第八章土壤胶体表面化学
- 格式:ppt
- 大小:2.73 MB
- 文档页数:57
第八章土壤胶体及其对离子的吸附交换作用【教学目标】●土壤胶体1、掌握土壤胶体的含义、类型和基本构造。
2、重点了解土壤胶体的性质及其在土壤物理、化学和生物学过程中的重要作用。
3、了解土壤的保肥供肥性与土壤胶体组成的关系,为什么说土壤腐殖质含量高的其保肥性强?●土壤离子交换作用1、解土壤产生吸收(吸附)性的根本原因、吸收类型及其产生的机理。
2、重点掌握阳离子交换作用产生的机理以及对土壤性状产生的影响。
土壤胶体是土壤中最细小、最活跃的部分,土壤胶体的组成和性质对土壤的理化性质,如土壤的吸附性、酸碱性、缓冲性以及土壤结构都有很大的影响。
土壤肥力的高低与土壤胶体的组成、数量和性质密切相关,土壤胶体是土壤肥力性状赖以表现的物质基础中最精华的部分;同时,土壤胶体的形成过程也是土壤形成过程的反映,由于土壤形成条件的不同,土壤的胶体类型、含量和性质均有较大的差异。
所以,要了解土壤的形成过程和土壤肥力的实质,必须弄清土壤胶体的性质。
本章将着重讨论对土壤肥力影响较大的土壤胶体的组成、结构、性质及其相关的离子交换性的一般规律。
8.1 土壤胶体8.1.1 土壤胶体的概念8.1. 1. 1 土壤胶体是一种分散系统任何胶体系统都是一种分散系统,而分散系统通常由两种物质所组成,一种物质的分子呈连续分布状态,称为分散介质;另一种物质的分子是不连续的,称为分散相,分散相均匀地分散在分散介质中,构成胶体分散系统。
在自然界中这种分散系统是很多的,如烟是微细的碳粒分散在空气里,云雾是小水滴分散在大气里,豆浆是大豆蛋白分子分散在水里等。
土壤本身就是一个复杂的多元分散系统。
在一般情况下,是把土壤固相颗粒作为分散相,而把土壤溶液和土壤空气看做分散介质。
8.1. 1. 2 土壤胶体的大小范围一般胶体是指作为分散相的那些细小颗粒,其大小的上限是0.1 μm, 下限为 1nm(<1 nm属于溶液范围)。
但是胶体大小的界限也不是绝对的,而主要应根据表现出的胶体性质而定,如光学、电学性质等。
土壤胶体表面化学考研知识点总结●土壤胶体的表面类型与构造●土壤胶体:一般将半径 d<0.001mm(即1 μm)的球形颗粒称为胶体(土壤粘粒又称为土壤胶粒)。
●❗❗❗胶粒基本构造:胶核与双电层●❗❗❗三类表面●硅氧烷型表面(硅氧片的表面):2∶1型粘粒(蒙脱石、蛭石)的上、下两面;1∶1型粘粒(高岭石)1/2面。
是非极性的疏水表面。
●水合氧化物型表面:羟基化表面(R-OH);水合氧化物型表面是极性的亲水表面。
电荷来源为表面-OH基质子的缔合(-OH2+)或解离(-OH→-O- + H+)。
产生的电荷为可变电荷。
●有机物型表面:腐质物质为主的表面,表面羧基(—COOH)、酚羟基(R-OH)、氨基(—NH2)、醌基、醛基、甲氧基等活性基团。
解离 H+ 或缔合H+ 产生表面电荷。
产生的电荷为可变电荷。
●土壤胶体表面性质●土壤胶体的表面积●❗比表面 (specific surface) :单位重量(体积)物体的总表面积。
物体颗粒愈细小,表面积愈大。
●非结晶型氧化物比表面积比结晶型大很多。
●土壤胶体表面电荷●❗❗❗❗❗种类●永久电荷:起源于矿物晶格内部离子的同晶置换,具有的电荷就不受外界环境(如pH、电解质浓度等)影响。
●可变电荷:1)水合氧化物型表面对质子的缔合和解离。
2)土壤有机质表面的可变电荷可来自羧基、氨基、酚羟基等功能团的质子化或解离。
●土壤电荷数量●一般用每千克物质吸附离子的厘摩尔数[cmol (+) /kg]表示●❗❗阳离子交换量CEC ,即土壤净负电荷的数量,非恒值,随pH变化●土壤胶体对阳离子的吸附与交换●吸附●定义:根据物理化学的反应,溶质在溶液中呈不均一的分布状态,溶液表面层中的浓度与其内部不同的现象称为吸附作用。
●阳离子的静电吸附●土壤胶体一般带有大量负电荷●通过静电力(库仑力)使土壤胶体表面能从土壤溶液中吸附阳离子,在胶体表面形成扩散双电层(完全解离,自由移动)●被吸附的阳离子一般都可以被溶液中另一种阳离子交换而从胶体表面解吸●❗❗阳离子静电吸附的速度、数量和强度决定因素●表面负电荷愈多,吸附的阳离子数量就愈多●离子的价态愈高,受胶体的吸持力愈大,吸附能力愈强●同价的离子,离子半径愈大,水化半径愈小,吸附强度愈大●阳离子的交换●定义:交换性阳离子发生交换吸附的反应●作用特点●快速的可逆反应,容易达到动态平衡●遵循等价交换的原则●符合质量作用定律●❗❗阳离子交换量的影响因素●胶体的类型含腐殖质和2:1型粘土矿物较多的土壤,其阳离子交换量较大,而含高岭石和氧化物较多的土壤,其阳离子交换量较小。
第八章土壤胶体化学和表面反应一土壤胶体表面类型1硅氧烷型表面2:1型粘土矿物的单位片层是由八面体铝氧片或镁氧片夹在两层硅氧四面体片中间所组成。
它所暴露的基面是氧离子层紧接硅离子层所组成的硅氧烷,故将其基面称为硅氧烷型表面。
高岭石和其他1:1型粘土矿物只有一半的基面是硅氧烷型表面。
硅氧烷型表面是非极性的疏水表面,不易解离。
活性较弱,电荷来源主要是晶体内部同晶替代产生的多余电荷,电荷不随pH、阳离子和电解浓度的变化而变化。
2水合氧化物表面指的是由金属阳离子和氢氧基组成的表面。
水合氧化物型表面是极性的亲水表面。
水合氧化物表面质子的缔结和离解可以产生电荷,这种电荷的数量因土壤溶液的pH和电解质浓度的变化而变化。
3有机物表面有机物因有明显的蜂窝状特征而具有较大的表面。
表面存在大量含氧功能团。
二土壤胶体的比表面和表面积比表面,它是用一定实验技术测得的单位质量土壤的表面积土壤胶体的晶核对土壤的表面积有重要的贡献。
晶质粘土矿物是土壤胶体晶核的主体。
粘土矿物的类型不同,其表面积的大小和表面类型的差别相当大。
土壤胶体的有机成分和无机胶膜对胶体表面积也有一定的贡献。
土壤表面电荷和电位(1)永久电荷:该电荷起源于矿物晶格内部离子的同晶置换。
同晶替换一般形成于矿物的结晶过程,一旦晶体形成,它所具有的电荷就不受外界环境影响。
同晶替换作用是2:1型层状粘土矿物负电荷的主要来源。
(2)可变电荷:随pH的变化而变化的电荷,称为可变电荷。
可变电荷的数量和符号取决与可变电荷表面的性质、介质pH和电解质浓度等。
(3)正电荷:一般认为,土壤中游离氧化铁是土壤产生正电荷的主要物质,而游离的铝化合物对正电荷的贡献较为次要。
蒙脱石和伊利石的边面也可能出现正电荷。
水铝英石和有机物质在低pH下都可能接受质子而带正电荷。
(4)净电荷:土壤的正电荷和负电荷的代数和就是土壤的净电荷。
大多数土壤带有净负电荷。
土壤的电荷数量土壤电荷的数量一般用每千克物质吸附离子的厘摩尔数来表示土壤电荷数量的影响因素:(1)土壤电荷主要集中在胶体部分(2)胶体组成成分是决定其电荷数量的物质基础,含较多蛭石、蒙脱石(蒙蛭组)或有机质的土壤胶体,其电荷量一般较高。
第八章土壤胶体及其对离子的吸附交换作用案例土壤胶体是土壤中非常重要的组分,对土壤的肥力、水分保持能力以及离子的吸附与交换起着重要作用。
本文将通过几个案例来说明土壤胶体的性质以及其对离子的吸附交换作用。
案例一:土壤胶体的类型及性质土壤胶体是土壤中40% ~ 60% 的固相组分,主要由胶体颗粒组成。
根据颗粒的粒径大小,土壤胶体可以被分为黏粒、胶粒和微胶粒。
黏粒的粒径最大,一般大于0.02 mm;胶粒的粒径介于0.02 mm ~ 0.001 mm 之间;微胶粒的粒径最小,一般小于0.001 mm。
土壤胶体具有很强的吸附能力和交换能力。
由于其表面上带有电荷,可以吸附并固定住许多阳离子和有机物质。
此外,土壤胶体还能与溶液中的离子进行交换,释放出其中的离子并吸附其他离子。
这种吸附交换作用对土壤肥力和养分的供应起着至关重要的作用。
案例二:土壤胶体对阳离子的吸附作用土壤胶体对阳离子的吸附作用是通过电荷相互作用和化学吸附来实现的。
土壤胶体表面带有负电荷,而阳离子带有正电荷,因此它们之间会发生吸引作用。
吸附机制包括静电吸附、配位吸附和离子交换吸附等。
以钙离子(Ca2+)为例,由于钙离子具有较高的电荷密度和较大的水合半径,可以与土壤胶体表面的负电荷进行静电吸附。
此外,钙离子还可以与胶体表面上的氧化物进行配位吸附,形成较稳定的络合物。
这些吸附作用使得土壤胶体能够有效地保持土壤中的钙元素,并在需要时释放出来。
案例三:土壤胶体对阴离子的吸附交换作用土壤胶体对阴离子的吸附交换作用主要是通过离子交换机制实现的。
由于土壤胶体表面带有负电荷,可以吸附和交换一些带有正电荷的离子,如氢离子(H+)、铝离子(Al3+)以及其他多价离子。
以磷酸盐离子(PO43-)为例,磷酸盐离子在土壤中很容易被吸附并固定在土壤胶体上。
一方面,磷酸盐离子可以与土壤胶体表面的氧化铝和氧化铁形成较稳定的络合物,进行配位吸附。
另一方面,磷酸盐离子还可以与土壤胶体表面的负电荷进行离子交换,取代其中的其他阴离子。