(整理)产品结构设计准则--壁厚篇
- 格式:doc
- 大小:289.50 KB
- 文档页数:11
壁厚 (Wall Thickness)基本设计守则壁厚得大小取决於产品需要承受得外力、就是否作为其她零件得支撑、承接柱位得数量、伸出部份得多少以及选用得塑胶材料而定。
一般得热塑性塑料壁厚设计应以4mm为限。
从经济角度来瞧,过厚得产品不但增加物料成本,延长生产周期”冷却时间〔,增加生产成本。
从产品设计角度来瞧,过厚得产品增加引致产生空穴”气孔〔得可能性,大大削弱产品得刚性及强度。
最理想得壁厚分布无疑就是切面在任何一个地方都就是均一得厚度,但为满足功能上得需求以致壁厚有所改变总就是无可避免得。
在此情形,由厚胶料得地方过渡到薄胶料得地方应尽可能顺滑。
太突然得壁厚过渡转变会导致因冷却速度不同与产生乱流而造成尺寸不稳定与表面问题。
对一般热塑性塑料来说,当收缩率”Shrinkage Factor〔低於0.01mm/mm 时,产品可容许厚度得改变达 ;但当收缩率高於0。
01mm/mm时,产品壁厚得改变则不应超过。
对一般热固性塑料来说,太薄得产品厚度往往引致操作时产品过热,形成废件。
此外,纤维填充得热固性塑料於过薄得位置往往形成不够填充物得情况发生、不过,一些容易流动得热固性塑料如环氧树脂”Epoxies〔等,如厚薄均匀,最低得厚度可达0.25mm。
此外,采用固化成型得生产方法时,流道、浇口与部件得设计应使塑料由厚胶料得地方流向薄胶料得地方。
这样使模腔内有适当得压力以减少在厚胶料得地方出现缩水及避免模腔不能完全充填得现象。
若塑料得流动方向就是从薄胶料得地方流向厚胶料得地方,则应采用结构性发泡得生产方法来减低模腔压力。
平面准则在大部份热融过程操作,包括挤压与固化成型,均一得壁厚就是非常得重要得。
厚胶得地方比旁边薄胶得地方冷却得比较慢,并且在相接得地方表面在浇口凝固後出现收缩痕。
更甚者引致产生缩水印、热内应力、挠曲部份歪曲、颜色不同或不同透明度。
若厚胶得地方渐变成薄胶得就是无可避免得话,应尽量设计成渐次得改变,并且在不超过壁厚3:1得比例下。
一、壁厚:1.一般的热塑性塑料壁厚设计应以4mm为限;2.通常产品设计壁厚在2.0-2.5mm左右,产品越大,壁厚越厚;3.加强筋厚度为产品壁厚的0.5-0.7倍;4.产品设计上直角是要避免。
直角的地方会引致应力集中使抗撞击强度降低。
圆角的半径应为壁厚的25%至75%,一般建议在50%左右;二、出模角:1.一般拔模斜度为0.5-3度出模角;2.光滑表面的脱模斜度应大于0.5度,细皮纹表面大于1度,粗皮纹表面大于1.5度。
3.一般来说,高度抛光的外壁可使用1/4度或1/2度的出模角;4.深入或附有织纹的产品要求出模角作相应的增加,习惯上每0.025mm深的织纹,便需要额外1度的出模角;三、止口1.指的是上壳与下壳之间的嵌合。
止口配合间隙为0.1-0.2mm;2.设计的名义尺寸应留0.05~0.1mm的间隙,嵌合面应有1.5~2°的斜度。
四、螺柱螺孔:1.螺丝3mm:螺柱内孔2.3-2.5mm,螺柱外径:5-5.5mm;孔内径:3.2-3.3mm,孔沉台:6mm2.螺丝4mm:螺柱内孔3.3-3.5mm,螺柱外径:7-7.5mm;孔内径:4.2-4.3mm,孔沉台:8mm五、配合间隙:1.产品配合位设计时不能设计成零对零(即两零件之间不能没有间隙);2.一般都要预留0.1的间隙,结构设计中把0.15以下称死配合,0.15以上称运动配合;(例如:上下盖的止口配合间隙为0.1-0.2mm;按钮与按钮的开槽配合间隙为0.25-0.3mm)六、跌落实验:1.试验环境:一般室内环境下进行,混凝土地面应平整;2.试验高度:0<w<=10 (kg) 770mm10<w<=25 (kg) 620mm25<w<=50 (kg) 460mm注:w一般指毛重,跌落高度指产品跌落前最低点离地面的距离!3.试验方法:就是你说的一角三棱六面,但跌落顺序是反的:即先面、后棱再角七、常见表面处理介绍:表面处理有电镀(0.1mm)、喷涂、丝印、移印、烫金(0.5mm)八、超声波:5.Nylon,1.5%;齿轮、滑轮;坚韧、吸水、但当水份完全挥发后会变得脆弱;因为精准度比较难控制,所以大多用于一些模数较大的齿轮。
结构设计概述结构设计是机械设计的基本内容之一,也是设计过程中花费时间最多的一个工作环节。
在产品形成过程中,起着十分重要的作用。
如果把设计过程视为一个数据处理过程,那末,以一个零件为例,工作能力设计只为人们提供了极为有限的数据,尽管这少量数据对于设计很重要,而零件的最终几何形状,包括每一个结构的细节和所有尺寸的确定等大量工作均需在结构设计阶段完成。
其次,因为零件的构形与其用途以及其它“相邻”零件有关,为了能使各零件之间彼此“适应”,一般一个零件不能抛开其余相关零件而孤立地进行构形。
因此,设计者总是需要同时构形较多的相关零件(或部件)。
此外,在结构设计中,人们还需更多地考虑如何使产品尽可能做到外形美观、使用性能优良、成本低、加工制造容易、维修简单、方便运输以及对环境无不良影响等等。
因此可以说,结构设计具有“全方位”和“多目标”的工作特点。
一个零件、部件或产品,为要实现某种技术功能,往往可以采用不同的构形方案,而目前这项工作又大都是凭着设计者的“直觉”进行的,所以结构设计具有灵活多变和工作结果多样性等特点。
对于一个产品来说,往往从不同的角度提出许多要求或限制条件,而这些要求或限制条件常常是彼此对立的。
例如:高性能与低成本的要求,结构紧凑与避免干涉或足够调整空间的要求,在接触式密封中既要密封可靠又要运动阻力小的要求,以及零件既要加工简单又要装配方便的要求等等。
结构设计必须面对这些要求与限制条件,并需根据各种要求与限制条件的重要程度去寻求某种“折衷”,求得对立中的统一。
结构设计是机械设计的基本内容之一,也是设计过程中花费时间最多的一个工作环节。
在产品形成过程中,起着十分重要的作用。
如果把设计过程视为一个数据处理过程,那末,以一个零件为例,工作能力设计只为人们提供了极为有限的数据,尽管这少量数据对于设计很重要,而零件的最终几何形状,包括每一个结构的细节和所有尺寸的确定等大量工作均需在结构设计阶段完成。
其次,因为零件的构形与其用途以及其它“相邻”零件有关,为了能使各零件之间彼此“适应”,一般一个零件不能抛开其余相关零件而孤立地进行构形。
塑料产品结构设计-----第四章-制品壁厚第四章制品壁厚确定合适的制品壁厚是制品设计的主要内容之一。
基本设计守则壁厚的大小取决於产品需要承受的外力、是否作为其他零件的支撑、承接柱位的数量、伸出部份的多少以及选用的塑胶材料而定。
一般的热塑性塑料壁厚设计应以4mm为限。
从经济角度来看,过厚的产品不但增加物料成本,延长生产周期、冷却时间,增加生产成本。
从产品设计角度来看,过厚的产品增加引致产生空穴、气孔的可能性,大大削弱产品的刚性及强度。
最理想的壁厚分布无疑是切面在任何一个地方都是均一的厚度,但为满足功能上的需求以致壁厚有所改变总是无可避免的。
在此情形,由厚胶料的地方过渡到薄胶料的地方应尽可能顺滑。
太突然的壁厚过渡转变会导致因冷却速度不同和产生乱流而造成尺寸不稳定和表面问题。
此外,采用固化成型的生产方法时,流道、浇口和部件的设计应使塑料由厚胶料的地方流向薄胶料的地方。
这样使模腔内有适当的压力以减少在厚胶料的地方出现缩水及避免模腔不能完全充填的现象。
若塑料的流动方向是从薄胶料的地方流向厚胶料的地方,则应采用结构性发泡的生产方法来减低模腔压力。
4.1制品壁厚的作用(1) 使制品具有确定的结构和一定的强度、刚度,以满足制品的使用要求。
(2) 成型时具有良好的流动状态(如壁不能过薄)以及充填和冷却效果(如壁不能太厚)(3) 合理的壁厚使制品能顺利地从模具中顶出。
(4) 满足嵌件固定及零件装配等强度的要求。
(5) 防止制品翘曲变形。
4.2 制品壁厚的设计确定壁厚的主要因素﹕1.結構強度是否足夠2.能否抵脫模力3.能否均勻分散所受的沖擊力4.有埋入件時﹐能否防止破裂﹐如產生熔合線是否會影響強度5.成形孔部位的熔合線是否會影響強度6.盡可能肉厚均勻﹐以防止產生縮水7.棱角及肉厚較薄部分是否會阻礙材料流動﹐從而引起充填不足基本原则——均匀壁厚,一般的原则就是能够利用最少的壁厚,完成最终产品所须具备的功能。
即:充模、冷却收缩均匀、形状性好、尺寸精度高、生产率高。
产品结构设计准则--壁厚篇在产品结构设计中,壁厚是一个非常关键的因素。
合理的壁厚设计可以保证产品的稳定性、强度和耐用性,同时还能降低材料成本,提高产品的生产效率。
以下是一些关于壁厚设计的准则:1.根据产品的用途和功能确定合适的壁厚。
不同的产品需要不同的壁厚来满足其特定的使用需求。
例如,对于需要承受较大压力的零部件,壁厚应该设计得较厚,以确保其强度和稳定性;而对于需要轻量化的产品,壁厚可以设计得较薄,以减少重量和材料成本。
2.考虑产品的结构特点和几何形状。
一些结构复杂的产品可能需要较厚的壁厚来确保其稳定性和耐用性,而简单的几何形状则可以使用较薄的壁厚。
此外,还应该避免壁厚的突变和过度的薄厚交替,以免产生应力集中和失稳现象。
3.进行材料力学性能和材料性质的分析。
不同材料具有不同的力学性能和性质,因此在确定壁厚时,需要考虑材料的强度、韧性和可加工性等因素。
在工程实践中,通常会对材料进行力学性能测试和分析,以确定适当的壁厚。
4.进行结构的内部和外部力学分析。
在产品设计过程中,需要进行内部和外部力学分析,以确定产品所需的最小壁厚。
内部力学分析可以帮助确定应力和变形情况,以避免设计过于薄壁的结构;外部力学分析可以帮助确定最大应力情况,以确保产品在使用时的强度和稳定性。
5.考虑生产工艺和成本因素。
在确定壁厚时,还需要考虑产品的生产工艺和成本因素。
较厚的壁厚可能需要更多的材料和更多的加工步骤,从而增加成本;较薄的壁厚可能需要更高的加工精度和更复杂的工艺来保证产品的品质。
因此,需要在产品设计和制造之间找到一个平衡点。
总之,合理的壁厚设计是产品结构设计中一个至关重要的环节。
通过考虑产品的用途和功能、结构特点、材料力学性能、力学分析以及生产工艺和成本因素,可以确定合适的壁厚,从而保证产品的稳定性、强度和耐用性,并提高产品的生产效率和竞争力。
在产品结构设计中,壁厚是一个非常关键的因素。
合理的壁厚设计可以保证产品的稳定性、强度和耐用性,同时还能降低材料成本,提高产品的生产效率。
壁厚 (Wall Thickness)基本设计守则壁厚的大小取决於产品需要承受的外力、是否作为其他零件的支撑、承接柱位的数量、伸出部份的多少以及选用的塑胶材料而定。
一般的热塑性塑料壁厚设计应以4mm为限。
从经济角度来看,过厚的产品不但增加物料成本,延长生产周期”冷却时间〔,增加生产成本。
从产品设计角度来看,过厚的产品增加引致产生空穴”气孔〔的可能性,大大削弱产品的刚性及强度。
最理想的壁厚分布无疑是切面在任何一个地方都是均一的厚度,但为满足功能上的需求以致壁厚有所改变总是无可避免的。
在此情形,由厚胶料的地方过渡到薄胶料的地方应尽可能顺滑。
太突然的壁厚过渡转变会导致因冷却速度不同和产生乱流而造成尺寸不稳定和表面问题。
对一般热塑性塑料来说,当收缩率”Shrinkage Factor〔低於0.01mm/mm时,产品可容许厚度的改变达;但当收缩率高於0.01mm/mm时,产品壁厚的改变则不应超过。
对一般热固性塑料来说,太薄的产品厚度往往引致操作时产品过热,形成废件。
此外,纤维填充的热固性塑料於过薄的位置往往形成不够填充物的情况发生。
不过,一些容易流动的热固性塑料如环氧树脂”Epoxies〔等,如厚薄均匀,最低的厚度可达0.25mm。
此外,采用固化成型的生产方法时,流道、浇口和部件的设计应使塑料由厚胶料的地方流向薄胶料的地方。
这样使模腔内有适当的压力以减少在厚胶料的地方出现缩水及避免模腔不能完全充填的现象。
若塑料的流动方向是从薄胶料的地方流向厚胶料的地方,则应采用结构性发泡的生产方法来减低模腔压力。
平面准则在大部份热融过程操作,包括挤压和固化成型,均一的壁厚是非常的重要的。
厚胶的地方比旁边薄胶的地方冷却得比较慢,并且在相接的地方表面在浇口凝固後出现收缩痕。
更甚者引致产生缩水印、热内应力、挠曲部份歪曲、颜色不同或不同透明度。
若厚胶的地方渐变成薄胶的是无可避免的话,应尽量设计成渐次的改变,并且在不超过壁厚3:1的比例下。
产品结构设计构造设计是机械设计的全然内容之一,也是设计过程中花费时刻最多的一个工作环节。
在产品形成过程中,起着十分重要的感化。
假如把设计过程视为一个数据处理过程,那末,以一个零件为例,工作才能设计只为人们供给了极为有限的数据,尽管这少量数据关于设计专门重要,而零件的最终几何外形,包含每一个构造的细节和所有尺寸切实事实上定等大年夜量工作均需在构造设计时期完成。
其次,因为零件的构形与其用处以及其它“相邻”零件有关,为了能使各零件之间彼此“适应”,一样一个零件不克不及抛开其余相干零件而孤登时进行构形。
是以,设计者老是须要同时构形较多的相干零件(或部件)。
此外,在构造设计中,人们还需更多地推敲若何使产品尽可能做到外形美不雅、应用机能优良、成本低、加工制造轻易、修理简单、便利运输以及对情形无不良阻碍等等。
是以能够说,构造设计具有“全方位”和“多目标”的工作特点。
一个零件、部件或产品,为要实现某种技巧功能,往往能够采取不合的构形筹划,而今朝这项工作又大年夜差不多上靠着设计者的“直觉”进行的,因此构造设计具有灵活多变和工作成果多样性等特点。
关于一个产品来说,往往从不合的角度提出专门多要求或限制前提,而这些要求或限制前提经常是彼此对立的。
例如:高机能与低成本的要求,构造紧凑与幸免干涉或足够调剂空间的要求,在接触式密封中既要密封靠得住又要活动阻力小的要求,以及零件既要加工简单又要装配便利的要求等等。
构造设计必须面对这些要求与限制前提,并需依照各类要求与限制前提的重要程度去寻求某种“调和”,求得对立中的同一。
构造设计是机械设计的全然内容之一,也是设计过程中花费时刻最多的一个工作环节。
在产品形成过程中,起着十分重要的感化。
假如把设计过程视为一个数据处理过程,那末,以一个零件为例,工作才能设计只为人们供给了极为有限的数据,尽管这少量数据关于设计专门重要,而零件的最终几何外形,包含每一个构造的细节和所有尺寸切实事实上定等大年夜量工作均需在构造设计时期完成。
壁厚 (Wall Thickness)基本设计守则壁厚的大小取决於产品需要承受的外力、是否作为其他零件的支撑、承接柱位的数量、伸出部份的多少以及选用的塑胶材料而定。
一般的热塑性塑料壁厚设计应以4mm为限。
从经济角度来看,过厚的产品不但增加物料成本,延长生产周期”冷却时间〔,增加生产成本。
从产品设计角度来看,过厚的产品增加引致产生空穴”气孔〔的可能性,大大削弱产品的刚性及强度。
最理想的壁厚分布无疑是切面在任何一个地方都是均一的厚度,但为满足功能上的需求以致壁厚有所改变总是无可避免的。
在此情形,由厚胶料的地方过渡到薄胶料的地方应尽可能顺滑。
太突然的壁厚过渡转变会导致因冷却速度不同和产生乱流而造成尺寸不稳定和表面问题。
对一般热塑性塑料来说,当收缩率”Shrinkage Factor〔低於0.01mm/mm时,产品可容许厚度的改变达;但当收缩率高於0.01mm/mm时,产品壁厚的改变则不应超过。
对一般热固性塑料来说,太薄的产品厚度往往引致操作时产品过热,形成废件。
此外,纤维填充的热固性塑料於过薄的位置往往形成不够填充物的情况发生。
不过,一些容易流动的热固性塑料如环氧树脂”Epoxies〔等,如厚薄均匀,最低的厚度可达0.25mm。
此外,采用固化成型的生产方法时,流道、浇口和部件的设计应使塑料由厚胶料的地方流向薄胶料的地方。
这样使模腔内有适当的压力以减少在厚胶料的地方出现缩水及避免模腔不能完全充填的现象。
若塑料的流动方向是从薄胶料的地方流向厚胶料的地方,则应采用结构性发泡的生产方法来减低模腔压力。
平面准则在大部份热融过程操作,包括挤压和固化成型,均一的壁厚是非常的重要的。
厚胶的地方比旁边薄胶的地方冷却得比较慢,并且在相接的地方表面在浇口凝固後出现收缩痕。
更甚者引致产生缩水印、热内应力、挠曲部份歪曲、颜色不同或不同透明度。
若厚胶的地方渐变成薄胶的是无可避免的话,应尽量设计成渐次的改变,并且在不超过壁厚3:1的比例下。
产品结构设计准则--壁厚篇基本设计守则壁厚的大小取决於产品需要承受的外力、是否作为其他零件的支撑、承接柱位的数量、伸出部份的多少以及选用的塑胶材料而定。
一般的热塑性塑料壁厚设计应以4mm为限。
从经济角度来看,过厚的产品不但增加物料成本,延长生产周期”冷却时间〔,增加生产成本。
从产品设计角度来看,过厚的产品增加引致产生空穴”气孔〔的可能性,大大削弱产品的刚性及强度。
最理想的壁厚分布无疑是切面在任何一个地方都是均一的厚度,但为满足功能上的需求以致壁厚有所改变总是无可避免的。
在此情形,由厚胶料的地方过渡到薄胶料的地方应尽可能顺滑。
太突然的壁厚过渡转变会导致因冷却速度不同和产生乱流而造成尺寸不稳定和表面问题。
对一般热塑性塑料来说,当收缩率”Shrinkage Factor〔低於0.01mm/mm时,产品可容许厚度的改变达;但当收缩率高於0.01mm/mm时,产品壁厚的改变则不应超过。
对一般热固性塑料来说,太薄的产品厚度往往引致操作时产品过热,形成废件。
此外,纤维填充的热固性塑料於过薄的位置往往形成不够填充物的情况发生。
不过,一些容易流动的热固性塑料如环氧树脂”Epoxies〔等,如厚薄均匀,最低的厚度可达0.25mm。
此外,采用固化成型的生产方法时,流道、浇口和部件的设计应使塑料由厚胶料的地方流向薄胶料的地方。
这样使模腔内有适当的压力以减少在厚胶料的地方出现缩水及避免模腔不能完全充填的现象。
若塑料的流动方向是从薄胶料的地方流向厚胶料的地方,则应采用结构性发泡的生产方法来减低模腔压力。
平面准则在大部份热融过程操作,包括挤压和固化成型,均一的壁厚是非常的重要的。
厚胶的地方比旁边薄胶的地方冷却得比较慢,并且在相接的地方表面在浇口凝固後出现收缩痕。
更甚者引致产生缩水印、热内应力、挠曲部份歪曲、颜色不同或不同透明度。
若厚胶的地方渐变成薄胶的是无可避免的话,应尽量设计成渐次的改变,并且在不超过壁厚3:1的比例下。
下图可供叁考。
产品结构设计准则--壁厚篇
基本设计守则
壁厚的大小取决於产品需要承受的外力、是否作为其他零件的支撑、承接柱位的数量、伸出部份的多少以及选用的塑胶材料而定。
一般的热塑性塑料壁厚设计应以4mm为限。
从经济角度来看,过厚的产品不但增加物料成本,延长生产周期”冷却时间〔,增加生产成本。
从产品设计角度来看,过厚的产品增加引致产生空穴”气孔〔的可能性,大大削弱产品的刚性及强度。
最理想的壁厚分布无疑是切面在任何一个地方都是均一的厚度,但为满足功能上的需求以致壁厚有所改变总是无可避免的。
在此情形,由厚胶料的地方过渡到薄胶料的地方应尽可能顺滑。
太突然的壁厚过渡转变会导致因冷却速度不同和产生乱流而造成尺寸不稳定和表面问题。
对一般热塑性塑料来说,当收缩率”Shrinkage Factor〔低於0.01mm/mm时,产品可容许厚度的改变达;但当收缩率高於0.01mm/mm时,产品壁厚的改变则不应超过。
对一般热固性塑料来说,太薄的产品厚度往往引致操作时产品过热,形成废件。
此外,纤维填充的热固性塑料於过薄的位置往往形成不够填充物的情况发生。
不过,一些容易流动的热固性塑料如环氧树脂”Epoxies〔等,如厚薄均匀,最低的厚度可达0.25mm。
此外,采用固化成型的生产方法时,流道、浇口和部件的设计应使塑料由厚胶料的地方流向薄胶料的地方。
这样使模腔内有适当的压力以减少在厚胶料的地方出
现缩水及避免模腔不能完全充填的现象。
若塑料的流动方向是从薄胶料的地方流向厚胶料的地方,则应采用结构性发泡的生产方法来减低模腔压力。
平面准则
在大部份热融过程操作,包括挤压和固化成型,均一的壁厚是非常的重要的。
厚胶的地方比旁边薄胶的地方冷却得比较慢,并且在相接的地方表面在浇口凝固後出现收缩痕。
更甚者引致产生缩水印、热内应力、挠曲部份歪曲、颜色不同或不同透明度。
若厚胶的地方渐变成薄胶的是无可避免的话,应尽量设计成渐次的改变,并且在不超过壁厚3:1的比例下。
下图可供叁考。
转角准则
壁厚均一的要诀在转角的地方也同样需要,以免冷却时间不一致。
冷却时间长的地方就会有收缩现象,因而发生部件变形和挠曲。
此外,尖锐的圆角位通常会导致部件有缺陷及应力集中,尖角的位置亦常在电镀过程後引起不希望的物料聚积。
集中应力的地方会在受负载或撞击的时候破裂。
较大的圆角提供了这种缺点的解决方法,不但减低应力集中的因素,且令流动的塑料流得更畅顺和成品脱模时更容易。
下图可供叁考之用。
转角位的设计准则亦适用於悬梁式扣位。
因这种扣紧方式是需要将悬梁臂弯曲嵌入,转角位置的设计图说明如果转角弧位R太小时会引致其应力集中系数(Stress Concentration Factor)过大,因此,产品弯曲时容易折断,弧位R太大的话则容易出现收缩纹和空洞。
因此,圆弧位和壁厚是有一定的比例。
一般介乎0.2至0.6之间,理想数值是在0.5左右。
壁厚限制
不同的塑胶物料有不同的流动性。
胶位过厚的地方会有收缩现象,胶位过薄的地方塑料不易流过。
以下是一些建议的胶料厚度可供叁考。
热塑性塑料的胶厚设计叁考表
热固性塑料的胶厚设计叁考
其实大部份厚胶的设计可从使用加强筋及改变横切面形状取缔之。
除了可减省物料以致减省生产成本外,取缔後的设计更可保留和原来设计相若的刚性、强度及功用。
下图的金属齿轮如改成使用塑胶物料,更改後的设计理应如图一般。
此塑胶齿轮设计相对原来金属的设计不但减省材料,消取因厚薄不均引致的内应力增加及齿冠部份收缩引致整体齿轮变形的情况发生。
不同材料的设计要点
ABS
a) 壁厚
壁厚是产品设计最先被考虑,一般用於注塑成型的会在1.5 mm (0.06 in) 至4.5 mm (0.18 in)。
壁厚比这范围小的用於塑料流程短和细小部件。
典型的壁厚约在2.5mm (0.1 in)左右。
一般来说,部件愈大壁厚愈厚,这可增强部件强度和塑料充填。
壁厚在3.8mm (0.15 in) 至6.4mm (0.25 in)范围是可使用结构性发泡。
b) 圆角
建议的最小圆角半径是胶料厚度的25%,最适当的半径胶料厚比例在60%。
轻微的增加半径就能明显的减低应力。
PC
a) 壁厚
壁厚大部份是由负载要求内应力几何形状外型塑料流量可注塑性和经济性来决定。
PC的建议最大壁厚为9.5mm (0.375 in)。
若要效果好,则壁厚应不过3.1mm (0.125 in)。
在一些需要将壁厚增加使强度加强时,肋骨和一些补强结构可提供相同结果。
PC大部份应用的最小壁厚在0.75 mm(0.03 in)左右,再薄一些的地方是要取决於部件的几何和大小。
短的塑料流程是可以达到0.3 mm (0.012 in) 壁厚。
壁厚由厚的过渡到薄的地方是要尽量使其畅顺。
所有情况塑料是从最厚的地方进入模腔内,以避免缩水和内应力。
均一的壁厚是要很重要的。
不论在平面转角位也是要达到这种要求,可减少成型後的变型问题。
LCP
a) 壁厚
由於液晶共聚物在高剪切情况下有高流动性,所以壁厚会比其它的塑料薄。
最
薄可达0.4mm,一般厚度在1.5mm左右。
PS
a) 壁厚
一般的设计胶料的厚度应不超过4mm ,太厚的话会导致延长了生产周期。
因需要更长的冷却时间,且塑料收缩时有中空的现象,并减低部件的物理性质。
均一的壁厚在设计上是最理想的,但有需要将厚度转变时,就要将过渡区内的应力集中除去。
如收缩率在0.01以下则壁厚的转变可有的变化。
若收缩率在0.01以上则应只有的改变。
b) 圆角
在设计上直角是要避免。
直角的地方有如一个节点,会引致应力集中使抗撞击强度降低。
圆角的半径应为壁厚的25%至75%,一般建议在50%左右。
PA
a) 壁厚
尼龙的塑胶零件设计应采用结构所需要的最小厚度。
这种厚度可使材料得到最经济的使用。
壁厚尽量能一致以消除成型後变型。
若壁厚由厚过渡至薄胶料则需要采用渐次变薄的方式。
b) 圆角
建议圆角R值最少0.5mm (0.02 in),此一圆角一般佳可接受,在有可能的范围,尽量使用较大的R值。
因应力集中因素数值因为R/T之比例由0.1增至0.6而减少了50% ,即由3减至1.5 。
而最佳的圆角是为R/T在0.6之间。
PSU
a) 壁厚
常用於大型和长流距的壁厚最小要在2.3mm (0.09in)。
细小的部件可以最小要有0.8 mm (0.03in) 而流距应不可超过76.2 mm (3 in)
PBT
a) 壁厚
壁厚是产品成本的一个因素。
薄的壁厚要视乎每种塑料特性而定。
设计之前宜先了解所使用塑料的流动长度限制来决定壁厚。
负载要求时常是决定壁厚的,而其它的如内应力,部件几何形状,不均一化和外形等。
典型的壁厚介乎在0.76mm至3.2mm (0.03至0.125in)。
壁厚要求均一,若有厚薄胶料的地方,以比例3:1的锥巴渐次由厚的地方过渡至薄的地方。
b) 圆角
.................
转角出现尖角所导致部件的破坏最常见的现象,增加圆角是加强塑胶部件结构的方法之一。
若将应力减少5% (由3减至1.5) 则圆角与壁厚的比例由0.1增加至0.6。
而0.6是建议的最理想表现。
.................。