拓扑学的产生
- 格式:ppt
- 大小:817.00 KB
- 文档页数:42
数学发展中的历史人物与成就数学是一门古老而重要的学科,它的发展历程中涌现出了许多杰出的历史人物,他们的贡献对数学学科的发展起到了重要作用。
本文将介绍几位数学史上的重要人物及其成就,带领读者一起回顾数学的演进历程。
1. 毕达哥拉斯毕达哥拉斯(公元前570年-公元前495年)是古希腊数学史上的重要人物之一。
他提出了著名的毕达哥拉斯定理,即直角三角形斜边的平方等于两直角边的平方和。
这个定理为几何学和三角学的发展奠定了基础。
他还发现了整数的奇偶性与平方数的关系,为数论的研究做出了重要贡献。
2. 欧几里得欧几里得(公元前330年-公元前275年)是古希腊数学家,《几何原本》的作者。
他以其几何学的成就而闻名于世。
欧几里得的《几何原本》是一部系统而完整的几何学教科书,内容包括了平面几何和立体几何的基本定理与推论。
这部作品对后世的几何学研究产生了深远的影响,直到现代仍然被广泛应用。
3. 阿基米德阿基米德(公元前287年-公元前212年)是古希腊科学家和数学家,被誉为科学史上最有天赋的人之一。
他在数学、物理学和工程学等领域都有重要贡献。
阿基米德在几何学中使用了方法论和证明技巧,提出了许多关于测量和计算的理论和方法。
他发明了杠杆原理、浮力定律,并计算了圆周率的上限和下限,为解析几何学的发展奠定了基础。
4. 卡尔·弗里德里希·高斯卡尔·弗里德里希·高斯(1777年-1855年)是德国著名数学家、物理学家和天文学家。
他是现代数学的奠基人之一,对数学的发展做出了深远的贡献。
高斯的贡献涵盖了数论、代数学、几何学和物理学等多个领域。
他提出了高斯消元法,并发现了正多边形的构造方法。
他的研究对数学分析和数论的发展产生了重要影响,并被广泛应用于科学和工程领域。
5. 埃米尔·勒雅维尔埃米尔·勒雅维尔(1882年-1968年)是法国著名数学家,被誉为20世纪最伟大的数学家之一。
拓扑学的基本概念-概述说明以及解释1.引言1.1 概述拓扑学是数学中的一个分支,研究的是空间中的形状、连通性和变化性质。
它主要关注的是不同空间对象之间的关系,而不考虑其具体的度量尺寸或几何特征。
拓扑学起源于18世纪,经过数学家们的不断探索和研究,逐渐形成了一套完整的理论体系。
在拓扑学中,我们关注的是空间对象之间的相互关系,而不关心它们的形状如何变化或者具体的度量尺寸。
例如,我们可以将两个球看作是相同的,因为它们都具有一个孔,而不关心它们的大小或者表面的形状。
这种抽象的思维方式使得拓扑学成为解决很多实际问题的强大工具,例如网络连通性分析、形状识别等。
拓扑学的基本概念包括拓扑空间、拓扑结构、连通性等。
拓扑空间是指一个具有拓扑结构的集合,通过给定的一组开集来定义集合中元素的关系。
拓扑结构则是用来描述集合中元素之间的邻近性和连通性的规则。
而连通性则是指一个空间对象是否是连通的,即是否可以通过一条连续的路径将其所有点连接起来。
拓扑学作为一门基础学科,在多个领域都有广泛的应用。
例如,在计算机科学中,拓扑学被用来描述网络中节点之间的连通性和通信路径;在物理学中,拓扑学被用来研究物质的相变性质;在生物学中,拓扑学被用来研究DNA的结构和蛋白质的折叠等。
这些应用领域的发展与拓扑学的基本概念密不可分。
本文将从拓扑学的起源、基本概念、拓扑空间与拓扑结构以及拓扑学的应用领域等方面进行介绍。
通过对这些内容的系统阐述和分析,旨在帮助读者更好地理解拓扑学的基本概念和应用,以及其在解决实际问题中的重要性。
接下来的章节将详细介绍这些内容,以期能够为读者提供一个全面而深入的拓扑学知识框架。
1.2 文章结构文章结构部分的内容可以根据以下方式进行编写:文章结构部分:本篇文章将按照以下结构组织和介绍拓扑学的基本概念:1. 引言:首先,我们将概述本文的主题和目的,为读者提供一个整体的概览。
接着,我们将介绍文章的结构,明确每个部分的内容和安排。
数学的三个发展时期——现代数学时期现代数学时期是指由19世纪20年代至今,这一时期数学主要研究的是最一般的数量关系和空间形式,数和量仅仅是它的极特殊的情形,通常的一维、二维、三维空间的几何形象也仅仅是特殊情形。
抽象代数、拓扑学、泛函分析是整个现代数学科学的主体部分。
它们是大学数学专业的课程,非数学专业也要具备其中某些知识。
变量数学时期新兴起的许多学科,蓬勃地向前发展,内容和方法不断地充实、扩大和深入。
18、19世纪之交,数学已经达到丰沛茂密的境地,似乎数学的宝藏已经挖掘殆尽,再没有多大的发展余地了。
然而,这只是暴风雨前夕的宁静。
19世纪20年代,数学革命的狂飙终于来临了,数学开始了一连串本质的变化,从此数学又迈入了一个新的时期——现代数学时期。
19世纪前半叶,数学上出现两项革命性的发现——非欧几何与不可交换代数。
大约在1826年,人们发现了与通常的欧几里得几何不同的、但也是正确的几何——非欧几何。
这是由罗巴契夫斯基和里耶首先提出的。
非欧几何的出现,改变了人们认为欧氏几何唯一地存在是天经地义的观点。
它的革命思想不仅为新几何学开辟了道路,而且是20世纪相对论产生的前奏和准备。
后来证明,非欧几何所导致的思想解放对现代数学和现代科学有着极为重要的意义,因为人类终于开始突破感官的局限而深入到自然的更深刻的本质。
从这个意义上说,为确立和发展非欧几何贡献了一生的罗巴契夫斯基不愧为现代科学的先驱者。
1854年,黎曼推广了空间的概念,开创了几何学一片更广阔的领域——黎曼几何学。
非欧几何学的发现还促进了公理方法的深入探讨,研究可以作为基础的概念和原则,分析公理的完全性、相容性和独立性等问题。
1899年,希尔伯特对此作了重大贡献。
在1843年,哈密顿发现了一种乘法交换律不成立的代数——四元数代数。
不可交换代数的出现,改变了人们认为存在与一般的算术代数不同的代数是不可思议的观点。
它的革命思想打开了近代代数的大门。
另一方面,由于一元方程根式求解条件的探究,引进了群的概念。
简介拓扑心理学是德国格式塔心理学家勒温根据动力场说,采用拓扑学及向心理学错觉图量学的表述方式,研究人及其行为的一种心理学体系。
勒温否定了刺激-反应的公式,而认为行为可表示为人和环境的函数,行为是随人和环境的变化而变化的。
这个环境不是纯客观的环境,也不是科夫卡所说的行为环境,因为行为环境实际上是意识中的环境。
勒温的所谓环境叫做心理环境,是仅仅对行为有所影响的环境,他称之为准环境。
编辑本段详细介绍勒温否定了刺激-反应的公式,而采取了B=f(P,E)的公式,认为行为(B)等于人(P)和环境(E)的函数,行为是随人和环境的变化而变化的。
这个环境不是纯客观的环境,也不是K.科夫卡所说的行为环境,因为行为环境实际上是意识中的环境。
勒温的所谓环境叫做心理环境,是仅心理学错觉图仅对行为有所影响的环境,他称之为准环境。
准环境被区分为三种,即准实在的环境、准社会的环境和准概念的环境。
仅举一例说明准实在的环境,其他两种环境的意义就可以类推而知。
他说:“比如一个儿童知道他的母亲在家或不在家,他在花园中的游戏的行为便可随之而不同,可是我们不能假定这个母亲是否在家的事实存在于儿童的意识之内。
”这就说明勒温的心理环境有别于科夫卡的行为环境。
勒温将人和环境描绘为生活空间。
这个生活空间不包括人生的一切事实,而仅包括指定的人及其行为在某一时间内的有关事实。
必须指出,勒温的研究超出了格式塔心理学原有的知觉研究范围。
他要致力于人的行为动力、动机或需要和人格的研究,为格式塔心理学开辟了新的园地。
他以为环境的事物对于人不是无关痛痒的。
有些事物吸引人,具有引值(正的原子值),是人所愿意接近和取得的;有些事物排拒人,具有拒值(负的原子值),是人所不愿意接受或拒绝的。
这个一引一拒是与人的需要有关的。
勒温把需要区分为基本需要和准需要。
饥思食、渴思饮,这种生理需要属于前者。
写好了信要投邮筒,毕业期近要写论文,这种需要属于后者,是勒温研究需要时的主要对象。