高频实验报告_高频谐振功率放大器
- 格式:docx
- 大小:634.15 KB
- 文档页数:11
深圳大学实验报告课程名称:高频电路实验项目名称:高频谐振功率放大器学院:信息工程专业:电子信息工程指导教师:***报告人:学号:班级:实验时间:2014年4月2日实验报告提交时间:教务部制一、实验目的:1.熟悉电子元器件和高频电子线路实验系统。
2.熟悉高频谐振功率放大器的基本工作原理,三种工作状态,功率、效率计算。
3.了解集电极电源电压VCC与集电极负载变化对谐振功率放大器工作的影响。
二、实验仪器:实验板2(丙类高频功率放大电路单元)双踪示波器AS1637函数信号发生器(用作为高频信号源)万用表三、实验原理:1.高频谐振功率放大器原理高频谐振功率放大器原理电路如图3-1所示。
图中,L2、L3是扼流圈,分别提供晶体管基极回路、集电极回路的直流通路。
R10、C9产生射极自偏压,并经由扼流圈L2加到基极上,使基射极间形成负偏压,从而放大器工作于丙类。
C10是隔直流电容,L4、C11组成了放大器谐振回路负载,它们与其他参数一起,对信号中心频率谐振。
L1、C8与其他参数一起,对信号中心频率构成串联谐振,使输入信号能顺利加入,并滤除高次谐波。
C8还起隔直流作用。
R12是放大器集电极负载。
丙类功率放大器原理电路2.高频谐振功率放大器电路高频谐振功率放大器电路如图3-2所示,其第3级部分与图3-1相同。
BG1、BG2是两级前置放大器,C2、C6用以调谐,A、B点用作为这两级的输出测试点。
BG3为末级丙类功率放大器,当K4断开时可在C、D间串入万用表(直流电流档),以监测IC0值。
同时,E点可近似作为集电极电流iC波形的测试点(R10=10Ω,C9=100pF,因而C9并未对R10构成充分的旁路)。
K1~K3用以改变集电极负载电阻。
四、实验步骤:1.实验准备⑴在箱体右下方插上实验板2(丙类高频功率放大电路单元)。
接通实验箱上电源开关,此时箱体上12V、5V电源指示灯点亮。
⑵把实验板2右上方的电源开关(K5)拨到上面的ON位置,就接通了+12V电源(相应指示灯亮),即可开始实验。
项目一高频小信号谐振放大器设计一、实训目的1. 高频小信号谐振放大器的工作原理及电路构成和电路元器件的作用。
2. 了解高频小信号的质量指标和谐振放大器的性能。
3.掌握L,C参数对谐振频率的影响。
4.分析单调谐回路放大器的质量指标,测量电压增益,测量功率增益;测量放大器的频率。
二、设计原理高频小信号放大器的功能就是无失真的放大某一频率范围内的信号。
按其频带宽度可以分为窄带和宽带放大器。
高频小信号放大器是通信电子设备中常用的功能电路,它所放大的信号频率在数百千赫。
高频小信号放大器的功能是实现对微弱的高频信号进行不失真的放大,从信号所含频谱来看,输入信号频谱与放大后输出信号的频谱是相同的。
三、设计电路不加观测点电路图观测点1观测点2观测点3观测点4四、仿真波形不加观测点仿真图观测点1仿真观测点2仿真观测点3仿真观测点4仿真4个观测点比较仿真五、内容记录1.画出你设计的电路,完成表1,并写出详细计算过程。
表12.根据自己设计的电路,实际测出输入输出信号的幅度和频率,完成表2。
表23.分别画出输入信号和输出信号的频域、时域波形。
(根据图形输出)4.根据你设定的谐振回路参数,通过公式计算出谐振放大器的质量指标,看是否接近题目设定值。
(1)电路谐振频率:fp(2)回路品质因数:Qo=100(3)谐振回路的通频带:BW0.7(4)L=50uh,w=2pifo,fo=4,q=100 w=25.132(5)W=1/~L C=1/w2l=1/4pi2fo2l, C=31.68(6)R=QwL=2pifoQL=62.831k(7)Bw=3.7721-4.1756=0.4035MHz)=3.876MHz电路谐振频率:fp=1/(2LC回路品质因数:Qo=R/(WL)=98.9谐振回路的通频带:BW= fp/Qo=0.0392MHz六、故障分析在仿真时,如果哪一个参数没设定或者设置错误都会产生故障,因而不能进行仿真。
但一旦产生故障,也会产生错误报告,只要按着错误报告的提示一步步改正就可以了。
实验 丙类高频谐振功率放大器利用选频网络作为负载回路的功率放大器称为谐振功率放大器,它是无线电发射机中的重要单元电路。
根据放大器中晶体管工作状态的不同或晶体管集电极电流导通角θ的范围可分为甲类、甲乙类、乙类、丙类及丁类等不同类型的功率放大器。
电流导通角θ越小,放大器的效率η越高。
如甲类功放的θ=1800,效率η最高也只能达到50%,而丙类功放的θ<900,其效率η可达85%。
甲类功率放大器适合作为中间级或输出功率较小的末级功率放大器,丙类功率放大器通常作为末级功放以获得较大的输出功率和较高的效率。
本次实验主要研究以甲类谐振功率放大器为推动级,以丙类谐振功率放大器为末级的混合功率放大器。
一、实验目的1、熟悉丙类高频功率放大器的工作原理,初步了解工程估算的方法。
2、学习丙类高频谐振功率放大器的电路调谐及测试技术。
3、研究丙类高频谐振功率放大器的调谐特性和负载特性。
4、理解基极偏置电压、集电极电源电压、激励电压对放大器工作状态的影响。
5、了解丙类高频谐振功率放大器的设计方法。
二、实验仪器1、高频实验箱 1台2、高频信号发生器 1台3、双踪高频示波器 1台4、扫频仪 1台5、万用表 1块6、高频功率放大器实验板 1块 三、预习要求1、复习高频谐振功率的工作原理及四种特性。
2、分析实验电路,理解各元件的作用及各组成部分的工作原理。
四、实验内容1、电路调谐及调整(调谐技术)。
2、静态测试(测试静态工作点)。
3、动态测试(研究负载特性)。
五、实验原理实验电路如图2-1所示,它是由两级小信号谐振放大器组成的推动级和末级丙类谐振功率放大器构成,其中VT1和VT2组成甲类功率放大器,晶体管VT3组成丙类谐振功率放大器,这两类功率放大器的应用十分广泛,下面简要介绍它们的工作原理及基本计算方法。
(一)、甲类功率放大器 1、静态工作点如图2-1所示,晶体管VT1组成甲类功率放大器,工作在线性放大状态。
其中R 1和R 2为基极偏置电阻;R 5为直流负反馈电阻;它们共同组成分压式偏置电路以稳定放大器的静态工作点。
《高频电子线路》实训报告一、工作原理1.谐振功放基本电路组成高频谐振功率放大器是通信系统重要的组成电路,用于发射机的末级。
主要任务是高效率的输出最大高频功率,馈送到天线辐射出去。
为了提高效率,晶体管发射结采用负偏置,使放大器工作于丙类状态(导通角θ<90度)。
晶体管的作用是在将供电电源的直流能量转变为交流能量的过程中起开关控制作用,谐振回路中LC 是晶体管的负载,电路工作在丙类工作状态。
v b BB CC i 图1.1 高频谐振功率放大基本电路2.谐振功放的三种工作状态 在非线性谐振功率放大器中,常常根据集电极是否进入饱和区,将放大区的工作状态分为三种:①欠压工作状态:集电极最大点电流在临界线的右方②过压工作状态:集电极最大点电流进入临界线之左的饱和区③临界工作状态:是欠压和过压状态的分界点,集电极最大点电流正好落在临界线上。
图1.2谐振电路工作三种状态3.丙类谐振功率放大器的主要技术指标⑴ 输出高频交流功率:222o L L om orms U U P R R == ⑵ 电源电压提供的直流功率D P :0D C C P E I = ⑶ 集电极效率C η:oc D P P η= 式中,om U 为输出电压振幅, orms U 为输出电压有效值,L R 为负载电阻。
4.电源电压Ec 对工作状态的影响及集电极调制特性维持EB 、Ubm 、RP 不变,放大器的工作状态和性能随EC 变化的特性,称为集电极调制特性。
图1.3 E C对工作状态的影响图1.4集电极调制特性图1.5集电极调幅5.输入信号振幅bm U 对工作状态的影响及基极调制特性与放大特性图1.6 bm U B E (-)对工作状态的影响及放大(或基极调制)特性图1.7基极调幅二、设计过程1.放大器工作状态的确定因为要求获得的效率η>60%,放大器的工作状态采用临界状态,取θ=70°,所以谐振回路的最佳电阻为0202)(P U U R CES CC -==551.25Ω集电极基波电流振幅0012R P I m c =≈0.019A集电极电流最大值为)70(11 αm c cm I I ==0.019/0.436=43.578mA其直流分量为CO I =cm I *)70(0α=43.578*0.253=11.025mA 电源供给的直流功率为PD=Ucc*Ico=132.3mW集电极损耗功率为P= PD – PC =32.3mW转换效率为η= PC / PD =100/132.3=75.6%当本级增益ρA =13dB 即20倍放大倍数,晶体管的直流β=10时, 输入功率为 P1=P0/AP=5mW基极余弦电流最大值为IBM = ICM /β ≈ 4.36Ma基极基波电流振幅)70(11 α⨯=BM M B I I =4.36⨯0.436=1.9mA 所以输出电压的振幅为UBM =2 P1/ IB1M≈5.3V2.谐振回路和耦合回路参数计算丙类功放输入、输出回路均为高频变压器耦合方式,其中基极体电阻Rbb<25Ω, 则输入阻抗436.0)70cos 1(25)()cos 1(11⨯-Ω=⨯-= θαθbb R Z ≈87.1Ω 则输出变压器线圈匝数比为013R R N N L =≈6.4在这里,我们假设取N3=13和N1=2,若取集电极并联谐振回路的电容为C=100pF ,则20)21(1f C L π⨯=≈7.036μH采用Φ10mm×Φ6mm×5mm 磁环来绕制输出变压器,因为有322210)()()(4-⨯⨯⨯=N l A L cm cm μπ其中 μ=100H/m , A=210m m , l =25mm, L =7.036μH ,所以计算得N2=7 三、仿真结果图1.7高频谐振功率放大器仿真电路图1. 高频谐振功率放大器实验电路的调整用高频信号源提供2MHz 的输入信号,幅度在1V 左右,观测到放大后的不失真的输入信号。
实验三高频谐振功率放大器
1.实验目的
(1)进一步熟悉仿真电路的绘制及仪器的连接方法;
(2)学会利用仿真仪器测量高频功率放大器的电路参数、性能指标;(3)熟悉谐振功率放大器的三种工作状态及调整方法。
2.实验内容及步骤
(1)利用EWB软件绘制高频谐振功率放大器如附图所示的实验电路。
(2)对交流输入信号进行设置
正弦交流电有效值300mV;工作频率2MH Z;相位0°。
(3)对变压器进行设置
N设定为0.99;LE=1e-05H;LM=0.0005H
(4)其它元件参数编号和参数按附图所示设置。
(5)按下仿真电源开关,双击示波器,按附图所示的示波器参数设置,即可观察到图示的高频功率放大器集电极电流波形和负载上的电压波形。
由波形可说明电路的工作特点。
附图2 高频功率放大器集电极电流波形和负载上的电压波形(6)将输入信号设定为400mV,观察到的集电流电流波形和负载上的电压波形如图1.6所示。
说明高频功率放大器工作在过压状态的特点。
附图3 工作于过压状态时的集电极电流波形和负载上的电压波形。
高频谐振功率放大器实验报告一、实验目的本次实验的目的是理解高频谐振电路的工作原理,以及掌握高频谐振功率放大器的设计、测试和调试方法。
二、实验器材本次实验所需的器材有:1.信号发生器2.谐振电路3.功率放大器4.示波器5.负载三、实验原理1.高频谐振电路的原理高频谐振电路是利用电容和电感构成谐振回路,当电路频率与谐振频率相同时,电路呈现出较大的阻抗,使得谐振电路的输出电压和输出功率得到显著提高。
2.高频谐振功率放大器的原理高频谐振功率放大器是将谐振电路和功率放大器组合在一起,实现对输入信号的放大。
其输入信号经过谐振回路谐振后,输出到功率放大器,通过功率放大器进行放大,最终输出到负载。
四、实验过程1.搭建高频谐振功率放大器电路首先,将信号发生器连接到谐振电路的输入端,谐振电路的输出端连接到功率放大器的输入端,功率放大器的输出端连接到负载。
然后,根据实验要求调整信号发生器的频率,并观察谐振电路的输出波形,以及功率放大器的输出波形。
2.测试谐振频率通过改变电容和电感的数值,调整谐振电路的谐振频率。
在调整过程中,使用示波器观察输出波形,并记录谐振电路的谐振频率。
3.测试输出功率根据实验要求,改变负载的阻抗,测试功率放大器的输出功率,并记录输出功率随负载变化的曲线。
五、实验结果在实验过程中,我们对高频谐振功率放大器进行了测试和调试,并获得了以下实验结果:1.谐振频率为8MHz,放大倍数为10。
2.随着负载阻抗的增加,输出功率逐渐下降,最大输出功率为5W。
3.在工作频率附近,输出波形呈现出较高的稳定性和准确性。
六、实验结论通过本次实验,我们理解了高频谐振电路的工作原理,以及高频谐振功率放大器的设计、测试和调试方法。
并成功完成了谐振频率和输出功率的测试,为下一步的实验奠定了基础。
实验三高频谐振功率放大器利用选频网络作为负载回路的功率放大器称为谐振功率放大器,这是无线电发射机中的重要组成部分。
根据放大器电流导通角θ的范围可分为甲类、乙类、丙类及丁类等不同类型的功率放大器。
电流导通角θ愈小,放大器的效率η愈高。
如甲类功放的θ=180,效率η最高也只能达到50%,而丙类功放的θ< 90º,效率η可达到80%,甲类功率放大器适合作为中间级或输出功率较小的末级功率放大器。
丙类功率放大器通常作为末级功放以获得较大的输出功率和较高的效率。
三、实验内容参照正弦波振荡、变容二极管调频、功放和调频发射模块(断开JA1)组成高频谐振功率放大器1.调节WA1,使QA1的静态工作点为ICQ =7mA(VE=2.2V)。
2.连接JA1,JA2,JA3,从TA101处输入10.7Mhz的载波信号(此信号由正弦波振荡器或高频信号发生器提供),信号大小为:从示波器上看VP-P=800mV,用示波器探头在TA103处观察输出波形,调节CA2、CA4,使输出波形不失真且最大。
3.从TA101处输入10.7Mhz载波信号,信号大小从示波器上看VP-P=0mV 开始增加,用示波器探头在TA102上观察电流波形,直至观察到有下凹的电流波形为止(此时如果下凹的电流波形左右不对称,则微调BA101或CA2即可)。
如果再继续增加输入信号的大小,则可以观测到下凹的电流波形的下凹深度增加4.测量负载特性1) 测试条件:fo=10.7MHz,Ubm=1V左右。
Vcc=12V。
2) 改变RL 的阻值,测出相应的Ico和URL值填于表中,并计算PL、 PD、LICO:集电极电流U RL :负载电阻上的电压(毫伏表不准也可以用示波器测量后进行换算)P D :直流功率(PD=U cc I co )P O (P C ):输出功率(LLR u P 20=)η:效率 CCC LL D C u I R u P P ⋅==02/η 5 改变激励电压的幅度,观察对放大器工作状态的影响。
高频谐振功率放大器实验报告高频谐振功率放大器实验报告引言:高频谐振功率放大器是一种用于放大高频信号的重要电子元件。
它的设计和性能对于无线通信、雷达系统以及其他高频应用至关重要。
本实验旨在通过搭建一个高频谐振功率放大器的电路并进行测试,探究其工作原理和性能。
实验器材和方法:本实验使用的器材包括信号发生器、功率放大器、频谱分析仪以及示波器等。
首先,我们搭建了一个基于共射极放大器的高频谐振功率放大器电路。
然后,通过调节信号发生器的频率和功率放大器的偏置电压,我们得到了不同频率下的输出信号。
最后,通过频谱分析仪和示波器对输出信号进行测量和分析。
实验结果和讨论:在实验过程中,我们观察到了以下几点结果和现象。
1. 频率响应特性:通过改变信号发生器的频率,我们得到了功率放大器在不同频率下的输出功率。
我们发现,功率放大器的输出功率在某个特定频率附近达到最大值,而在其他频率下则显著降低。
这是因为在谐振频率附近,谐振电路对输入信号具有最大的增益,从而实现了信号的放大。
2. 谐振电路的选择:在实验中,我们使用了一个LC谐振电路作为功率放大器的输出匹配网络。
这是因为LC谐振电路具有较高的品质因数,能够在特定频率下实现较高的增益和较低的损耗。
同时,通过调节电感和电容的数值,我们可以调整谐振频率和带宽,以满足不同应用的需求。
3. 非线性失真:在实验中,我们注意到在谐振频率附近,功率放大器的输出信号存在一定的非线性失真。
这是因为功率放大器在工作过程中会引入非线性元件,如晶体管等。
这些非线性元件会导致输入信号的失真和谐波的产生。
因此,在实际应用中,我们需要采取相应的补偿措施,以减小非线性失真对系统性能的影响。
4. 功率放大器的效率:通过测量输入功率和输出功率,我们计算了功率放大器的效率。
我们发现,在谐振频率附近,功率放大器的效率较高,可以达到70%以上。
这是因为在谐振频率附近,功率放大器的输入和输出阻抗匹配较好,能够最大程度地转移能量。
丙类高频谐振功率放大器与基极调幅实验报告一. 实验目的1.了解和掌握丙类高频谐振功率放大器的构成及工作原理。
2.了解丙类谐振功率放大器的三种工作状态及负载特性、调制特性、放大特性和调谐特性。
3. 掌握丙类谐振功率放大器的输出功率o P 、直流功率D P 、集电极效率C 测量方法。
4. 掌握用频谱仪观测信号频谱、频率及调制度的方法。
二.实验仪器及设备1.调幅与调频接收模块。
2.直流稳压电压GPD-3303D3.F20A 型数字合成函数发生器/计数器 4.DSO-X 2014A 数字存储示波器 5.SA1010频谱分析仪三.实验原理1.工作原理高频谐振功率放大器是通信系统重要的组成电路,用于发射机的末级。
主要任务是高效率的输出最大高频功率,馈送到天线辐射出去。
为了提高效率,晶体管发射结采用负偏置,使放大器工作于丙类状态(导通角θ<90O)。
高频谐振功率放大器基本构成如图1.4.1所示,丙类谐振功率放大器属于大信号非线性放大器,工程上常采用折线分析法,各级电压、电流波形如图1.4.2所示。
(a )原理电路 (b )等效电路图1.4.1 高频功率放大器图1.4.1中,晶体管放大区的转移(内部静态)特性折线方程为:()C C BE BZ i g v U =-1.4.1放大器的外电路关系为:cos BE B b m u E U t ω=+1.4.2cos CE C cm u E U t ω=-1.4.3当输入信号B BZ b u E U <+时,晶体管截止,集电极电流0C i =;当输入信号B BZ b u E U >+时,发射结导通,由式1.4.1、1.4.2和1.4.3得集电极电流C i 为:maxcos cos 1cos C C t i i ωθθ-=- 1.4.4式中,BZ U 为晶体管开启电压,C g 为转移特性的斜率。
以上分析可知,晶体管的集电极输出电流c i 为尖顶余弦脉冲,可用傅里叶级数展开为:++++=t I t I t I I t i m C m C m C C c ωωω3cos 2cos cos )(3210 1.4.5其中,0C I 为C i 的直流分量,m C I 1、2C m I 、…分别为c i 的基波分量、二次谐波分量、…。
实验三 高频谐振功率放大器一、 实验目的1、进一步理解谐振功率放大器的工作原理即负载阻抗和激励信号电压变化对其工作状态的影响。
2、 掌握谐振功率放大器的调谐特性和负载特性。
二、 实验仪器1. BT-3频率特性测试仪(选项) 一台2. 高频电压表(选项) 一台3. 20MHZ 双踪模拟示波器 一台4. 万用表 一块5. 调试工具 一套三、 实验原理四、 实验步骤参看附图G1 1、按下开关KE1,调节WE1,使QE1的发射极电压V E =2.2V (即使I CQ =7mA ,通过测量P5与G 两焊点之间的电压,见图0-2所示)。
2、连接JE2、JE3、JE4、JE5。
3、使用BT —3型频率特性测试仪,调整TE1、TE2,使得TE1初级与CE7,TE2初级与CE4谐振均在10.7MHz ,同时测试整个功放单元的幅频特性曲线,使峰值在10.7MHz 处(如果没有BT-3型频率特性测试仪,则这一步不作要求)。
4、从INE1处输入10.7MHz的载波信号(此信号由高频信号源提供,参考高频=250mV左右。
用示波器探头在TTE1处观察输出波信号源的使用),信号大小为VP-P形,调节TE1、TE2,使输出波形不失真且最大。
=0mV开始增加,用示波器5、从INE1处输入10.7MHz载波信号,信号大小从VP-P探头在TTE2上观察电流波形,直至观察到有下凹的电流波形为止(此时如果下凹的电流波形左右不对称,则微调TE1即可)。
如果再继续增加输入信号的大小,则可以观测到下凹的电流波形的下凹深度增加。
(20Mhz示波器探头,如果用1档看下凹不明显,则用10档看。
)6、观察放大器的三种工作状态输入信号为Vp-p=250mV左右(由高频信号源提供10.7MHz载波)。
调中周TE1、TE2(此时负载应为51Ω,JE3、JE4、JE5均连上),使电路谐振在10.7MHz上(此时从TTE1处用示波器观察,波形应不失真,且最大)。
实验二高频谐振功率放大器在通信系统中, 高频谐振功率放大电路, 是无线电发射机的重要组成部分,它的主要功用是实现对高频已调波信号的功率放大, 然后经天线将其转化为电磁波辐射到空间,以实现用无线信道的方式完成信息的远距离传送。
所以研究高频功率放大器的主要任务是怎样以高效率输出最大的高频功率。
因此, 高频功放常采用效率较高的丙类工作状态, 即晶体管集电极电流导通时间小于输入信号半个周期的工作状态, 导通角。
虽然功率增益比甲类和乙类小, 但效率η却比甲类和乙类高。
一般可达到80%。
同时, 为了滤除丙类工作时产生的众多高次谐波分量, 采用LC谐振回路作为选频网络, 故称为高频谐振功率放大器, 显然,谐振功放属于窄带功放电路。
一、实验目的1. 掌握高频谐振功率放大器的电路结构特点、基本功能与工作原理。
2.掌握高频谐振功率放大器的调谐方法和掌握高频谐振功率放大器的调谐特性, 负载特性以及激励电压、偏置电压、电源电压变化时对其工作状态的影响。
3.了解高频谐振功率放大器的主要性能指标意义, 掌握测试方法。
学会电路设计方法。
二、实验设备与仪器高频实验箱 WYGP-3或GP-4 一台双踪示波器 TDS-1002 一台高频信号发生器 WY-1052 一台频率特性测试仪 BT-3C 一台万用表一块三、实验任务与要求1.高频谐振功放的基本电路结构高频谐振功率放大器的电路构成, 除电源电路外, 主要由晶体管、输入激励电路、输出谐振回路三个部分组成, 谐振功率放大器原理电路如图2-1所示。
图中为输入交流信号, 是基极偏置电压, 调整, 可改变放大器的导通角, 以使放大图2-1 谐振功率放大器的工作原理器工作在导通角 丙类状态。
是集电极电源电压。
集电极外接LC 并联谐振回路的功用是作放大器负载, 实现滤波选频和阻抗匹配。
2.高频谐振功率放大器的工作原理与主要性能指标放大器工作时, 设输入信号电压:则加到晶体管基极,发射级的有效电压为: t U U U u u bm BB BB b BE ωcos +-=-=由晶体管的转移特性曲线可知, 如图2-2所示:当 时, 管子截止, 。
高频谐振功率放大器一、实验目的1、进一步理解谐振功率放大器的工作原理及负载阻抗和激励信号电压变化对其工作状态的影响。
2、掌握谐振功率放大器的调谐特性和负载特性。
二、电路的基本原理利用选频网络作为负载回路的功率放大器称为谐振功率放大器,这是无线电发射机中的重要组成部分。
根据放大器电流导通角θ的范围可分为甲类、乙类、丙类及丁类等不同类型的功率放大器。
电流导通角θ愈小,放大器的效率η愈高。
如甲类功放的θ=180,效率η最高也只能达到50%,而丙类功放的θ<90。
,效率η可达到80%,甲类功率放大器适合作为中间级或输出功率较小的末级功率放大器。
丙类功率放大器通常作为末级功放以获得较大的输出功率和较高的效率。
Q组成甲类功率放大器,图3-l为由两级功率放大器组成的高频功率放大器电路,其中1Q组成丙类谐振功率放大器,这两种功率放大器的应用十分广泛,下面介绍它们的晶体管2工作原理及基本关系式。
l、甲类功率放大器1)静态工作点如图3-1所示,晶体管1Q 组成甲类功率放大器,工作在线性放大状态。
其中1B R 、2B R 为基极偏置电阻;1E R 为直流负反馈电阻,以稳定电路的静态工作点。
1F R 为交流负反馈电阻,可以提高放大器的输入阻抗,稳定增益。
电路的静态工作点由下列关系式确定:EQ u =EQ I (1F R +1E R )≈CQ I 1E R(3-1)式中,1F R 一般为几欧至几十欧。
2)负载特性如图3.1所示,甲类功率放大器的输出负载由丙类功放的输入阻抗决定,两级间通过变压器进行耦合,因此甲类功放的交流输出功率0P 可表示为:0P ='H P /B η(3-5)式中,'H P 为输出负载上的实际功率,B η为变压器的传输效率,一般为 B η=0.75~0.85。
图3-2为甲类功放的负载特性。
为获得最大不失真输出功率,静态工作点Q 应选在交流负载线AB 的中点,此时集电极的负载电阻RH 称为最佳负载电阻。
高频实验三高频丙类谐振功率放大器实验报告实验目的:1. 理解高频振荡电路的谐振条件,并掌握它的基本工作原理;2. 理解高频功率放大器的基本原理;3. 掌握高频振荡电路的调谐方法;4. 熟练掌握高频功率放大器的参数选择和调试方法。
实验器材:1.高频发生器2.谐振电路板3.二级元件(J310晶体管、VMMK-2203二极管、0.2Ω15W电阻)4.射频电阻5.多用表6.示波器7.功率计8.负载实验原理:1.谐振电路谐振电路是在特定的频率下,由电感和电容构成的谐振回路,通过它产生的信号波,能够单纯频率的持续振荡,保证了信号的稳定性。
在PCB板上我们对谐振电路布线,包括多个元器件的互连、地线的走向等设计严谨,注重缩小回路面积,降低谐振频率,减小谐振面积,从而提高谐振质量和谐振Q值,增强谐振电路稳定性,提高谐振电路的抗干扰能力。
谐振频率的计算公式f=1/(2π(LC)^0.5)2.高频功率放大器高频功率放大器是在HF频段(3MHz~30MHz)内的放大器,在电视机、收音机、通信设备等广泛应用中,常采用的是质子放大器,它所具有的功率放大、稳定性好等性能,能胜任各种业余通信需求。
实验步骤:1.按照谐振电路图在PCB板上完成电路组装,安装元器件之间要严谨紧密。
2.将负载连接到电路的输出端,连接电源,连接示波器和功率计。
3.改变高频发生器的频率,寻找谐振点。
4.调谐谐振电路的电感和电容,使其达到最佳状态。
5.检验电路的信号质量、放大系数和输出功率。
实验结果:1.通过调谐谐振电路,我们最终定位到了谐振点,稳定的输出正弦波。
2.经过功率计测量,我们发现功率输出效果较为满意。
实验分析:1.在谐振电路的制作过程中,需要仔细考虑各个元器件之间的互连,并且严格控制回路面积,以提高谐振质量和谐振Q值。
2.对于高频功率放大器的参数调试,需要对电感和电容等元器件进行仔细调谐,以找到最佳状态。
实验2高频谐振功率放大器、实验目的:i进一步理解谐振功率放大器的工作原理及负载阻抗,激励电压和集电极电源电压变化对其工作状态的影响。
2、掌握丙类功率放大器的调谐特性和负载特性。
二、实验原理(实验原理、设计思想、系统结构、实验电路)(重点)(1)谐振功率放大器1实验原理:利用选频网络作为负载回路的功率放大器称为谐振功率放大器。
根据放大器电流导通角0的范围可分为甲类、乙类、丙类及丁类等不同类型的功率放大器。
电流导通角B愈小,放大器的效率n愈高。
如甲类功放的0 =180°,效率n最高也只能达到50%而丙类功放的0 < 90o,效率n可达到80%甲类功率放大器适合作为中间级或输出功率较小的末级功率放大器。
丙类功率放大器通常作为末级功放以获得较大的输出功率和较高的效率。
高频功率放大器2、实验电路:1111P0JC1—11111C11R011R01BG01W021W011L031K03 A1TP01R03 A1TP0严口1L02IF1C01L04It33U011+5\GNDVin信输岀1严'IPc0p0•4A112±Tlr音频1C01L011K0JK061TP031K0B号信输入11C0411TP011R01+ 12V1D01(2)丙类功率放大器1、丙类功放的基极、集电极电流和电压波形根据调谐功率放大器在工作时是否进入饱和区,可将放大器分为欠压、过压和临界三种工作状态。
若在整个周期内,晶体管工作不进入饱和区,也即在任何时刻都工作在放大区,称放大器工作在欠压状态;若刚刚进入饱和区的边缘,称放大器工作在临界状态;若晶体管工作时有部分时间进入饱和区,则称放大器工作在过压状态。
放大器的这三种工作状态取决于电源电压、偏置电压、激励电压幅值以及集电极等效负载电阻。
2、负载特性谐振功放的负载特性由图可见,当交流负载线正好穿过静态特性曲线的转折点A时,管子的集电极电压正好等于管子的饱和压降uCES集电极电流脉冲接近最大值Icm。
3、激励电压幅值U bm变化对工作状态的影响wt由图可以看出,当U bm增大时,Umax、也增大;当Ubm增大到一定程度,放大器的工作状态由欠压进入过压,电流波形出现凹陷,但此时Ucm还会增大(如Ucm3)。
4、电源电压E C变化对放大器工作状态的影响在E b、U bm、R C保持恒定时,集电极电源电压E C变化对放大器工作状态的影响如下:1E C改变时对工作状态的影响1由图可见,E C变化,U cemin也随之变化,使得U cemin和U ces的相对大小发生变化。
当E C 较大时,U cemin具有较大数值,且远大于U ces,放大器工作在欠压状态。
随着E c减小,U cemin 也减小,当U cemin接近UE C再减小,U cemin小于U ces时,ces时,放大器工作在临界状态。
放大器工作在过压状态。
图2-9中,E C > E c2时,放大器工作在欠压状态;E C = E C2时,放大器工作在临界状态;E C<E C2时,放大器工作在过压状态。
即当E C由大变小时,放大器的工作状态由欠压进入过压,i c波形也由余弦脉冲波形变为中间凹陷的脉冲波。
三、实验器材(实验所需的主要仪器及型号、材料及特殊环境要求)1)高频实验箱一台2)高频电压表(选项)一台3)双踪示波器(100MHz)—台4)万用表一块5)调试工具一套6)高频信号源(最大功率10dBm,最高频率100MHz)一台四、实验内容与测试数据(实验步骤、程序、调试方法、中间结果、异常或错误处理等)(1)实验内容:1 、观察高频功率放大器丙类工作状态的现象,并分析其特点;2 、测试丙类功放的调谐特性;3 、测试负载变化时三种状态(欠压、临界、过压)的余弦电流波形;4 、观察激励电压、集电极电压变化时余弦电流脉冲的变化过程;5 、观察功放基极调幅波形。
(2)实验步骤:1、实验准备:在实验箱主板上装上高频功率放大与射频发射模块,接通电源即可开始实验。
2、测试前置放大级输入、输出波形高频信号源频率设置为6.3MHZ,幅度峰-峰值300mV左右,用铆孔线连接到11P01,模块上开关11K01至“ OFF”,用示波器测试11P01和11TP02的波形的幅度,并计算其放大倍数。
答:11P01波形的幅度是:0.516V ;11TP02 波形的幅度是:6.56V 放大倍数:12.7 ;11P01和11TP02的波形图如下:3、激励电压、电源电压及负载变化对丙类功放工作状态的影响(1 )激励电压U b对放大器工作状态的影响开关11K01置“ on”,11K03置“右侧”,11K02往下拨。
保持集电极电源电压E c=5V左右(用万用表测11TP03直流电压,11W01逆时针调到底),负载电阻R L=10K Q左右(11K04置“off ”,用万用表测11TP06电阻,11W02顺时针调到底,然后11K04置“ on ”)不变。
高频信号源频率1.9MHZ左右,幅度200mv(峰一峰值),连接至功放模块输入端(11P01)。
示波器CH接11TP03, CH2接11TP04。
调整高频信号源频率,使功放谐振即输出幅度(11TP03)最大。
改变信号源幅度,即改变激励信号电压U b,观察11TP04电压波形。
实际观察图形如下:欠压状态临界状态若过压状态过压状态(2)集电极电源电压E c对放大器工作状态的影响保持激励电压U b(11TP01电压为200mv峰一峰值)、负载电阻R L=10K Q不变(11W02顺时针调到底),改变功放集电极电压E c(调整11W01电位器,使E c为5—10V变化),观察11TP04电压波形。
调整电压E c时,仍可观察到图2-14的波形,但此时欠压波形幅度比临界时稍大。
实际观察到的波形如下图:欠压临界(3 )负载电阻R L变化对放大器工作状态的影响保持功放集电极电压E c=5V( 11W01逆时针调到底),激励电压(1仃P01点电压、150mv峰一峰值)不变,改变负载电阻R (调整11W0电位器,注意11K04至“ON),观察1仃P04 电压波形。
测出欠压、临界、过压时负载电阻的大小。
测试电阻时必须将11K04拨至“OFF”,测完后再拨至“ on ”。
答:欠压时负载电阻0.004k Q,临界时负载电阻0.222k Q,过压时负载电阻10.45k Q。
(4)功放调谐特性测试11K01置“ON ,11KO2往下拨,11K03置“左侧”,拔掉11K05跳线器。
高频信号源接入前置级输入端(11P01),峰-峰值600mV以12.9MHZ勺频率为中心点,以400KHZ^频率间隔,向左右两侧画出6个频率测量点,画出一个表格。
高频信号源按照表格上的频率变化,幅度峰-峰值为600m\左右(11TP01),用示波器测量1仃P03的电压值。
测出与频率相对应的电压值填入如下表格:—输出电压V(3)异常或错误处理:1、一开始波形的出现不是非常明显,后来稍稍调整了一下高频信号源频率和幅度,波形就变得非常明显了。
2、在“集电极电源电压E c对放大器工作状态的影响”实验内容过程中,波形变化非常不明显,多次调试也是如此。
3、在“功放调谐特性测试”实验内容过程中,即便保持中心频率改变峰峰值,或者保持峰峰值改变中心频率,波形始终没有出来,所以后来我就同时调整了一下中心频率和峰峰值,当以12.9MHZ为中心频率,以600m\为峰峰值时,波形非常清楚,后面我以400KHZ^频率间隔。
因为若以200KHZ为频率间隔,变化不是很明显。
五、实验结论1、根据实验数据分析,输入激励电压、集电极电源电压、负载电阻会对放大器工作状态有所影响,信号源幅度变化时,会观察到欠压、临界、过压三种脉冲波形。
2 、根据实测参数分析,可发现丙类功率放大器的特点:丙类工作状态的输出功率和效率是三种工作状态中最高的,且随RL的增大,输出功率也有所增加。
丙类功率放大器的电流波形失真太大,因而不能用于低频功率放大,只能用于采用调谐回路作为负载的谐振功率放大。
六、对实验的建议或改进之处通过本次实验,我掌握了丙类放大器的调谐特性以及负载变化时的动态特性,也了解到丙类功率放大器的基本工作原理。
不过在这次实验过程中,没有像第一次实验那么顺利了,但最终在不断地调试中,还是圆满的完成了实验内容,同时我也发现了自己的很多不足,对以前的知识掌握的还不够深刻牢固。