各种钢铁组织图谱
- 格式:ppt
- 大小:906.50 KB
- 文档页数:15
钢铁金相图谱优惠价:468元定价:1080元者:黄振东:中国科技期:2005年8月:16开4册书籍目录钢铁典型金相组织碳素钢低碳素钢金相组织中碳素钢金相组织高碳素钢金相组织铸造碳素钢金相组织碳素钢和铸造碳素钢的缺陷组织低合金钢低合金结构钢金相组织弹簧钢金相组织轴承钢金相组织低合金工具钢金相组织低温用钢金相组织高合金钢高合金工具钢金相组织高锰钢金相组织高速工具钢金相组织耐酸不锈钢金相组织耐热不锈钢金相组织特殊钢高合金工具钢金相组织特殊钢钢坯表面缺陷图谱特殊钢的非金属夹杂物特殊钢典型断口特征钢中硫化锰铁单晶体图谱粉末冶金铁基粉末冶金金相硬质合金金相谱表面淬火处理表面感应淬火处理金相组织表面激光淬火处理金相组织第八章表面化学热处理第一节渗碳处理金相组织第二节碳氮共渗处理金相组织第三节渗氮处理金相组织第四节渗硼处理金相组织第五节其他渗镀处理金相组织第九章铸铁第一节铸铁金相组织图谱概述第二节灰铸铁第三节球墨铸铁第四节蠕墨铸铁第五节白口铸铁第十章焊接第一节碳钢焊接金相组织第二节合金钢焊接金相组织第三节堆焊层金相组织第十一章低倍组织和非金属夹杂物第一节低倍组织缺陷第二节铸件低倍组织第三节非金属夹杂物第十二章断口分析第一节韧性断口第二节解理断口及准解理断口第三节疲劳断口第四节氢致开裂断口和应力腐蚀断口第五节其他断口和有关裂纹第十三章失效分析第一节轴杆类失效分析案例第二节齿轮及轮类构件失效分析案例第三节管道容器类失效分析案例第四节基础件失效分析案例第五节其他类构件失效分析案例。
铁素体、奥氏体、渗碳体、珠光体、贝氏体、魏氏组织、马氏体、莱氏体......一文识尽!现代材料可以分为四大类——金属、高分子、陶瓷和复合材料。
尽管目前高分子材料飞速发展,但金属材料中的钢铁仍是目前工程技术中使用最广泛、最重要的材料,那么到底是什么因素决定了钢铁材料的霸主地位呢?下面就详细介绍8种常见金相组织的特点。
钢铁由铁矿石冶炼而成,来源丰富,价格低廉。
钢铁又称为铁碳合金,是铁(Fe)与碳(C)、硅(Si)、锰(Mn)、磷(P)、硫(S)以及其他少量元素(Cr、V等)所组成的合金。
通过调节钢铁中各种元素的含量和热处理工艺(主要的四把火:淬火、退火、回火、正火),可以获得各种各样的金相组织,从而使钢铁具有不同的物理性能。
将钢材取样,经过打磨、抛光,最后用特定的腐蚀剂腐蚀显示后,在金相显微镜下观察到的组织称为钢铁的金相组织。
钢铁材料的秘密便隐藏在这些组织结构中。
在Fe-Fe3C系中,可配制多种成分不同的铁碳合金,他们在不同温度下的平衡组织各不相同,但由几个基本相(铁素体F、奥氏体A和渗碳体Fe3C)组成。
这些基本相以机械混合物的形式结合,形成了钢铁中丰富多彩的金相组织结构。
常见的金相组织有下列八种:1铁素体碳溶于α-Fe晶格间隙中形成的间隙固溶体称为铁素体,属bcc结构,呈等轴多边形晶粒分布,用符号F表示。
其组织和性能与纯铁相似,具有良好的塑性和韧性,而强度与硬度较低(30-100 HB)。
在合金钢中,则是碳和合金元素在α-Fe中的固溶体。
碳在α-Fe 中的溶解量很低,在AC1温度,碳的最大溶解量为0.0218%,但随温度下降的溶解度则降至0.0084%,因而在缓冷条件下铁素体晶界处会出现三次渗碳体。
随钢铁中碳含量增加,铁素体量相对减少,珠光体量增加,此时铁素体则是网络状和月牙状。
2奥氏体碳溶于γ-Fe晶格间隙中形成的间隙固溶体称为奥氏体,具有面心立方结构,为高温相,用符号A表示。
奥氏体在1148℃有最大溶解度2.11%C,727℃时可固溶0.77%C;强度和硬度比铁素体高,塑性和韧性良好,并且无磁性,具体力学性能与含碳量和晶粒大小有关,一般为170~220 HBS。
灰口铸铁可锻铸铁球墨铸铁蠕墨铸铁
片状石墨(未浸蚀)团絮状石墨(未浸蚀)球状石墨(未浸蚀)蠕虫状石墨(未浸蚀)放大倍数400×放大倍数400×放大倍数400×放大倍数400×
灰口铸铁灰口铸铁灰口铸铁
F基+片状石墨(F+P)基+片状石墨P基+片状石墨
放大倍数400×放大倍数400×放大倍数400×
1 / 2
可锻铸铁可锻铸铁球墨铸铁F基+团絮状石墨P基+团絮状石墨F基+球状石墨放大倍数400×放大倍数400×放大倍数400×
球墨铸铁球墨铸铁高磷铸铁
(F+P)基+球状石墨P基+球状石墨P基+片状石墨+磷共晶放大倍数400×放大倍数400×放大倍数400×
2 / 2。
钢铁材料常见金相组织简介在Fe-Fe3C系中,可配制多种成分不同的铁碳合金,他们在不同温度下的平衡组织各不相同,但由几个基本相(铁素体F、奥氏体A和渗碳体Fe3C)组成。
这些基本相以机械混合物的形式结合,形成了钢铁中丰富多彩的金相组织结构。
常见的金相组织有下列八种:一、铁素体铁素体(ferrite,缩写FN,用F表示),纯铁在912℃以下为具有体心立方晶格。
碳溶于α-Fe中的间隙固溶体称为铁素体,以符号F表示。
这部分铁素体称为先共析铁素体或组织上自由的铁素体。
随形成条件不同,先共析铁素体具有不同形态,如等轴形、沿晶形、纺锤形、锯齿形和针状等。
铁素体还是珠光体组织的基体。
在碳钢和低合金钢的热轧(正火)和退火组织中,铁素体是主要组成相;铁素体的成分和组织对钢的工艺性能有重要影响,在某些场合下对钢的使用性能也有影响。
碳溶入δ-Fe中形成间隙固溶体,呈体心立方晶格结构,因存在的温度较高,故称高温铁素体或δ固溶体,用δ表示,在1394℃以上存在,在1495℃时溶碳量最大。
碳的质量分数为0.09%。
图1:铁素体二、奥氏体碳溶于γ-Fe晶格间隙中形成的间隙固溶体称为奥氏体,具有面心立方结构,为高温相,用符号A表示。
奥氏体在1148℃有最大溶解度2.11%C,727℃时可固溶0.77%C;强度和硬度比铁素体高,塑性和韧性良好,并且无磁性,具体力学性能与含碳量和晶粒大小有关,一般为170~220 HBS、=40~50%。
TRIP钢(变塑钢)即是基于奥氏体塑性、柔韧性良好的基础开发的钢材,利用残余奥氏体的应变诱发相变及相变诱发塑性提高了钢板的塑性,并改善了钢板的成形性能。
碳素或合金结构钢中的奥氏体在冷却过程中转变为其他相,只有在高碳钢和渗碳钢渗碳高温淬火后,奥氏体才能残留在马氏体的间隙中存在,其金相组织由于不易受侵蚀而呈白色。
三、渗碳体渗碳体(cementite),指铁碳合金按亚稳定平衡系统凝固和冷却转变时析出的Fe3C型碳化物。
钢铁材料常见金相组织简介在Fe-Fe3C系中,可配制多种成分不同的铁碳合金,他们在不同温度下的平衡组织各不相同,但由几个基本相(铁素体F、奥氏体A和渗碳体Fe3C)组成。
这些基本相以机械混合物的形式结合,形成了钢铁中丰富多彩的金相组织结构。
常见的金相组织有下列八种:一、铁素体铁素体(ferrite,缩写FN,用F表示),纯铁在912℃以下为具有体心立方晶格。
碳溶于α-Fe中的间隙固溶体称为铁素体,以符号F表示。
这部分铁素体称为先共析铁素体或组织上自由的铁素体。
随形成条件不同,先共析铁素体具有不同形态,如等轴形、沿晶形、纺锤形、锯齿形和针状等。
铁素体还是珠光体组织的基体。
在碳钢和低合金钢的热轧(正火)和退火组织中,铁素体是主要组成相;铁素体的成分和组织对钢的工艺性能有重要影响,在某些场合下对钢的使用性能也有影响。
碳溶入δ-Fe中形成间隙固溶体,呈体心立方晶格结构,因存在的温度较高,故称高温铁素体或δ固溶体,用δ表示,在1394℃以上存在,在1495℃时溶碳量最大。
碳的质量分数为0.09%。
图1:铁素体二、奥氏体碳溶于γ-Fe晶格间隙中形成的间隙固溶体称为奥氏体,具有面心立方结构,为高温相,用符号A表示。
奥氏体在1148℃有最大溶解度2.11%C,727℃时可固溶0.77%C;强度和硬度比铁素体高,塑性和韧性良好,并且无磁性,具体力学性能与含碳量和晶粒大小有关,一般为170~220 HBS、=40~50%。
TRIP钢(变塑钢)即是基于奥氏体塑性、柔韧性良好的基础开发的钢材,利用残余奥氏体的应变诱发相变及相变诱发塑性提高了钢板的塑性,并改善了钢板的成形性能。
碳素或合金结构钢中的奥氏体在冷却过程中转变为其他相,只有在高碳钢和渗碳钢渗碳高温淬火后,奥氏体才能残留在马氏体的间隙中存在,其金相组织由于不易受侵蚀而呈白色。
三、渗碳体渗碳体(cementite),指铁碳合金按亚稳定平衡系统凝固和冷却转变时析出的Fe3C型碳化物。