博弈论论文(囚徒困境案例纳什均衡案例完全信息静态博弈完全信息动态博弈)
- 格式:pdf
- 大小:1.60 MB
- 文档页数:21
“博弈论”中的经典案例“博弈论”中的经典案例“博弈论”中一些经典案例,不仅使专业研究人士如醉如痴,也使一些普通民众兴致盎然。
“博弈论”中有一些由点及面、发人深思的经典案例,这些案例不仅使专业研究人士如醉如痴,也使一些普通民众兴致盎然;不仅成为“博弈论”中的一道亮丽风景,也是整个经济学领域中的学术奇葩。
1、囚徒困境假设警察局抓住了两个合伙犯罪的嫌疑犯,但获得的证据并不十分确切,对于两者的量刑就可能取决于两者对于犯罪事实的供认。
警察局将这两名嫌疑犯分别关押以防他们串供。
两名囚徒明白,如果他们都交代犯罪事实,则可能将各被判刑5年;如果他们都不交代,则有可能只会被以较轻的妨碍公务罪各判1年;如果一人交代,另一人不交代,交代者有可能会被立即释放,不交代者则将可能被重判8年。
对于两个囚徒总体而言,他们设想的最好的策略可能是都不交代。
但任何一个囚徒在选择不交代的策略时,都要冒很大的风险,一旦自己不交代而另一囚徒交代了,自己就将可能处于非常不利的境地。
对于囚徒A而言,不管囚徒B采取何种策略,他的最佳策略都是交代。
对于囚徒B而言也是如此。
最后两人都会选择交代。
因此,囚徒困境反映了个体理性行为与集体理性行为之间的矛盾、冲突。
囚徒困境现象在现实生活中比比皆是。
记得姜昆和唐杰忠过去说过一个公共楼道占用问题的相声。
住户在公共楼道里堆满了杂物,结果大家都极不方便,以致即将分娩的妇女都没法及时被送往医院。
但你如果不占用公共楼道,别人也会占用。
每一居住面积狭小的住户从自我利益最大化出发,都会选择占用。
但占用的结果却最终损害了大家的利益。
前几年,我国彩电市场上,生产厂家基于自我利益选择大幅降价,但由此引发的价格战使所有生产厂家都遭受重创,这也是一种囚徒困境。
2、斗鸡博弈两只公鸡面对面争斗,继续斗下去,两败俱伤,一方退却便意味着认输。
在这样的博弈中,要想取胜,就要在气势上压倒对方,至少要显示出破釜沉舟、背水一战的决心来,以迫使对方退却。
(一)囚徒困境理论在学习和生活中,我们会遇到诸多面临决策,进退两难的问题,那么如何决策呢?不同的策略带来不同的损益,有时当博弈双方都以自己的最大利益为策略博弈时,结果相反,时双方都陷入自己所要逃避的困境,这便是囚徒困境!囚徒困境经典案例①:警方逮捕甲、乙两名嫌疑犯,但没有足够证据指控二人入罪。
于是警方分开囚禁嫌疑犯,分别和二人见面,并向双方提供以下相同的选择:若一人认罪并作证检控对方(相关术语称“背叛”对方),而对方保持沉默,此人将即时获释,沉默者将判监10年。
若二人都保持沉默(相关术语称互相“合作”),则二人同样判监1年。
若二人都互相检Array举(相关术语称互相“背叛”),则二人同样判监8年。
嫌疑人甲、乙双方均不知对方的策略,且都是自私利己之人。
囚徒到底应该选择哪一项策略,才能将自己个人的刑期缩至最短?两名囚徒由于隔绝监禁,并不知道对方选择;而即使他们能交谈,还是未必能够尽信对方不会反口。
就个人的理性选择而言,检举背叛对方所得刑期,总比沉默要来得低。
试设想困境中两名理性囚徒会如何作出选择:若对方沉默、背叛会让我获释,所以会选择背叛。
若对方背叛指控我,我也要指控对方才能得到较低的刑期,所以也是会选择背叛。
二人面对的情况一样,所以二人的理性思考都会得出相同的结论——选择背叛。
背叛是两种策略之中的支配性策略。
因此,这场博弈中唯一可能达到的纳什均衡,就是双方参与者都背叛对方,结果二人同样服刑5年。
(二)生活中的囚徒困境博弈在现实生活中不出不在。
博弈双方大到国际贸易国与国之间的竞争,小到个人与个人之间的经济交易;动物之间同样也存在博弈,甚至植物在阳关下吸收养分也存在博弈。
有竞争就有博弈,有交易就有博弈,博弈渗透到生活中的每个角落。
参与博弈的双方或多方如何采取策略,保障自己最大的利益和最小的损失;往往利益最大的也是风险最大的,一旦失败,损失也是最大的,如何决策,这便使得博弈人陷入“囚徒困境”。
博弈的囚徒困境覆盖面极广,涉及军事决策,政治手段,企业经营,市场策略,生活理财等诸多方面。
浅析囚徒困境欧阳家百(2021.03.07)囚徒困境是博弈论的非零和博弈中具代表性的例子,指反映个人最佳选择并非团体最佳选择。
囚徒困境的经典案例这里不再复述,让我们看一下身边的例子。
囚徒困境在生活中最常见的表现就是挤公共汽车。
从集体理性的角度来看,按次序上车是最有效率的做法,但是你挤我不挤,我就可能上得慢,所以每个人的最优战略都是挤,结果上车就更慢了。
学生也同样遭遇囚徒困境:减轻中小学生过重负担喊了20多年,仅1985年至2000年的15年里,中央就下达“减负令”49次。
但实际情况却是学生课业负担不但没减下来,反倒呈现出越演越烈之势,致使学生作业做到深夜、节假日仍然上课、业余时间奔忙于各种补习班等。
可见“减负令”难以见效,中小学生课业负担不减反增。
又比如近年来炒得火热的楼市——“我没买房,结果房价还是涨了,因为我们无法保证大家都不买房。
可是,我错了吗?没有。
当初如果我买房了,房价下跌了呢?因为我不能保证大家都买房。
人们根本不能预知在疾风暴雨式的调控之下,房价竟还能且调且涨。
可是,我对了吗?没有。
”这是一部眼下流行、充满黑色幽默的网络视频《北漂族的无房生活》中的经典对白。
含泪的“调侃”折射出当下楼市的“囚徒困境”:买,难担高房价重负;不买,难受房价节节攀升的煎熬。
再看中国的法治之路。
虽然法治让所有人都长期受益,甚至执政者自己也不例外,但是一个狭隘理性社会却偏偏无力支撑法治,以至最后每个理性人都不得不忍受法治缺位的非理性之苦。
绝大多数中国人都是很识时务的理性人,不会故意给自己找茬,多数律师也不例外。
不过,任何事物都有两面性,“理性”过了头也就成了非理性。
这就是充斥着当今中国社会的“囚徒困境”:一种行为模式对于个人看起来是很理性的,但是对于个人构成的集体来说却是非理性的,最后对于每个人来说也是非理性的。
我们都不敢站出来说话,对每个人来说都是很“理性”的一种行为方式,但最后的结果只能是让整个社会丧失法治。
走出“囚徒困境”囚徒困境作为博弈论中的一个经典范例,其博弈理论逐渐被经济学、哲学、伦理学、管理学等诸多学科的研究所重视,辩证的看待这一研究现象,是促进人们深入研究相关社会现象的一种特殊的思维路劲和方法。
一、囚徒困境经典案例分析囚徒困境的内容是这样的:警方逮捕甲、乙两名嫌疑犯,但没有足够证据指控二人入罪。
于是警方分开囚禁嫌疑犯,分别和二人见面,并向双方提供以下相同的选择:若一人认罪并作证检举对方(相关术语称“背叛”对方),而对方保持沉默,此人将即时获释,沉默者将判监10年。
若二人都保持沉默(相关术语称互相“合作”),则二人同样判监半年。
若二人都互相检举(互相“背叛”),则二人同样判监2年。
用表格概述如下:们各自都有“不坦白”和“坦白”两种可选择的策略;因为这两个囚徒被隔离开,其中任何一人在选择策略时都不可能知道另一人的选择是什么,因此不管他们决策的时间是否真正相同,我们都可以把他们的决策看作是同时做出的。
博弈的结果是:由于这两个囚徒之间不能串通,并且各人都追求自己的最大利益而不会顾及同伙的利益,双方又都不敢相信或者说指望对方有合作精神,因此只能实现对他们都不理想的结果(各判2年),并且这个结果具有必然性,很难摆脱,因此这个博弈被称为“囚徒困境”。
“囚徒困境”告诉我们,个人理性和集体理性之间存在矛盾,基于个人理性的正确选择会降低大家的福利,也就是说,基于个人利益最大化的前提下,帕累托改进得不到进行,帕累托最优得不到实现。
但是这样的分析是基于单次博弈的基础之上,而在重复的囚徒困境中,博弈会被反复的进行,因而没个参与者都有机会去“惩罚”另一个参与者前一回合的不合作行为。
这时,合作可能会作为均衡的结果出现。
欺骗的动机这时可能被受到惩罚的威胁所克服,从而可能导向一个较好的、合作的结果。
作为反复接近无限的数量,纳什均衡趋向于帕累托最优。
二、类似囚徒困境的经典案例分析在现实生活当中,信任与合作很少达到如此两难的境地,无论在自然界还是在人类社会,“合作”都是一种随处可见的现象。
博弈论中的“囚徒困境”摘要:“囚徒困境”模型是博弈论中的经典范例,它是1950年Tucker提出的,其完全信息下的静态博弈为广大博弈论的工作者和初学者所掌握,成为解释生活现象的有力工具。
其实“囚徒困境”模型随着博弈论的深入发展,具有各种不同的形式,通常分为:完全信息的静态博弈,完全信息的动态博弈,不完全信息的静态博弈及不完全信息的动态博弈四种形式。
本文将对“囚徒困境”的这四种形式作一个简单的介绍和分析。
关键词:博弈论囚徒困境经济一、完全信息静态“囚徒困境”博弈完全信息静态“囚徒困境”博弈部分地奠定了非合作博弈论的理论基础。
它的基本模型是:警察抓住了两个合伙犯罪的罪犯,由于缺乏足够的证据指证他们的罪行,所以希望这两人中至少有一人供认犯罪,就能确认罪名成立。
为此警察将这两个罪犯分别关押以防止他们串供,并告诉他们警方的政策是“坦白从宽,抗拒从严”:如果两人中只有一人坦白认罪,则坦白者立即释放,而另一人则将重判5年徒刑;如果两个同时坦白认罪,则他们将各判3年监禁。
当然罪犯知道如果他们两人都拒不认罪,则警方只能以较轻的妨碍公务罪判处他们1 年徒刑。
用矩阵表示两个罪犯的得益如下(得益向量的第一个数字是囚徒1的得益,第二个数字是囚徒2的得益) :囚徒2囚徒1(表1)假定两个罪犯熟悉彼此,这便是一个同时行动的完全信息静态博弈。
容易看出,由于对于每个囚徒而言,无论对方选择什么策略,坦白都是自己的最优策略,所以(坦白,坦白) 是博弈的Nash均衡。
二、完全信息动态“囚徒困境”博弈——重复“囚徒困境”博弈研究重复博弈的意义在于基本博弈会重复进行,比如犯罪团伙会被警方多次审讯,日常生活中买卖会重复进行,国际间的战争此伏彼起。
而且人们也发现基本博弈的重复进行并非基本博弈的简单累加,比如商业中的回头客问题。
下面继续以表1所示的“囚徒困境”模型为例对多重博弈进行探讨。
首先观察“囚徒困境”的有限博弈,以T记基本博弈的重复次数。
博弈论经典案例“囚徒困境”及其实证分析最近三四十年,经济学经历了一场“博弈论革命”,就是引入博弈论的概念和方法改造经济学的思维,推进经济学的研究。
诺贝尔经济学奖授予包括美国普林斯顿大学的纳什博士在内的3位博弈论专家,可以看作是一个标志,这自然也激发了人们了解博弈论的热情。
博弈论作为现代经济学的前沿领域,已成为占据主流的基本分析工具。
博弈论是研究决策主体的行为发生直接相互作用时的决策以及这种决策的均衡,也就是说,当一个主体的选择受到其他主体选择的影响,而且反过来影响到其他主体选择时的决策问题和均衡问题。
一个完整的博弈应当包括五个方面的内容:第一,博弈的参加者,即博弈过程中独立决策、独立承担后果的个人和组织;第二,博弈信息,即博弈者所掌握的对选择策略有帮助的情报资料;第三,博弈方可选择的全部行为或策略的集合;第四,博弈的次序,即博弈参加者做出策略选择的先后;第五,博弈方的收益,即各博弈方做出决策选择后的所得和所失。
“囚徒困境”“囚徒困境”是博弈论里最经典的例子之一。
讲的是两个嫌疑犯(A和B)作案后被警察抓住,隔离审讯;警方的政策是"坦白从宽,抗拒从严",如果两人都坦白则各判8年;如果一人坦白另一人不坦白,坦白的放出去,不坦白的判10年;如果都不坦白则因证据不足各判1年。
在这个例子里,博弈的参加者就是两个嫌疑犯A和B,他们每个人都有两个策略即坦白和不坦白,判刑的年数就是他们的支付。
可能出现的四种情况:A和B均坦白或均不坦白、A坦白B不坦白或者B坦白A不坦白,是博弈的结果。
A和B均坦白是这个博弈的纳什均衡。
这是因为,假定A选择坦白的话,B最好是选择坦白,因为B坦白判8年而抵赖却要判十年;假定A选择抵赖的话,B最好还是选择坦白,因为B坦白判不被判刑而抵赖确要被判刑1年。
即是说,不管A坦白或抵赖,B的最佳选择都是坦白。
反过来,同样地,不管B是坦白还是抵赖,A的最佳选择也是坦白。
结果,两个人都选择了坦白,各判刑8年。
博弈论“囚徒困境”的四种形式博弈论中的“囚徒困境”摘要:“囚徒困境”模型是博弈论中的经典范例,它是1950年Tucker提出的,其完全信息下的静态博弈为广大博弈论的工作者和初学者所掌握,成为解释生活现象的有力工具。
其实“囚徒困境”模型随着博弈论的深入发展,具有各种不同的形式,通常分为:完全信息的静态博弈,完全信息的动态博弈,不完全信息的静态博弈及不完全信息的动态博弈四种形式。
本文将对“囚徒困境”的这四种形式作一个简单的介绍和分析。
关键词:博弈论囚徒困境经济一、完全信息静态“囚徒困境”博弈完全信息静态“囚徒困境”博弈部分地奠定了非合作博弈论的理论基础。
它的基本模型是:警察抓住了两个合伙犯罪的罪犯,由于缺乏足够的证据指证他们的罪行,所以希望这两人中至少有一人供认犯罪,就能确认罪名成立。
为此警察将这两个罪犯分别关押以防止他们串供,并告诉他们警方的政策是“坦白从宽,抗拒从严”:如果两人中只有一人坦白认罪,则坦白者立即释放,而另一人则将重判5年徒刑;如果两个同时坦白认罪,则他们将各判3年监禁。
当然罪犯知道如果他们两人都拒不认罪,则警方只能以较轻的妨碍公务罪判处他们1 年徒刑。
用矩阵表示两个罪犯的得益如下(得益向量的第一个数字是囚徒1的得益,第二个数字是囚徒2的得益) :囚徒2囚徒1(表1)假定两个罪犯熟悉彼此,这便是一个同时行动的完全信息静态博弈。
容易看出,由于对于每个囚徒而言,无论对方选择什么策略,坦白都是自己的最优策略,所以(坦白,坦白) 是博弈的Nash均衡。
二、完全信息动态“囚徒困境”博弈——重复“囚徒困境”博弈研究重复博弈的意义在于基本博弈会重复进行,比如犯罪团伙会被警方多次审讯,日常生活中买卖会重复进行,国际间的战争此伏彼起。
而且人们也发现基本博弈的重复进行并非基本博弈的简单累加,比如商业中的回头客问题。
下面继续以表1所示的“囚徒困境”模型为例对多重博弈进行探讨。
首先观察“囚徒困境”的有限博弈,以T记基本博弈的重复次数。