.函数z=x2+2xy-y2-4x+2y-9的驻点是()A.(1/2,3/2)B.(-1/2,3/2)C.(1/2,-3/2)D.(-1/2,-3/2)59.函数f(x,y)=x2+xy+y2+x-y+1的驻点为()A.(1,-1)B.(-1,-1)C.(-1,1)D.(1,1)60.计算,其中D是由直线x=1,x=2,y=1,y=x围成的闭区域()A.1/8B.9/8C.3/8D.1/261.设62.63.64.65.66.计算:67.计算:68.计算:69.下列定积分中,值等于零的是()70.71.微分方程x2y(4)-(y)5=sinx的阶数为()A.1B.2C.3D.472.设f’(x)=1且f(0)=0,则()A.CB.x+CC.x2/2+CD.x2+C73.如果cos2x是f(x)的原函数,则另一个原函数是()A.-sin2xB.sin2xC.sin2xD.cos2x74.微分方程cosydy=sinxdx的通解是()A.sinx+cosy=CB.cosx+siny=CC.cosx-siny=CD.cosy-sinx=C75. ()A.2C.0D.176.下列广义积分收敛的是()77.设sec2x是f(x)的一个原函数,则xf(x)的不定积分是=()A.xtanx-tanx+CB.xtanx+tanx+CC.xsec2x-tanx+CD.xsec2x+tanx+C78.下列积分中不能直接使用牛顿—莱布尼兹公式的是()79.A.2B.0C.1D.ln280.A.I1>I2B.I2>I1C.I1=I2D.I1≤I281.已知y’=3x2,且y(-1)=1,则y= ()B.x3+2C.x3-1D.x3+182.某商品的需求量Q与价格P的函数关系为Q=f(P),且当P=P0时,需求弹性为0.8,若此时再涨价2%,需求将减少()A.1.6B.1.6%C.0.8D.0.8%83.设f′(0)=0,则f(0)()A.是f(x)的最大值或最小值B.是f(x)的极值C.不是f(x)的极值D.可能是f(x)的极值84.在区间(a,b)内任意一点,函数f(x)的曲线弧总位于其切线的上方,则该曲线在(a,b)内是()A.下凹B.上凸C.单调上升D.单调下降85. 的垂直渐近线是()A.x=-1,x=1B.y=2D.x=186. 的水平渐近线是()A.x=1,x=-2B.x=-1C.y=2D.y=-187.曲线y=xex在区间(-,-2] ()A.单调减向下凸B.单调增向下凸C.单调减向上凸D.单调增向上凸88.点(1,5)是f(x)=4(x-a)3+b对应图形的拐点,则()A.a=0,b=1B.a=2,b=3C.a=1,b=5D.a=-1,b=-689.函数y=x3(x-5)2在区间[3,4]上()A.单调减少B.单调增加C.不减少D.不增90.f(x)=x3+3x2+1的凹向区间是()A.(0,+∞)B.(-1,+∞)C.(-∞,+∞)D.(1,+∞)91.如果f(x)是连续函数,且f′(x0)=0或f′(x0)不存在,则f(x0)()A.是f(x)的拐点B.不是f(x)的极值C.可能是f(x)的极值D.是f(x)的极值92.在[-1,1]上arcsinx+arccosx ()93.f(x)=x2-2x+3的单调增加区间是()A.(0,+∞)B.(-1,+∞)C.(-∞,+∞)D.(1,+∞)94.如果在(a,b)内f′(x)> 0,且f(x)在[a,b]连续,则在[a,b]上()A. f(a)≤f(x)≤f(b)B. f(b)<f(x)<f(a)C. f(a)<f(x)<f(b)D. f(b)≤ f(x)≤f(a)95.f(x)=xlnx在区间[1,e]上使拉格朗日定理成立的中值为ξ=()A.1B.2C.eD.96.下列极限不能使用洛必达法则的是()97.f(x)=x2-2x+3在区间[0,2]上使罗尔定理成立,有中值ξ为()A.4B.2C.3D.198.设()A.0B.a0n!C.a0D.an99.y=|sinx|在点x=π处的导数是()A.0B.1C.-1D.不存在100.设在x0可导,则()A.m=x0,n=0B.n=0,n=x02C.m=2 x0,n=-x02D.m=2 x0,n=x02101.设y=lnx,则y(n)=()A.(-1)nn!x-nB.(-1)n(n-1)!x-2nC.(-1)n-1(n-1)!x-nD.(-1)n-1n!x-n+1102.当|△x|很小且f′(x0)≠0,函数在x=x0处改变量△y与微分dy的关系是()A.△y< dyB.△y>dyC.△y=dyD.△y≈dy103.如果f(x)在x0点可微,则()A.∞B.0C.1D.-1104.设f(x)在(-∞,+∞)内为可微的奇函数。
全国2006年4月高等教育自学考试
高等数学(一)试题
课程代码:00020
一、单项选择题(本大题共5小题,每小题2分,共10分)
在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。
错选、多选或未选均无分。
1.已知f(x)的定义域是[0,3a],则f(x+a)+f(x-a)的定义域是( )
A .[a,3a]
B .[a,2a]
C .[-a,4a]
D .[0,2a]
2.=→x sin x
1
sin x lim 20x ( )
A .1
B .∞
C .不存在
D .0
3.设D=D (p )是市场对某一商品的需求函数,其中p 是商品价格,D 是市场需求量,则需求价格弹性是(
)
A .)p ('D p D
- B .)p ('D D p
-
C .)
D ('p p D - D .)D ('p D p
-
4.=⎰→x tdt cos
lim 0x 2
0x ( )
A .0
B .1
C .-1
D .∞
5.⎰⎰≤+=2
22y x dxdy ( )
A .π
B .4
C .2π
D .2
二、填空题(本大题共10小题,每小题3分,共30分)
请在每小题的空格中填上正确答案。
错填、不填均无分。
6.若f(x+1)=x+cosx 则f(1)=__________.
7..__________1n 5n )n 1(lim 233
x =++-∞→
8.若f(x)在x=x 0处可导,且.__________)x ('f ,3h
)h 5x (f )x (f lim 0000h ==+-→则 9.曲线y=x 3-5x 2+3x+5的拐点是__________.
10.曲线y=xe -x 为凹的区间是__________.
11.⎰=.__________xdx ln
12.微分方程e x y ′-1=0的通解是__________.
13.
⎰-=-31.__________dx |x 2|
14.⎰+∞=+1
2.__________x x dx 15.设z=.__________sin 2=∂∂y
z x y 则 三、计算题(一)(本大题共5小题,每小题5分,共25分)
16.设y='.113
33y x x 求-+
17.求极限.)x
2x (lim x 3x +∞→ 18.计算不定积分.dx e 1x 2⎰-
19.计算定积分⎰+10.dx x 1x
20.设z=f(.,),dz f y
x 求可微且 四、计算题(二)(本大题共3小题,每小题7分,共21分)
21.设y=x 2(lnx-1)-(1-x 2)lnx,求e
x dx dy =. 22.将一长为l 的铁丝截成两段,并将其中一段围成正方形,另一段围成圆形,为使正方形与圆形面积之和最小,
问这两段铁丝的长应各为多少?
23.设D 是由x 轴,y=x-4和y=⎰⎰
D .xydxdy .x 2试求所围成的闭区域
五、应用题(本大题9分)
24.已知某企业生产某种产品q 件时,MC=5千元/件,MR=10-0.02q 千元/件,又知当q=10件时,总成本为250千
元,求最大利润.(其中边际成本函数MC=,dq dC 边际收益函数MR=)dq
dR
六、证明题(本大题5分)
25.设f(x)=
⎰⎰-===x t dx x f t t dt t t ππ00.2)(),1sin (sin 证明定义。