非线性控制理论(第3章)3.1-3.2
- 格式:ppt
- 大小:125.00 KB
- 文档页数:17
第三章 线性系统的稳定性分析3.1 概述如果在扰动作用下系统偏离了原来的平衡状态,当扰动消失后,系统能够以足够的准确度恢复到原来的平衡状态,则系统是稳定的。
否则,系统不稳定。
一个实际的系统必须是稳定的,不稳定的系统是不可能付诸于工程实施的。
因此,稳定性问题是系统控制理论研究的一个重要课题。
对于线性系统而言,其响应总可以分解为零状态响应和零输入响应,因而人们习惯分别讨论这两种响应的稳定性,从而外部稳定性和内部稳定性的概念。
应用于线性定常系统的稳定性分析方法很多。
然而,对于非线性系统和线性时变系统,这些稳定性分析方法实现起来可能非常困难,甚至是不可能的。
李雅普诺夫(A.M. Lyapunov)稳定性分析是解决非线性系统稳定性问题的一般方法。
本章首先介绍外部稳定性和内部稳定性的概念及其相互关系,然后介绍李雅普诺夫稳定性的概念及其判别方法,最后介绍线性定常系统的李雅普诺夫稳定性分析。
虽然在非线性系统的稳定性问题中,Lyapunov 稳定性分析方法具有基础性的地位,但在具体确定许多非线性系统的稳定性时,却并不是直截了当的。
技巧和经验在解决非线性问题时显得非常重要。
在本章中,对于实际非线性系统的稳定性分析仅限于几种简单的情况。
3.2 外部稳定性与内部稳定性3.2.1 外部稳定:考虑一个线性因果系统,如果对一个有界输入u (t ),即满足条件:1()u t k ≤<∞的输入u (t ),所产生的输出y (t )也是有界的,即使得下式成立:2()y t k ≤<∞则称此因果系统是外部稳定的,即BIBO (Bounded Input Bounded Output )稳定。
注意:在讨论外部稳定性的时候,我们必须要假定系统的初始条件为零,只有在这种假定下面,系统的输入—输出描述才是唯一的和有意义的。
系统外部稳定的判定准则系统的BIBO 稳定性可根据脉冲响应矩阵或者传递函数矩阵来进行判别。
a) 时变情况的判定准则对于零初始条件的线性时变系统,设(,)G t τ为脉冲响应矩阵,则系统BIBO 稳定的充要条件是,存在一个有限常数k ,使对于一切0[,),(,)t t G t τ∈∞的每一个元0(,)(1,2,.......;1,2,.....)(,)ij tij t g t i q j p g t d k τττ==≤<∞⎰有即,(,)G t τ是绝对可积的。
第三章 非线性微分方程动力系统的简化在非线性微分方程动力系统研究中,很自然地期望有一些有效的方法使原系统降阶或简化,井能保持原系统的动态特性。
目前,现有的知识主要有中心流形、范式、奇异摄动与精确线性化等。
本章将简要地叙述相关方面的基本内容3.1中心流形3.1.1中心流形的基本定理本节考虑以下形式非线性微分方程系统(,)(,)x Ax f x y y By g x y '=+⎧⎨'=+⎩Equation Section 3(3.1) 其中,m n x R y R ∈∈,假定A 和B 是具有相应维数的常数矩阵,并且A 的所有特征值具有零实部,B 的所有特征值具有负实部。
函数f 和g 关于其变元皆二阶连续可微,且(0,0)0,(0,0)0f g ==;(0,0)0,(0,0)0f g ''==(注: f '和g '是它们各自的雅可比矩阵)。
定义3.1 一个集合(流形)m n S R R ⊂⨯被称为系统(3.1)的局部不变流形(Local invariant manifold)是指,对任何的00(,)x y S ∈系统(3.1)的初值为00((0),(0))(,)x y x y =的解()x t 始终在集合S 内,其中||t T <,T 为某正数。
进而,如果,T =∞,那么S 就称为不变流形(invariant manifold)。
定义3.2 如果()y h x =是系统(3.1)的一个不变流形,并且()h x 为光滑函数,(0)0h =,(0)0h '=,那么它被称为中心流形(centre manifold )。
对于系统(3.1),我们有,定理3.1 对系统(3.1)而言,若A ,B ,和g 满足假设条件,那么存在一个中心流形()y h x =,其中||x δ< (δ为某一个正数),且2h C ∈。
证今:[0,1]n R ψ→为C ∞函数,取值为1,||1,0,|| 2.x x ψ≤⎧=⎨≥⎩又设(,)((),),(,)((),)x xF x y f x yG x y g x y εεψψ==其中0ε>。