抽样调查、样本、样本容量
- 格式:ppt
- 大小:179.50 KB
- 文档页数:5
10.1统计调查(2)——抽样调查教学设计一、三维目标1、知识与技能(1)了解抽样调查及相关概念.(2)了解抽样调查的必要性和简单随机抽样调查,初步体会样本估计总体的思想.2、过程与方法通过独立思考,小组合作以及自己操作,学会用总体、个体、样本分析数据的方法.3、情感态度与价值观深刻体会数学和我们的社会、生活密切相连.二、教学重难点重点:了解抽样调查、总体、个体、样本、样本容量的概念.难点:区分全面调查和抽样调查.三、教学方法采取情景教学法,师生共同探究,注重知识形成过程、注重学生体验.四、教学过程设计本节课设计了六个教学环节:第一环节:创设情境,提出问题;第二环节:探究新知,提炼概念;第三环节:例题示范,学以致用;第四环节:目标检测,及时反馈;第五环节:课堂小结,反思提高;第六环节:布置作业,拓展延伸.(一)创设情境,提出问题情景:由多媒体播放视频,引起学生的注意力,激发学生的学习兴趣。
(二)探究新知,提炼概念师生活动:教师举例:一勺汤,而尝满锅之香.或者是幻灯片中小明的做法。
抽样调查:只抽取一部分对象进行调查,然后根据调查数据推断全体对象的情况,这种调查方法叫做抽样调查.设计意图:让学生通过举例,从而归纳、思考、概括抽样调查的有关概念,加深对抽样调查内涵的理解,体会抽样调查方法蕴含的统计思想.问题1:某中学共有2 000名学生,想了解全校学生对新闻、体育、动画、娱乐、戏曲五类电视节目的喜爱情况,请同学们想一想怎样调查.师生活动:学生回答:抽取一部分学生进行调查.如果学生回答:用全面调查的方法.教师追问:用这种方法进行调查有什么优缺点?然后,学生在教师的引导下想到抽取一部分学生调查的方法.结合这个调查,讲解什么是总体、个体、样本、样本容量.1.总体:所要考察的全体对象叫做总体.2.个体:总体中每一个考察对象叫做个体.3.样本:从总体中所抽取的一部分个体叫做总体的一个样本.4.样本容量:样本中个体的数目.(没有单位!)比较概念:全面调查与抽样调查对比表调查方式适应情景调查对象特点全面调查考察对象数量较少,结果具有特殊要求或特殊意义. 全体准确,费时费力,会造成不可挽回的损失抽样调查考察对象数量较多,结果具有破坏性或危害性样本省时省力范围小,只能估计出总体的情况师生活动:学生回答,教师及时补充和点评.设计意图:让学生体会抽样调查与全面调查有哪些区别,面对实际问题时,能选择合适的调查方式.(三)例题示范,学以致用1. 在一次考试中,考生有2万名.为省时省力的了解这些考生的数学平均成绩,抽取了500名考生的数学成绩进行调查.总体是________;个体是___________;样本是________;样本的容量是__.2. 为调查电风扇的使用寿命,从一批电风扇中抽取20台进行测试;3.为调查某校七年级学生每周用于做课外作业的时间,从该校七年级中抽取50名学生进行调查.师生活动:学生回答.设计意图:让学生熟悉有关概念.问题2:为了解学校学生的平均身高,小明调查了座位在自己旁边的3名同学,把他们身高的平均值作为全校学生平均身高的估计.(1)小明的调查是抽样调查吗?(2)如果是抽样调查,指出调查的总体,个体,样本和样本容量(3)这个结果能较准确地反映当时的情况吗?为什么?师生活动:学生回答.设计意图:认识到简单随机抽样,总体中每一个个体都有相等的机会被抽到,像这样的抽样方法叫简单随机抽样.为了使样本能较好地反映总体情况,除了有合适的样本容量外,抽取时还要尽量使每一个个体有相等的机会被抽到.下面几个问题,应该做全面调查还是抽样调查?(1)要调查市场上某种食品添加剂是否符合国家标准;(2)检测某城市的空气质量;(3)调查一个村子所有家庭的收入;(4)调查人们对保护环境的意识;(5)调查一个班级中的学生对建立班级英语角的看法;(6)调查人们对电影院放映的电影的热衷程度。
第八章数据的收集与整理1 数据的收集收集数据的方法(1)调查或试验:通过设计等方式得到想要的信息,然后对数据进行整理、描述.(2)查资料:当调查或试验项目很大,我们个人无法完成时,还可以通过查阅报纸、相关文献或上网的方式,获得数据信息.数据的收集[典例]在数学、外语、语文3门学科中,某校七年级开展了同学们最喜欢学习哪一门学科的调查.(七年级共有200人)(1)调查的问题是什么?(2)调查的对象是谁?(3)在被调查的200名学生中,有40人最喜欢学语文,80人最喜欢学数学,60人最喜欢学外语,其余的人选择其他,根据调查情况,把七年级的学生最喜欢学习某学科的人数及其占学生总数的百分比填入下表:(4)根据以上调查结果,你能得到什么结论?[变式1]某学校课外活动小组为了解同学们最喜欢的电影类型,设计了如下调查问卷(不完整):准备在“①国产片,②科幻片,③动作片,④喜剧片,⑤亿元大片”中选取三个作为该问题的备选答案,选取合理的是( )A.①②③B.①③⑤C.②③④D.②④⑤[变式2]某校篮球队员的身高(单位:cm)如下:167,168,167,164,168,168, 163,168,167,160.获得这组数据所用的方法是( )A.问卷调查B.查阅资料C.实地调查D.试验[变式3]小明调查全班45名同学对绘画的喜欢程度,其结果如下:A B B B D B B A B B B D A B BB A B B BC A BD C B B C B CB C B A C B C D B C C A C C A其中A代表特别喜欢,B代表比较喜欢,C代表无所谓,D代表不喜欢. 请填写表格(百分比四舍五入精确到个位).全班同学对绘画喜欢程度的人数分布表[变式4]有关部门规定:初中学生每天的睡眠时间不得少于9 h,请对你班的同学作一次调查,了解有多大比例的学生每天睡眠不足9 h.(1)调查的问题是什么?(2)调查的对象是谁?(3)共调查多少人?每天睡眠时间不足9 h的有多少人?占多大百分比?2 普查和抽样调查1.普查、总体、个体为某一特定目的而对所有考查对象进行的全面调查叫做,所要考察对象的全体称为,而组成总体的每一个考察对象称为.2.抽样调查、样本、样本容量从总体中抽取部分个体进行调查,这种调查称为,其中从总体抽取的一部分个体叫做总体的一个,样本中个体的数量叫做.总体、个体、样本[典例1]下列抽样调查中的总体、个体、样本分别是什么?(1)为了让学生了解环保知识,增强环保意识,某中学举行了一次“环保知识竞赛”,共有900名学生参加了这次竞赛.为了了解本次竞赛的成绩情况,从中抽取了50名学生的成绩进行统计分析.(2)为了了解一批灯泡的使用寿命,从中抽取30只灯泡进行试验.[变式1]某市今年共有7万名考生参加中考,为了了解这7万名考生的数学成绩,从中抽取1 000名考生的数学成绩进行统计分析.以下说法正确的有( )①这种调查方式是抽样调查;②7万名考生是总体;③每名考生的数学成绩是个体;④被抽取的1 000名考生的数学成绩是总体的一个样本;⑤1 000名考生是样本容量.A.1个B.2个C.3个D.4个普查和抽样调查[典例2]下面调查中,最适合采用普查的是( )A.对全国中学生视力状况的调查B.了解某市八年级学生身高情况C.调查人们垃圾分类的意识D.对某飞船零部件的调查[变式2]下列调查中,最适合采用抽样调查方式的是( )A.对某飞机上旅客随身携带易燃易爆危险物品情况的调查B.对国产航母各零部件质量情况的调查C.对某中学八(1)班数学期末成绩情况的调查D.对全国公民知晓某电视节目的调查[变式3]下列调查中,哪些是用全面调查的方式,哪些是用抽样调查方式来收集数据的?(1)为了了解所在班级的每名同学的身高,在全班范围内进行调查.(2)为了了解所在班级的同学每天的学习时间,选取班级中学号为单号数的所有同学进行调查.(3)为了了解某奶牛场中500头奶牛的产奶量,从中抽取出50头进行分析测量.3 数据的表示第1课时扇形统计图1.扇形统计图是利用圆和扇形来表示和的关系,扇形的大小反映部分占总体的百分比的大小.2.在扇形统计图中,每部分占总体的百分比等于该部分所对应扇形的圆心角的度数与的比.3.扇形统计图可以直观地反映各部分在总体中所占的.4.扇形统计图中各部分所占的百分比之和应等于.5.绘制扇形统计图的一般步骤(1)计算各部分数量占总量的百分比;(2)计算圆心角的度数;(3)画出各个扇形;(4)标上名称.扇形统计图的绘制[典例1]体育老师对六(1)班学生最喜爱的体育项目进行了调查,结果如表所示:请你根据以上数据画出扇形统计图.[变式]以“月球上是否有水”为例,对育才中学七(1)班60名同学的调查结果如表所示:请根据上述调查结果,回答下列问题.(1)计算每种看法的同学人数占全体同学人数的百分比;(2)计算扇形统计图中各种看法对应扇形的圆心角度数;(3)在圆中依次画出各种看法对应的扇形,并标上百分比(如图所示).扇形统计图与条形统计图的综合[典例2]学习了统计知识后,小亮的数学老师要求每名学生就本班同学的上学方式进行一次调查,如图所示是小亮通过收集、整理数据后绘制的两幅不完整的统计图,请根据图中提供的信息,解答下列问题:(1)该班共有名学生;(2)将条形统计图补充完整;(3)在扇形统计图中,求出“乘车”部分所对应的圆心角的度数.第2课时频数直方图1.当遇到大量数据或数据连续取值时,我们通常先将数据适当分组,然后可以制作直方图直观地反映整体状况.2.制作频数直方图的大致步骤(1)确定所给数据的和;(2)将数据适当;(3)统计每组中数据出现的;(4)绘制.绘制频数直方图[典例1]某地某月1~20日中午12时的气温(单位:℃)如下:22 31 25 15 18 23 21 20 27 1720 12 18 21 21 16 20 24 26 19 (1)将频数分布表补充完整:(2)补全频数直方图;(3)根据频数分布表或频数直方图,分析数据的分布情况.[变式]如图所示是某校八(2)班学生的一次体检中每分心跳次数的频数分布直方图(次数均为整数).该班李红同学参加了此次体检,她心跳每分68次,有下列说法:①李红每分心跳次数落在第1小组;②第3小组的频数为0.15;③每分心跳次数低于80次的人数占该班体检人数的3.4其中正确的是( )A.①②B.①③C.②③D.①②③扇形统计图与频数直方图[典例2]某学校就假期“平均每天与父母一起共同干家务所用时长”进行了调查,如图所示是根据相关数据绘制的统计图的一部分,根据上述信息,回答下列问题:(1)在本次随机抽取的样本中,调查的学生人数是多少?(2)求m,n的值.(3)补全频数分布直方图.(4)若该校共有学生3 000人,请你估计“平均每天与父母一起共同干家务所用时长不少于30 min”的学生大约有多少人.4 统计图的选择1.三种常用统计图生活中常用的统计图有统计图、统计图和统计图,频数直方图是特殊的统计图.2.各种统计图的特点(1)条形统计图能清楚地表示出每个项目的.(2)折线统计图能清楚地反映事物的.(3)扇形统计图能清楚地表示出各部分在总体中所占的.统计图的选择[典例1](2021盘锦)空气是由多种气体混合组成的,为了直观地介绍空气各成分的百分比,最适合使用的统计图是( )A.条形统计图B.扇形统计图C.折线统计图D.频数分布直方图[变式1]要反映某市一周大气中PM2.5的变化情况,最宜采用( ) A.条形统计图 B.扇形统计图C.折线统计图D.频数分布直方图[变式2]某校食堂有甲、乙、丙三种套餐,为了解哪种套餐更受欢迎,随机调查了该校200名学生,根据调查数据绘制统计图,为了更直观地表示出喜欢每种套餐的具体人数,应选择( )A.条形统计图B.折线统计图C.扇形统计图D.无法确定统计图的综合应用[典例2]某校数学实践小组就近期人们比较关注的五个话题:A.5G通讯; B.民法典;C.北斗导航;D.数字经济; E.小康社会,对某小区居民进行了随机抽样调查,每人只能从中选择一个本人最关注的话题,根据调查结果绘制了如图所示的两幅不完整的统计图.请结合统计图中的信息,解决下列问题:(1)在这次活动中,被调查的居民共有人;(2)将最关注话题条形统计图补充完整;(3)最关注话题扇形统计图中的a= ,话题D所在扇形的圆心角是度;(4)假设这个小区居民共有10 000人,请估计该小区居民中最关注的话题是“民法典”的人数.[变式3]在某次疫情发生后,根据疾控部门发布的统计数据,绘制出如图所示统计图:图①为A地区累计确诊人数的条形统计图,图②为B地区新增确诊人数的折线统计图.(1)根据图①中的数据,A地区星期三累计确诊人数为,新增确诊人数为.(2)已知A地区星期一新增确诊人数为14人,在图②中画出表示A地区新增确诊人数的折线统计图.(3)你对这两个地区的疫情进行怎样的分析、推断?参考答案:第八章数据的收集与整理1 数据的收集(1)调查问卷[典例]解:(1)调查的问题:在数学、外语、语文3门学科中,你最喜欢学习哪一门学科?(2)调查的对象:该校七年级的全体同学.(4)该校七年级学生最喜欢学习外语的人数最多(答案不唯一).[变式1]C [变式2]C[变式3]解:填表如下:全班同学对绘画喜欢程度的人数分布表[变式4]解:(1)调查的问题:了解有多大比例的学生每天睡眠不足9 h.(2)调查的对象:本班所有学生.×100%=40%.(根据实际情(3)共调查45人,每天睡眠时间不足9 h的有18人,所占百分比为1845况作答即可)2 普查和抽样调查1.普查总体个体2.抽样调查样本样本容量[典例1]解:(1)总体是900名学生参加这次竞赛的成绩,个体是每一名学生参加这次竞赛的成绩,样本是被抽取的50名学生参加这次竞赛的成绩.(2)总体是这批灯泡的使用寿命,个体是每只灯泡的使用寿命,样本是被抽取的30只灯泡的使用寿命.[变式1]C[典例2]D [变式2]D[变式3]解:(1)为了了解所在班级的每名同学的身高,在全班范围内进行调查.属于全面调查.(2)为了了解所在班级的同学每天的学习时间,选取班级中学号为单号数的所有同学进行调查.属于抽样调查.(3)为了了解某奶牛场中500头奶牛的产奶量,从中抽取出50头进行分析测量.属于抽样调查.3 数据的表示第1课时扇形统计图1.总体部分2.360°3.比例4.1[典例1]解:学生总数为18+15+12+9+6=60.最喜爱各体育项目学生人数所占的百分比:篮球:18÷60×100%=30%;乒乓球:15÷60×100%=25%;足球:12÷60×100%=20%;排球:9÷60×100%=15%;其他:6÷60=10%.最喜爱各体育项目学生人数所对应扇形圆心角的度数:篮球:360°×30%=108°;乒乓球:360°×25%=90°;足球:360×20%=72°;排球:360×15%=54°;其他:360×10%=36°.画扇形统计图如图所示.[变式]解:(1)认为“有水”:15×100%=25%;60认为“没有水”:27×100%=45%;60×100%=30%.“不知道”:1860(2)认为“有水”:360°×25%=90°;认为“没有水”:360°×45%=162°;“不知道”:360°×30%=108°.(3)如图所示:[典例2]解:(1)50(2)50-25-15=10(人),补全的条形统计图如图所示.=108°.(3)360°×1550答:“乘车”部分所对应的圆心角的度数为108°.第2课时频数直方图1.频数2.(1)最大值最小值(2)分组(3)次数(4)频数直方图[典例1]解:(1)补充完整的频数分布表如下:划记(2)补全频数直方图如图所示:(3)由频数分布直方图,知气温在17≤x<22的天数最多,有10天.(答案不唯一)[变式]B[典例2]解:(1)在本次随机抽取的样本中,调查的学生人数是60÷30%=200(人).(2)因为20~30 min的人数为200-(60+40+50+10)=40(人),所以m%=40×100%=20%.200×100%=25%.n%=50200所以m=20,n=25.(3)补全的频数分布直方图如下:=900(人).(4)3 000×50+10200答:估计“平均每天与父母一起共同干家务所用时长不少于30 min”的学生大约有900人.4 统计图的选择1.条形折线扇形条形2.(1)具体数目(2)变化情况(3)百分比[典例1]B [变式1]C [变式2]A[典例2]解:(1)200(2)补全的条形统计图如图所示.(3)2536(4)10 000×30%=3 000(人).答:该小区居民中最关注的话题是“民法典”的人数大约有3 000人.[变式3]解:(1)4113(2)分别计算A地区这一周每一天的“新增确诊人数”为14,14,13,16,17,14,14.绘制的折线统计图如图所示.(3)A地区的累计确诊人数可能还会增加,防控形势十分严峻,并且每一天的新增确诊人数在13人及13人以上,变化不明显;而B地区的“新增确诊人数”不断减少,疫情防控向好的方向发展,说明防控措施比较到位.(答案不唯一)。
抽样方案设计主要内容有哪些抽样方案设计主要内容有哪些摘要:抽样方案设计是研究中常用的一种方法,通过从总体中选择出一部分样本进行调查或实验,以便进行总体参数估计或判断总体特征。
本文将从抽样目的、抽样方法、样本容量、抽样过程控制、抽样误差和结果分析等六个方面展开叙述,并提供详细的方案设计内容,帮助读者了解抽样方案设计的主要内容。
一、抽样目的抽样目的是抽样方案设计的首要考虑因素。
在确定抽样目的时,需要明确研究的调查对象和研究目标。
抽样目的可以分为描述性目的和推断性目的。
描述性目的主要是为了了解研究对象的现状和特征,而推断性目的则是基于样本估计总体参数或对总体特征进行推断。
具体的抽样目的可以包括:了解总体的平均水平、比例或分布情况;比较不同总体或不同样本之间的差异;评估某个干预措施的效果;预测未来总体的变化趋势等。
二、抽样方法抽样方法是指从总体中选择样本的具体方式。
根据不同的抽样目的和研究对象的特点,可以选择不同的抽样方法。
常用的抽样方法包括:简单随机抽样、系统抽样、分层抽样、整群抽样、多阶段抽样等。
简单随机抽样是最基本的抽样方法,其特点是每个样本有相同的概率被选中,适用于总体中各个个体之间没有明显差异的情况。
系统抽样是按照一定的规则从总体中选择样本,适用于总体有明显的规律或周期性的情况。
分层抽样是将总体分为若干层,然后在每个层次中进行简单随机抽样,适用于总体具有明显的层次结构的情况。
整群抽样是将总体划分为若干个群体,然后随机选择部分群体进行抽样,适用于总体中各群体之间差异较大的情况。
多阶段抽样是将抽样过程分为多个阶段进行,适用于总体结构复杂的情况。
三、样本容量样本容量是指进行抽样调查或实验时所选择的样本数量。
样本容量的确定需要根据抽样目的、总体的特点、抽样方法和可用资源等因素综合考虑。
一般来说,样本容量越大,样本估计总体参数的精度越高。
常用的样本容量确定方法有经验公式法、抽样精度法和假设检验法等。
经验公式法是根据经验公式或规则来确定样本容量的方法,其公式通常是基于总体平均值或比例的方差估计。
抽样调查的方法和样本容量的确定抽样调查是一种常用的研究方法,用于从总体中选择一部分个体,以便获取关于总体特征的信息。
在进行抽样调查时,正确选择调查方法和确定适当的样本容量是至关重要的,本文将探讨这些问题。
一、抽样调查方法的选择根据研究目的和数据采集方式的不同,有多种抽样调查方法可以选择。
以下列举几种常见的方法:1. 简单随机抽样简单随机抽样是最基本的抽样方法之一,通过随机选取样本,确保每个个体都有相等的机会被选入样本。
这种方法适用于总体比较均匀、个体之间差异较小的情况。
2. 系统抽样系统抽样是按照一定的规则从总体中选择样本,如每隔一定间隔选择一个个体。
这种方法适用于总体有一定的有序结构的情况,能够保持总体结构的代表性。
3. 分层抽样分层抽样是将总体划分为若干层次,然后在每一层中进行抽样。
这种方法适用于总体有明显的层次差异,可以保证每个层次都得到充分的代表。
4. 整群抽样整群抽样是将总体划分为若干群体,然后从选定的群体中进行抽样。
这种方法适用于群体内部的变异较大,但群体间差异较小的情况。
二、样本容量的确定确定适当的样本容量是保证抽样调查结果准确性的关键。
样本容量大小的确定应该考虑以下几个因素:1. 总体大小总体越大,所需的样本容量也会相应增加。
一般来说,总体越大,样本容量就需要越大,以确保样本能够充分代表整个总体。
2. 容忍误差容忍误差是指研究者所能接受的样本估计与总体真值之间的最大差距。
容忍误差越小,需要的样本容量也会越大。
3. 抽样方法和样本分布不同的抽样方法和样本分布会影响样本容量的确定。
例如,使用分层抽样时,每个层次的样本容量应根据该层次的重要性和变异程度来确定。
4. 计算方法确定样本容量的计算方法有多种,其中最常用的是利用统计学方法进行计算。
根据总体均值、标准差、置信水平等,可以使用抽样调查中的样本容量计算公式来确定样本容量。
在确定样本容量时,需要综合考虑以上因素,并在保证调查结果准确性的前提下,尽量控制样本容量的大小,以减少调查成本和时间。