数理统计 样本及抽样分布.
- 格式:ppt
- 大小:358.00 KB
- 文档页数:26
数理统计基础公式详解样本统计量与抽样分布数理统计作为一门重要的学科,为我们分析和理解数据提供了基础和方法。
在数理统计中,样本统计量和抽样分布是两个关键概念。
本文将详细解释这些概念,并介绍相关的公式和定理。
一、样本统计量样本统计量是从数据样本中计算得到的数值,用于描述总体的特征。
常用的样本统计量有平均值、方差、标准差、相关系数等。
下面我们将详细介绍这些统计量以及它们的计算公式。
1. 平均值平均值是一组数据的总和除以观测数量,用于衡量数据的集中趋势。
样本平均值的计算公式如下:\[ \overline{x} = \frac{\sum_{i=1}^{n} x_i}{n} \]其中,\( \overline{x} \) 表示样本平均值,\( x_i \) 表示第 i 个观测值,n 表示观测数量。
2. 方差方差衡量了一组数据的离散程度,它表示各观测值与平均值之差的平方和的平均值。
样本方差的计算公式如下:\[ S^2 = \frac{\sum_{i=1}^{n} (x_i - \overline{x})^2}{n-1} \]其中,\( S^2 \) 表示样本方差,\( x_i \) 表示第 i 个观测值,\( \overline{x} \) 表示样本平均值,n 表示观测数量。
3. 标准差标准差是方差的平方根,用于衡量数据的离散程度。
样本标准差的计算公式如下:\[ S = \sqrt{S^2} \]其中,S 表示样本标准差,\( S^2 \) 表示样本方差。
4. 相关系数相关系数衡量了两个变量之间的线性关系的强弱和方向。
样本相关系数的计算公式如下:\[ r = \frac{\sum_{i=1}^{n} (x_i - \overline{x})(y_i -\overline{y})}{\sqrt{\sum_{i=1}^{n} (x_i - \overline{x})^2 \sum_{i=1}^{n} (y_i - \overline{y})^2}} \]其中,r 表示样本相关系数,\( x_i \) 和 \( y_i \) 分别表示第 i 个观测值的两个变量,\( \overline{x} \) 和 \( \overline{y} \) 分别表示两个变量的样本平均值,n 表示观测数量。
概率论与数理统计-ch6-样本与抽样分布概率论中,所研究的随机变量是假定其分布是已知的,在此前提下研究它的性质、数字特征等。
在数理统计中,所研究的随机变量的分布是未知或不完全知道的,通过重复独⽴的试验得到许多观察值去推断随机变量的种种可能分布。
1、随机样本总体:试验的全部可能的观察值。
=样本空间个体:每⼀个可能观察值。
=样本点容量:总体中所包含的个体的个数。
有限总体⽆限总体⼀个总体对应⼀个随机变量X,对总体的研究就是对随机变量X的研究。
所以将不区分总体与相应的随机变量,统称为总体X。
样本:在数理统计中,⼈们都是通过从总体中抽取⼀部分个体,根据获得的数据来对总体分布得出推断的,被抽出的部分个体叫做总体的⼀个样本。
对总体进⾏⼀次观察,就会得到⼀个随机变量X1,对总体进⾏n次重复的、独⽴的观察,就会得到n个随机变量X1,X2,...,Xn,这n个随机变量X1,X2,...,Xn是对总体随机变量X观察的结果。
则X1,X2,...,Xn是相关独⽴且与X具有相同分布,称为来⾃总体X的⼀个简单随机样本。
n称为样本的容量。
进⾏n次观察得到的⼀组实数x1,x2,...,xn是随机变量X1,X2,...,Xn的观察值,称为样本值,也称为X的n个独⽴的观测值。
2、抽样分布样本是统计推断的依据,但往往不直接使⽤样本本⾝,⽽是由样本构造的函数。
统计量:设X1,X2,...,Xn是来⾃总体X的⼀个样本,g(X1,X2,...,Xn)是其函数,且g中不含任何未知参数,则称g(X1,X2,...,Xn)是⼀统计量。
统计量也是⼀个随机变量。
g(x1,x2,...,xn)是统计量的观测值。
常⽤的统计量:经验分布函数:经验分布函数(empirical distribution function)是根据样本得到的分布函数.如设,是总体的样本值,将它们按⼤⼩顺序排列为,则称分布函数为经验分布函数是与总体分布函数相对应的统计量。
总体的分布函数是F(x),统计量的经验分布函数是F n(x),⽤F n(x)去推断F(x),当n⾜够⼤时,F n(x)以概率1收敛于F(x)。
生物数学—-数理统计习题(前半部分)一、抽样与抽样分布1.设X 1,X 2,···,X n 为样本,¯X n =1n n i =1X i ,S 2n =1n n i =1(X i −¯X )2,X n +1为第n +1次的观测样本,试证:¯X n +1=¯X n +1n +1(X n +1−¯X n )2.设x 1,x 2,···,x n 及u 1,u 2,···,u n 为两个样本观测值,它们有如下关系:u i =x i −a b,b =0,a 都为常数,求样本平均值¯u 与¯x ,样本方差S 2u 与S 2x 之间的关系。
3.证明如下等式:(1)n i =1(X i −¯X )=0;(2)n i =1(X i −C )2=n i =1(X i −¯X )2+n (¯X −C )2;(3)n i =1(X i −¯X )2=n i =1X 2i −n ¯X,进而有S 2n =¯X 2−¯X 2,其中¯X 2=1n n i =1X 2i 。
4.若从总体中抽取容量为13的一个样本:−2.1,3.2,0,−0.1,1.2,−4,2.22,2.01,1.2,−0.1,3.21,−2.1,0试写出这个样本的次序统计量,中位数和极差。
5.设X ∼N (µ,σ2),求样本均值¯X与总体期望µ的偏差不超过1.96σ2n的概率。
6.在总体N (52,633)中随机抽一容量为36的样本,求样本均值¯X 落在50.8和53.8之间的概率。
7.求总体N (20,3)的容量分别为10,15的两个独立样本均值差的绝对值大于0.3的概率。
8.设X 1,X 2,···,X 10为N (0,0.09)的一个样本,求P (10i =1X 2i >1.44)。