地球化学考试资料
- 格式:doc
- 大小:43.50 KB
- 文档页数:9
地球化学考试复习资料第一部分课后习题及答案绪论1. 简要说明地球化学研究的基本问题。
1)地球系统中元素及同位素的组成问题;2)地球系统中元素的组合和元素的赋存形式;3)地球系统各类自然过程中元素的行为(地球的化学作用)、迁移规律和机理;4)地球的化学演化,即地球历史中元素及同位素的演化历史。
2. 简述地球化学学科的研究思路和研究方法。
1)自然过程在形成宏观地质体的同时也留下了微观踪迹,其中包括了许多地球化学信息;2)自然界物质的运动和存在状态是环境和体系介质条件的函数;3)地球化学问题必须至于地球或其其子系统中进行分析,以系统的组成和状态来约束作用的特征和元素的行为。
地球化学研究方法:反序法和类比法第一章太阳系和地球系统的元素丰度1.简述太阳系元素丰度的基本特征.1)原子序数较低的范围内,元素丰度随原子序数增大呈指数递减,而在原子序数较大的范围内(Z>45)各元素丰度值很相近。
2)原子序数为偶数的元素其丰度大大高于相邻原子序数为奇数的元素。
具有偶数质子数(A)或偶数中子数(N)的核素丰度总是高于具有奇数A 或N的核素。
3)质量数为4的倍数的核类或同位素具有较高的丰度,原子序数或中子数为“约数”(2、8、20、50、83、126等)的核类或同位素分布最广、丰度最大。
4)锂、铍、硼元素丰度严重偏低,属于强亏损的元素。
5)氧和铁元素丰度显著偏高,它们是过剩元素。
6)含量最高的元素为H、He,这两种元素的原子几乎占了太阳中全部原子数目的98%。
2.简介地壳元素丰度特征.1)地壳元素丰度差异大:丰度值最大的元素(O)是最小元素(Rn)的1017倍;丰度值最大的三种元素之和达82.58%;丰度值最大的九种元素之和达98.13%;2)地壳元素丰度的分布规律与太阳系基本相同。
与太阳系或宇宙相比,地壳和地球都明显地贫H, He, Ne, N等气体元素;而地壳与整个地球相比,则明显贫Fe和Mg,同时富集Al, K 和Na。
普通地球化学选择、名词解释、简答题、计算题第一章绪论一、地球化学的定义地球化学是研究地球及子系统(含部分宇宙体)的化学组成、化学作用和化学演化的科学。
二、地球化学研究的基本问题第一: 元素(同位素)在地球及各子系统中的组成(量)第二: 元素的共生组合和存在形式(质)第三: 研究元素的迁移(动)第四: 研究元素(同位素)的行为第五: 元素的地球化学演化第二章自然体系中元素的共生结合规律一、元素地球化学亲和性的定义在自然体系中元素形成阳离子的能力和所显示出的有选择地与某种阴离子结合的特性称为元素的地球化学亲和性。
二、亲氧元素与亲硫元素的特点亲氧(石)元素:离子的最外电子层具有8电子(s2p6)惰性气体型的稳定结构,具有较低的电负性,所形成的化合物键性主要为离子键,其氧化物的形成热大于FeO的形成热,与氧的亲和力强,易熔于硅酸盐熔体,主要集中于岩石圈。
亲硫(铜)元素:离子的最外层电子层具有18电子(s2p6d10)的铜型结构,元素的电负性较大,其所形成的化合物键性主要为共价键,氧化物的生成热小于FeO的形成热,与硫的亲和力强,易熔于硫化铁熔体。
主要集中于硫化物-氧化物过渡圈。
三、其它的概念电负性:中性原子得失电子的难易程度。
或者说原子在分子中吸引价电子的能力叫电负性。
电离能:指从原子电子层中移去电子所需要的能量。
电离能愈大,则电子与原子核之间结合得愈牢固电子亲和能:原子得到电子所放出的能量(E)叫电子亲和能。
E越大,表示越容易得到电子成为负离子。
离子电位:是离子电价与离子半径的比值四、元素的地球化学化学分类(戈式分类)亲氧(亲石)、亲硫(亲铜)、亲铁、亲气五、类质同象的定义某些物质在一定的外界条件下结晶时,晶体中的部分构造位置随机地被介质中的其他质点(原子、离子、配离子、分子)所占据,结果只引起晶格常数的微小改变,晶体的构造类型、化学键类型等保持不变,这一现象称为“类质同象”。
六、类质同象的置换法则1.戈式法则(适于离子键化合物)①优先法则:两种元素电价相同,半径较小者优先进入矿物晶格。
地球化学复习题
1. 地球化学的定义是什么?
2. 地球化学研究的主要领域有哪些?
3. 描述地球化学循环的过程。
4. 地球化学元素在地壳中的分布规律是什么?
5. 什么是地球化学异常?它在地质勘探中的作用是什么?
6. 地球化学分析的主要方法有哪些?
7. 简述地球化学在环境科学中的应用。
8. 地球化学在矿产资源勘探中如何发挥作用?
9. 什么是同位素地球化学?它在研究地球历史中的作用是什么?
10. 描述地球化学在水文学中的应用。
11. 地球化学如何帮助我们理解地球内部结构?
12. 什么是地球化学的生物地球化学循环?
13. 地球化学在农业中的应用有哪些?
14. 简述地球化学在石油和天然气勘探中的作用。
15. 地球化学在海洋科学中如何应用?
16. 描述地球化学在大气科学中的应用。
17. 地球化学如何帮助我们理解地球的气候系统?
18. 地球化学在灾害地质学中的作用是什么?
19. 什么是地球化学的热液循环?
20. 地球化学在土壤科学中的应用有哪些?
21. 地球化学如何帮助我们评估和修复污染场地?
22. 简述地球化学在材料科学中的应用。
23. 地球化学在考古学中的应用有哪些?
24. 描述地球化学在生物医学研究中的作用。
25. 地球化学在宇宙化学中的应用是什么?。
地球化学考试试题一、选择题1.以下哪个元素是地球地壳中含量最丰富的?A. 铁B. 氧C. 钾D. 钙2.下列地质现象中,属于地球化学现象的是:A. 地震B. 风化C. 枯水期D. 洪水3.地球化学中,有机物主要由下列哪些元素组成?A. 硅和氧B. 碳和氢C. 铁和镁D. 钠和氯4.地球的内部结构中,地壳所占的比重约为:A. 10%B. 30%C. 50%D. 70%5.下列哪个地质时代的生物化石对石油的形成起到了重要作用?A. 寒武纪B. 泥盆纪C. 白垩纪D. 第四纪二、简答题1.请简述地球化学研究的对象和意义。
2.地球内部的火成作用是地球化学研究的重要内容,请简要描述火成岩的形成过程。
三、论述题地下水是地球化学研究的重要方向之一。
请就地下水的成因、分布、类型及其与地球化学循环的关系进行详细论述。
四、分析题某地区地表矿物成分的分析结果表明,该区域富含铝矿石。
请你根据地球化学知识,分析该地区可能存在的地质特征以及对该地区经济发展的影响。
五、综合题在地球化学循环中,岩石的风化作用是一个重要环节。
请你综合运用地球化学和地质学知识,分析岩石风化的过程、影响因素以及对地球生态系统的作用。
六、解答题请使用地球化学知识和实验数据,解释地球上碳循环的过程,并讨论人类活动对碳循环的影响。
七、实验题根据地球化学实验装置的原理,设计一个实验方案,观察水中溶解氧的浓度变化与水温的关系,并记录实验数据。
结语本文考试试题共包括选择题、简答题、论述题、分析题、综合题、解答题和实验题,涵盖了地球化学研究的各个方面。
希望通过这些问题的回答和分析,能够检验出对地球化学知识的全面掌握和应用能力。
祝各位考试顺利!。
地球化学复习资料(二)引言概述:地球化学是研究地球及其组成部分的化学性质和过程的学科。
它对于理解地球内部构造、岩石和矿物的形成、地球生态系统以及地球表面和大气层的化学变化非常重要。
本文是地球化学复习资料系列的第二篇,主要介绍地球中元素的分布、地球化学循环、地球化学分析技术等内容。
正文内容:1. 地球元素分布a. 大地构造带来的地球元素差异b. 地壳、地幔和核的元素组成c. 元素富集与稀缺性的原因d. 地球元素的地球化学周期表2. 地球化学循环a. 生物地球化学循环i. 元素在生物圈中的循环过程ii. 包括生物体内和生物体间的循环b. 地球物质循环i. 土壤中的元素循环ii. 水循环、碳循环、氮循环等c. 平衡和非平衡地球化学循环3. 地球化学分析技术a. 主要的地球化学分析方法i. 光谱分析ii. 质谱分析iii. X射线衍射分析iv. 原子吸收光谱分析b. 地球化学样品的采集和准备c. 地球化学数据的处理和解释4. 岩石和矿物的地球化学特征a. 岩石的成分和分类b. 矿物的成分和分类c. 岩石和矿物的地球化学特征对地球演化的指示作用5. 环境地球化学a. 土壤污染的地球化学特征b. 矿物对环境中污染物的吸附和解毒作用c. 环境地球化学的应用与挑战总结:地球化学研究通过对地球元素的分布、地球化学循环、地球化学分析技术以及岩石、矿物的地球化学特征的探索,为我们深入了解地球的内部构造、地球表面和大气层的化学变化以及生态系统的环境问题提供了重要参考。
进一步发展地球化学研究不仅可以更好地了解地球的起源和演化,还能够支持环境保护、资源开发等领域的科学决策和实践。
地球化学复习题答案
1. 地球化学是研究什么的学科?
地球化学是研究地球及其大气层的化学组成、化学过程和化学演化的科学。
2. 什么是地壳中的元素丰度?
地壳中的元素丰度是指地壳中各种元素的相对含量,通常以质量百分比或原子百分比表示。
3. 地球化学循环包括哪些主要过程?
地球化学循环包括风化作用、侵蚀作用、搬运作用、沉积作用、成岩作用、变质作用和岩浆作用等。
4. 什么是同位素地球化学?
同位素地球化学是利用同位素的丰度变化来研究地球物质的来源、过程和历史。
5. 地球化学中如何定义岩石的类型?
岩石的类型可以根据其矿物组成、结构、构造和形成环境等特征来定义。
6. 什么是地球化学异常?
地球化学异常是指地球化学元素或同位素的分布与背景值相比显著偏离的现象,通常与矿床、油气藏等地质体的存在有关。
7. 地球化学勘探的目的是什么?
地球化学勘探的目的是通过对地表或地下样品的化学分析,发现和评价矿产资源、环境问题和地质构造等。
8. 什么是地球化学示踪?
地球化学示踪是指利用地球化学元素或同位素的特定特征来追踪物质
的来源、迁移路径和过程。
9. 地球化学中的生物地球化学循环是什么?
生物地球化学循环是指生物体与地球环境之间元素的交换和循环过程,涉及生物吸收、转化、释放和沉积等环节。
10. 地球化学研究在环境科学中有哪些应用?
地球化学研究在环境科学中的应用包括污染物的来源识别、环境风险
评估、生态系统健康监测和环境修复技术的开发等。
应用地球化学考试试题一、选择题1. 地球化学是研究什么的学科?a. 地球的构造和演化b. 地球表面和地下环境中元素和同位素的分布、组成及相互转化关系c. 地球的气候和天气变化d. 地球生物的进化和分布2. 地球化学研究的基本方法包括以下哪些?a. 野外地质调查和实验室分析b. 数学建模和统计分析c. 生物化学实验和生物地球化学研究d. 社会调查和数据收集3. 地球化学中常用的分析方法有哪些?a. 热力学分析和光谱分析b. 微生物实验和生态测量c. 同位素分析和元素分析d. 元素周期表和有机化学实验4. 地球化学所研究的地球物质主要包括以下哪些?a. 地壳、地幔和地核b. 水、大气和岩石c. 物质和能量d. 生物和生态系统5. 地球化学的应用领域包括以下哪些?a. 矿产资源勘探和开采b. 环境污染治理和生态保护c. 气候变化和全球变化d. 生命起源和演化二、填空题1. 地球化学研究的核心是____和____的相互作用。
2. 地球化学的基本原理是物质在地球体系中的____行为。
3. 同位素是具有相同原子序数但不同____的原子。
4. 地球化学研究常用的同位素有____、____、____等。
5. 地球化学的应用可以帮助解决地球资源____和环境____等问题。
三、论述题请就以下两个方面分别进行论述,每个方面至少写200字。
1. 地球化学在矿产资源勘探和开采中的应用。
2. 地球化学在环境污染治理和生态保护中的应用。
四、综合题请根据你的专业背景,选择一个与地球化学相关的话题,并进行综合论述,包括该话题的研究背景、研究目的、研究方法和研究结果等。
注意:根据题目要求,不再重复表述题目内容。
根据题目的不同性质,文章可分小节进行论述,但请不要使用"小节一"、"小标题"等词汇。
文章排版整洁美观,语句通顺,表达流畅,无影响阅读体验的问题。
地球化学判断试题及答案一、选择题(每题2分,共10分)1. 地球化学研究的主要对象是什么?A. 地球的物理性质B. 地球的化学组成C. 地球的生物过程D. 地球的大气环境答案:B2. 以下哪项不是地球化学分析中常用的方法?A. 质谱分析B. 光谱分析C. 热重分析D. 核磁共振分析答案:D3. 地球化学循环中,哪个元素是生物体中含量最多的?A. 氧B. 碳C. 氢D. 氮答案:A4. 地球化学中,岩石圈的化学成分主要受哪些因素影响?A. 地壳运动B. 地幔物质的上升C. 地表风化作用D. 所有以上因素答案:D5. 地球化学研究中,哪种元素的同位素比值常用于追踪物质来源?A. 碳B. 氢C. 氧D. 氦答案:A二、填空题(每题2分,共10分)1. 地球化学分析中,_________是测定元素含量的重要手段。
答案:质谱分析2. 地球化学循环中,_________元素是构成生物体的基本元素之一。
答案:碳3. 在地球化学研究中,_________是指地球内部的化学元素在不同圈层之间的迁移和转化过程。
答案:地球化学循环4. 地球化学中,_________是指地球表面和大气中的化学元素通过风化、侵蚀、沉积等过程在地球表面循环的过程。
答案:地表化学循环5. 地球化学研究中,_________是指通过分析岩石、矿物、土壤、水体等样品的化学成分来了解地球内部和表面的化学过程。
答案:地球化学分析三、简答题(每题5分,共20分)1. 简述地球化学在环境监测中的应用。
答案:地球化学在环境监测中的应用主要体现在通过分析土壤、水体、大气等环境样品中的化学成分,来评估环境污染的程度和来源,以及预测环境变化的趋势。
2. 描述地球化学循环中水循环的主要过程。
答案:地球化学循环中的水循环主要过程包括蒸发、凝结、降水、地表径流、地下渗透和海洋循环等,这些过程共同构成了地球上水的循环系统。
3. 阐述地球化学分析在矿产资源勘探中的作用。
地球化学考试试题
一、选择题
1. 地球形成以来,经历了多少个构造周期?
A. 1个
B. 2个
C. 3个
D. 4个
2. 地幔中占比重最大的元素是:
A. 铁
B. 镁
C. 硅
D. 钠
3. 地球的地壳主要由以下哪两种岩石类型组成?
A. 硅钟岩和辉长岩
B. 花岗岩和玄武岩
C. 石英砂岩和页岩
D. 片麻岩和变质岩
4. 地球表层的大气主要由以下哪两种气体组成?
A. 氧气和氮气
B. 氧气和氩气
C. 氮气和二氧化碳
D. 二氧化碳和水蒸气
5. 以下哪个元素是地球核心的主要成分?
A. 铁
B. 镍
C. 钛
D. 铝
二、填空题
6. 地球的内部结构分为地幔、外核和内核三部分,地幔的平均厚度约为____________km。
7. 地球表层的陆地之上,覆盖了约_____的水。
8. 地球大气的最外层叫做____________。
三、解答题
1. 请简要描述地球的形成过程及不同构造周期的特点。
2. 试分析地球大气的组成及其在地球环境中的重要性。
3. 简要解释地球磁场的形成原理以及其对地球生命环境的重要性。
4. 从地幔和地壳的成分组成方面,简要说明它们在地球化学循环中的作用。
四、论述题
请就目前全球气候变暖的趋势,结合地球化学知识,提出个人见解及对应的解决方案,并解释其可能的影响和挑战。
(以上内容仅为参考,具体试题内容以考试实际情况为准)
以上是地球化学考试试题,请根据要求写出3000字文章。
地球化学试题及答案一、单项选择题(每题2分,共20分)1. 地球化学研究的主要内容是什么?A. 地球的物理性质B. 地球的化学组成C. 地球的生物过程D. 地球的气候条件答案:B2. 地球化学中最重要的元素是什么?A. 氢B. 氧C. 碳D. 氮答案:C3. 地球化学循环中,哪个过程是最重要的?A. 水循环B. 碳循环C. 氮循环D. 硫循环答案:B4. 地球化学在环境科学中的应用主要体现在哪些方面?A. 土壤污染治理B. 大气污染控制C. 水体污染处理D. 所有以上选项答案:D5. 地球化学分析中常用的仪器是什么?A. 显微镜B. 质谱仪C. 光谱仪D. 所有以上选项答案:D6. 地球化学研究中,哪种方法可以用来确定岩石的年代?A. 放射性同位素测年B. 化学分析C. 物理测量D. 地质观察答案:A7. 地球化学中,哪个元素是生命存在的关键?A. 铁B. 铜C. 锌D. 磷答案:D8. 地球化学循环中的碳循环主要涉及哪些过程?A. 光合作用和呼吸作用B. 沉积作用和风化作用C. 火山喷发和地壳运动D. 所有以上选项答案:A9. 地球化学中,哪种元素的循环对全球气候变化影响最大?A. 碳B. 氮C. 硫D. 氢答案:A10. 地球化学研究中,哪种方法可以用来分析地下水的化学成分?A. 质谱分析B. 光谱分析C. 色谱分析D. 所有以上选项答案:D二、多项选择题(每题3分,共15分)1. 地球化学研究的领域包括以下哪些?A. 地球内部化学B. 大气化学C. 海洋化学D. 生物化学答案:ABCD2. 地球化学循环中,哪些元素的循环对生态系统至关重要?A. 碳B. 氮C. 磷D. 硫答案:ABCD3. 地球化学分析中,哪些仪器可以用于元素分析?A. 质谱仪B. 光谱仪C. 色谱仪D. 电子显微镜答案:ABC4. 地球化学在资源勘探中的作用包括哪些?A. 矿物资源定位B. 油气资源勘探C. 水资源评估D. 土壤肥力分析答案:ABCD5. 地球化学中,哪些因素会影响土壤的化学性质?A. 气候条件B. 土壤类型C. 植被覆盖D. 人类活动答案:ABCD三、判断题(每题1分,共10分)1. 地球化学是研究地球物质的化学组成、化学过程和化学演化的科学。
1、相容元素:趋于在固相中富集的微量元素。
尽管其浓度低,不能形成独立矿物相,但因离子半径、电荷、晶体场等结晶化学性质与构成结晶矿物的主要元素相近,而易于呈类质同像置换形式进入有关矿物相。
2、不相容元素:趋向于在液相中富集的微量元素。
由于其浓度低,不能形成独立矿物相,并且因离子半径、电荷、晶场等性质与构成结晶矿物的主元素相差很大,而使其不能进入矿物相。
它们的固相/液相分配系数近于零。
3、陨石:陨石是从星际空间降落到地球表面上来的行星物体的碎片。
4、元素的地球化学迁移:即元素从一种赋存状态转变为另一种赋存状态,并经常伴随着元素组合和分布上的变化及空间上的位移。
5、元素地球化学亲和性的概念:在自然体系中元素形成阳离子的能力和所显示出有选择与某种阴离子结合的特性。
6、同位素:具有相同质子数,不同中子数(或不同质量数)同元素的不同核素互为同位素。
7、浓度克拉克值:概念系指某元素在某一地质体(矿床、岩体或矿物等)中的平均含量与克拉克值的比值,表示某种元素在一定的矿床、岩体或矿物内浓集的程度。
当浓度克拉克值大于1时,说明该元素在地质体中比在地壳中相对集中;小于1时,则意味着分散。
8、普通铅(或正常铅):指产于U/Pb、Th/Pb比值低的矿物和岩石中任何形式的铅(如方铅矿、黄铁矿、钾长石等),在矿物形成以前,Pb以正常的比例在U、Th共生,接受U、Th衰变产物Pb的不断叠加并均匀化。
9、同位素分馏系数:指两种物质(或物相)之间同位素比值之(a),即aA-B=RA/RB,式中A,B表示两种物质(或物相),R表示重同位素在与轻同位素比值,如34S/32S,180/160。
A表示同位素分馏程度,a偏离1愈大,说明两相物质之间同位素分馏程度愈大;a=1时物质间没有同位素分馏。
10、(不稳定常数):由一个中心阳离子与数个阴离子或中性分子以配位键方式结合而成的配离子是一种弱电解质,其电离常数的大小可表示配离子的离解程度成为K(不稳定常数)越大稳定性越差。
11、等时线:通过对地质体一组样品实测的现今87Sr/86Sr和87Rb/86Sr比值作图,拟合得到的一条直线。
12、稀土元素(REE):原子序数57—71的镧系元素以及与镧系相关密切的钪和钇共17种元素在地球化学上又称为稀土元素,包括:La,Ce,Pr,Nd,Pm,Sm,Eu,Gd,Tb,Dy,Ho,Er,Tm,Yb,Lu,Sc,Y。
13、亲氧性元素:倾向于与氧形成高度离子键的元素称为亲氧元素。
特征是:离子半径较小,有惰性气体的电子层结构,电负性较小。
14、相律:是研究相平衡的基本规律,表示平衡物系中的自由度数,度数及独立组分数之间的关系。
15、元素丰度系数:自然体的元素丰度与另一个可作为背景的自然体的元素丰度的比值叫做元素丰度系数。
16、δEu:反映Eu异常的强度。
反映Eu与REE整体分离程度的参数。
17 、FSE:高场强元素,离子电价较高、半径较小、具有较高离子场强(为离子电价与半径之比)的元素,其离子电位π>3,难溶于水,典型代表为Nb、Ta、Zr、Hf、P、Th、HREE、Th、Ce、U、Pb4+、Ti等。
这些元素地球化学性质一般较稳定,不易受变质、蚀变和风化作用等的影响,因此常用来恢复遭后期变化岩石的原岩性质。
一、举例说明稀土元素在地质—地球化学研究中的意义?稀土元素可在地球化学研究中得到多方面应用:1)、岩石成因:不同成因的岩石具有不同的稀土特征。
如花岗岩类的成因主要归结为三类:a、基性岩浆分异:Eu负异常型。
B、地壳硅铝层重熔:Eu轻缓平衡型。
C、花岗岩化:Eu右倾斜型。
2)、变质岩的原岩恢复:许多变质过程中,稀土元素保持原岩特征。
3)、研究地壳演化:如不同时代的页岩有明显不同的特征,稀土元素特征能反映地壳的演化规律。
二、地球系统的化学作用类型。
1、水—岩化学作用(如沉积作用过程中物质的溶解—沉淀、热液交代作用等)2、熔浆和熔—岩化学作用(如部分熔融、结晶分异、岩浆岩围岩蚀变等)3、有机化学作用(如风化过程生物的有机化学作用,石油、天然气的形成等)4、水—气化学作用(主要发生在地表,如地表水、O2、CO2循环,火山喷气等)5、岩—岩化学反应(如球外物质撞击,断裂挤压变质—如俯冲带、逆断层等)。
九、讨论地球化学体系中元素的“质、量、动”地球化学的基本问题之一就是研究元素在地球化学体系中的分布(丰度)、分配问题,也就是地球化学体系中“量”的研究。
元素的共生组合和存在形式(质)地球内部的各种原子的结合和存在形式不是任意的、静态的,而是由条件的、变化的。
简而言之为“质”的研究。
地球内部的各研究元素的迁移(动)简而言之是“动”的研究,也就是元素在自然作用体系中的含量和存在形式在时间、空间上的变化。
各种原子的结合和存在形式不是任意的、静态的,而是由条件的、变化的。
十、说明研究岩浆岩形成和熔化的地质—地球化学方法。
四、元素的赋存形式有哪些?独立矿物——能用肉眼或能在显微镜下进行研究的矿物,粒径大于0.01mm。
同质异象——或称为结构混入物。
指不同的元素或质点占据相同的晶格结点位置、而晶格类型和晶格常数不发生明显变化的现象。
微量元素进入主元素的晶格后,如不通过破坏矿物晶格的手段,采用机械和化学的方法都不能使两者分离。
超显微结构混入物(或称为超显微包裹体)——被包裹在其他矿物中,粒径小于0.001mm的物质。
由于它不占据主矿物的晶格位置,因此是独立矿物,但又不形成可以进行矿物学研究的颗粒。
如在岩浆岩中的Au、Ag、Pb、Hg、等,常可以呈超细硫化物存在于其他矿物中。
吸附——胶体、晶体表面或解理面上由于电荷不平衡而吸附异性离子的现象。
是一种结合力较弱、易被交换和分离的存在形式(活性赋存形式)。
与有机质结合——元素加入到有机物中,如血液中的Fe、骨骼中的Ca和脑细胞中的P都完全进入到有机质中。
此外,微量元素常与有机物结合形成金属有机化合物或金属有机络合物,如铜乙胺配离子。
元素在水流体相中的存在形式,元素在水流体相中也有多种存在形式,首先它们可以按基本单位和聚合体的大小分成颗粒物、胶体、絮状物和分子,在真溶液中则仅包括分子和离子。
五、简述岩浆岩成岩过程的鉴别根据平衡部分熔融和分离结晶作用中微量元素分配的定量模型,可以对成岩过程进行鉴1固—液相分配系数高的相容元素:如Ni、Cr等,在分离结晶过程中他们的浓度变化很大,但在部分熔融过程中则变化较缓。
2固—液相分配系数低的微量元素:如Ta、Th、La、Ce等,他们的总分配系数很低,近于0,与0.2—0.5比较可忽略不计。
在部分熔融过程中这些元素浓度变化大,但在分离结晶作用过程中则变化缓慢。
3固—液相分配系数中等的微量元素:如HREE、Zr、Hf等,他们的分配系数与1比较可忽略不计。
六、各类玄武岩对构造环境的鉴别。
1在板块边缘深海环境下喷发的洋中脊玄武岩:拉斑质玄武岩曲线呈平坦型,碱性玄武岩在Rb、Ba、Th、Ta、Nb处局部隆起,其后的元素与拉斑质玄武岩一致:快速扩张的洋中脊玄武岩与MORB的比值大于1,缓慢扩张的洋中脊玄武岩则小于12远离板块边缘喷发的板内玄武岩:拉斑质玄武岩除Y、Yb、Sc、Cr等元素外,其他元素均呈隆起:碱性玄武岩中Ba、Th、Ta、Nb 和Hf、Zr、Sm两组元素呈双隆起的曲线形式。
3在汇聚板块边缘喷发的火山弧玄武岩:拉斑质玄武岩除Sr、K、Rb、Ba为选择性富集外,从Ta到Yb所以元素以低于丰度为特征:碱性玄武岩中Sr、K、Rb、Ba、Th等元素有较强富集和Ce、P、Sm等元素富集,呈现峰谷迭起的曲线。
4过渡型玄武岩兼有相应端元组分特征。
七、分配体系的主要应用。
1、定量研究元素分配2、为成矿分析提供了理论依据3、判断成岩和成矿过程的平衡4、微量元素地质温度计5、微量元素地质压力计6、指示沉积环境7、岩浆作用过程微量元素分配和演化定量模型的研究8、岩浆形成机制的研究9、判断岩石的成因八、讨论在自然界中由于氧化还原条件的变化稀土元素的分异?稀土元素等分以主要体现在Eu和Ce二元素。
前者还原成二价阳离子,后者易氧化成四价阳离子,从而与整体三价的REE发生分离。
Eu2+和Ca2+形成相似因而易于同质类像替代Ca2+,而在早期结晶的斜长石中出现铕正异常而后期结晶的岩石中铕负异常。
Ce4+在弱酸条件下已发生水解而滞留原地使得淋滤出的溶液贫Ce,形成Ce 负异常,在海水中易形成Ce与REE的分离。
三、说明太阳系元素丰度的基本特征和决定自然体系中元素丰度的最基本因素。
1、在所有元素中H,He占绝对优势,H占90%,He占8%。
2、太阳系元素的丰度随着原子序数(Z)的增大而减少,曲线开始下降很陡,以后逐渐变缓。
3、偶序数元素的丰度大于相邻奇序数元素的丰度,这一规律称之为奥多—哈金斯法则。
4、与以上的规律相比,Li,Be,B,Sc具有与它们原子序数不相称的低丰度,在较轻元素中亏损;而O和Fe呈明显的峰值,丰度显著偏高,为过剩元素。
5、原子序数或中子数为“幻数”(2、8、20、50、82和128等)的核素分布最广,丰度最大。
如:4He(Z=2,N=2),160(Z=8,N=8),40Ca(Z=20,N=20)等。
决定自然体系中元素丰度的最基本元素:与原子结构有关具有最稳定原子核的元素分布最广,当中子数和质子数臂力适当时核最稳定。
如在原子序数小于20的轻核中,中子/质子等于一是核最稳定,由此可以说明O、Mg、Si、Ca的丰度较大的原因:随原子序数增大,核内质子间的斥力大于核力,核子的结合能降低,原子核就趋于不稳定,所以元素同位素的丰度就要降低:偶数元素或同位素的原子核内,核子倾向成对,他们自旋力矩相等,而方向相反,量力力学证明:这种核的稳定性最大,因而这种元素或同位素在自然界分布最广:中子数等于幻数的同位素,其原子核中的壳层为核子所充满,形成最稳定的原子核,因而具有高的丰度。
与元素起源、形成过程及元素形成后的化学分异有关。
在恒星的高温条件下。
可以发生有质子参加的热核反应,这使Li、Be、B迅速的转变为4He的同位素,因此,Li、Be、B丰度明显偏低就同他们再恒星热核反应过程中被消耗的历史有关:在内行星和陨石物质中气态元素(H、He等)的丰度极大的低于太阳系中各该元素的丰度,造成这种差别的原因是这些元素在行星和陨石母体形成或存在过程中逃逸到宇宙空间所致。