第四章拓扑编辑
- 格式:doc
- 大小:197.00 KB
- 文档页数:9
拓扑编辑的名词解释拓扑编辑,顾名思义,是对拓扑结构进行编辑和调整的过程。
在数学和计算机科学领域,拓扑编辑是一种用于描述物体间关系和形状的方法。
通过拓扑编辑,我们可以更好地理解和分析物体之间的联系,进而推断出某个空间内的相关性。
一、拓扑编辑的基本概念拓扑编辑是在拓扑学的基础上发展起来的一种技术方法。
拓扑学研究的是物体之间的变形和连通性问题。
而拓扑编辑则是在探索物体之间拓扑连接的基础上,通过添加和删除拓扑元素来改变物体的形状和关系。
例如,在二维平面上,可以通过拓扑编辑来改变多边形的边数、节点的连接方式等。
二、拓扑编辑的应用领域1. 计算机图形学:在计算机图形学中,拓扑编辑被广泛应用于虚拟现实、计算机动画等领域。
通过拓扑编辑,可以对三维模型进行变形、分割、合并等操作,从而实现对虚拟物体的创建和编辑。
2. 地理信息系统:在地理信息系统中,拓扑编辑被用于处理地理空间数据的拓扑关系。
例如,在地图编辑中,通过拓扑编辑可以修复边界错误、移除重叠区域等,以确保地图的准确性。
3. 生物科学:在生物科学中,拓扑编辑被用于研究蛋白质、基因以及其他生物分子之间的拓扑结构和相互作用。
通过拓扑编辑,可以推断出生物分子之间的关系,帮助研究人员更好地理解和研究生物体系。
三、拓扑编辑的方法和技巧1. 拓扑变换:拓扑变换是一种常用的拓扑编辑方法。
它通过改变物体的形状和拓扑结构来实现编辑功能。
例如,通过对一个结构进行扩展、收缩或旋转,可以改变物体之间的拓扑关系。
2. 拓扑修复:在进行拓扑编辑时,可能会出现错误和不一致性。
拓扑修复就是通过添加、删除或修改拓扑元素来修复这些错误。
例如,在地图编辑中,如果两个多边形存在共享边界的错误,可以通过拓扑修复将它们断开。
3. 拓扑操作:拓扑操作是在拓扑编辑中常用的一种技巧。
通过执行一系列的拓扑操作,可以实现对物体形状和拓扑结构的精确控制。
例如,在计算机动画中,可以使用拓扑操作来对物体进行变形和管理。
快速掌握CAD中的拓扑和属性编辑在CAD软件中,拓扑和属性编辑是非常重要的功能,它们可以帮助我们更加有效地编辑和管理绘图文件。
本文将介绍如何在CAD软件中快速掌握拓扑和属性编辑的技巧。
首先,我们先来了解一下拓扑编辑。
拓扑编辑是指对CAD绘图中的几何实体进行修改和调整,以满足设计要求的过程。
在CAD软件中,常见的拓扑编辑操作包括移动、旋转、缩放等。
下面是一些常用的拓扑编辑技巧:1. 移动实体:选中需要移动的实体,点击移动命令,然后选择一个基准点和目标点,即可将实体移动到指定位置。
2. 旋转实体:选中需要旋转的实体,点击旋转命令,然后选择一个基准点和旋转角度,即可将实体按指定角度旋转。
3. 缩放实体:选中需要缩放的实体,点击缩放命令,然后选择一个基准点和缩放比例,即可按比例缩放实体。
除了拓扑编辑外,属性编辑也是CAD软件中常用的功能之一。
属性编辑可以帮助我们添加、修改和删除实体的属性信息,以便更好地组织和管理绘图文件。
下面是一些常用的属性编辑技巧:1. 添加属性:选中需要添加属性的实体,点击属性命令,然后输入属性名称和属性值,即可为实体添加属性。
2. 修改属性:选中需要修改属性的实体,点击属性命令,然后选择需要修改的属性,输入新的属性值即可完成属性修改。
3. 删除属性:选中需要删除属性的实体,点击属性命令,然后选择需要删除的属性,点击删除按钮即可删除属性。
通过掌握以上技巧,我们可以快速高效地进行CAD绘图工作。
当然,除了基本的拓扑和属性编辑技巧外,还有一些高级功能值得我们探索和学习,比如实体联接、属性过滤等。
CAD软件是设计师们的得力助手,它不仅可以帮助我们完成各种复杂的设计任务,还可以提高我们的工作效率。
因此,掌握CAD中的拓扑和属性编辑技巧对于我们来说是非常必要的。
最后,我要强调的是,在学习CAD软件时,我们要注重实践和实际操作,通过反复练习和实际运用,才能真正掌握这些技巧。
希望本文能对大家的学习和工作有所帮助,祝大家在CAD软件的使用过程中取得好成绩!。
拓扑编辑刚完成数字化的地图,或多或少总会有一些错误,现有的数字化地图可能存在数据源已过时或者本身包含来自初始数字化错误的问题,一般,公路、地块、森林蓄积量和其他一些数据的数字地图都要求定期修正和更新,空间数据编辑主要就是来消除数字化的错误。
拓扑编辑确保数字化的空间要素遵循数据模型固有的或者用户指定的拓扑关系。
以ArcGIS为例介绍二种类型的拓扑编辑:地图拓扑编辑、拓扑规则编辑。
1.用聚合容差修正两个shapefile之间的数字化错误由于数字化误差,trial_dig.shp和land_dig.shp之间存在差异,这里将用聚合容差使trial_dig.shp和land_dig.shp的边界线重合。
1.将land_dig.shp和trial_dig.shp添加到新的数据帧Task2中,用不同颜色的外框符号显示两个shapefile,把land_dig的标识字段命名为LAND_DIG_I,Selection栏中不勾选land_dig,用 Measure检查两图间的偏差;图1 边界线未重合2.在两个shapefile之间建立地图拓扑。
View\Toolbar勾选EditorTopology,Start Editing,任务栏指向Modify Edge,目标是trial_dig,Topology\Map Topology,弹出的对话框中,选择land_dig.shp和trial_dig.shp为地图拓扑图层,并键入1m为聚合容差;图2图2-1 land_dig.shp和trial_dig.shp为地图拓扑图层,聚合容差为1m;3.对trial_dig多边形修正数字化错误,在Topology点击工具条下Topology Edit Tool,双击多边形边界,右击红色节点,选择Move,再敲Enter,此时在使用指定的容差值结合节点和边缘,用相同步骤对剩余多边形进行修正;图3 修正多边形数字化错误4.剩下的误差是因为它的误差值大于指定的聚合容差(1m),使用Edit Tool双击不一致的边界线,把一个个节点拖至与目标线段接合;5.Stop Editing,保存编辑。
实验4 拓扑编辑1.背景知识许多不同的矢量数据包含共享几何的要素,如:森林边界可能在河流边上、湖泊面可能与土地覆被面和湖岸线共享边界、而宗地多边形可能被宗地地块线覆盖等。
编辑这些图层时,应同时更新重合的要素以便继续共享几何。
拓扑允许您以此方法执行编辑。
本次试验介绍ARCGIS二种类型的拓扑编辑:地图拓扑编辑、拓扑规则编辑。
创建地图拓扑很快且只允许您编辑相互连接的要素。
地理数据库拓扑需要较多努力来设置和修改,因为其提供规则来定义有关要素在一个或更多要素类中如何共享几何的复杂关系2.实验目的(1)理解拓扑关系的含义,掌握地图拓扑编辑的基本步骤和相关技能。
(2)掌握创建一个要素数据集的拓扑关系的整个流程,并对创建拓扑后的一些工作,如拓扑错误检测、拓扑错误修改、拓扑编辑等基本操作技能。
3.所需数据Blocks.shp、Parcels.shp4.操作步骤4.1.任务一:地图拓扑编辑(1)创建地图拓扑:启动ArcMAP,加载具有共享边的矢量数据,通过编辑工具条上的“开始编辑”菜单,使图层处于编辑状态。
激活拓扑编辑工具条,单击拓扑工具条上的“选择拓扑”按钮(左边第一个),将弹出选择拓扑对话框(图4-1所示)。
图4-1 选择拓扑对话框在弹出的选择拓扑对话框中选中将参与地图拓扑的图层(当前编辑会话中可参与地图拓扑的所有图层都将在对话框中列出;地图拓扑中不能包括表示注记要素类、尺寸注记要素类以及参与几何网络的要素类的图层,因此不会列出这些图层)。
另外,单击选项可查看拓扑容差,此距离定义了边和折点必须接近到何种程度才能被视为重合。
通常,您不应更改默认拓扑容差,因为默认值是可能的最小值。
增大拓扑容差可能会导致多个要素被捕捉在一起而成为重叠要素,而这可能会降低数据的空间精度并导致要素折叠或变形。
单击“确定”将创建地图拓扑。
线要素和面要素的轮廓将成为拓扑边、点要素、线的端点以及边相交成为结点的位置。
(2)选择/取消选择拓扑边:单击拓扑工具条上的“拓扑编辑工具”,单击边或框选来选择多个拓扑元素;要沿一条连接的路径选择多条边,可单击拓扑编辑工具旁边的下拉箭头并单击拓扑编辑追踪工具“沿边单击来选择边”,选择边完成后再次单击;也可使用常规拓扑编辑工具,并按住鼠标左键来选择连接的边。
本章讨论拓扑空间的几种拓扑不变性质,包括连通性,局部连通性和弧连通性,并且涉及某些简单的应用.这些拓扑不变性质的研究也使我们能够区别一些互不同胚的空间.本节重点:掌握连通与不连通的定义;掌握如何证明一个集合的连通与否;掌握连通性的拓扑不变性、有限可积性、可商性.我们先通过直观的方式考察一个例子. 在实数空间R中的两个区间(0,1 )和]1, 2),尽管它们互不相交,但它们的并(0, 1)U[I , 2) = (0, 2)却是一个“整体”;而另外两个区间(0, 1 )和(1, 2),它们的并(0, 1)U(1, 2)是明显的两个“部分”.产生上述不同情形的原因在于,对于前一种情形,区间(0, I )有一个凝聚点1在]1, 2)中;而对于后一种情形,两个区间中的任何一个都没有凝聚点在另一个中.我们通过以下的定义,用术语来区别这两种情形.定义4.1.1 设A和B是拓扑空间X中的两个子集.如果则称子集A和B是隔离的.明显地,定义中的条件等价于「二 J和- - - J同时成立,也就是说,A与B无交并且其中的任何一个不包含另一个的任何凝聚点.应用这一术语我们就可以说,在实数空间R中,子集(0, 1 )和(1, 2)是隔离的,而子集(0,l )和[1,2)不是隔离的.又例如,易见,平庸空间中任何两个非空子集都不是隔离的,而在离散空间中任何两个无交的子集都是隔离的.定义4.1.2 设X是一个拓扑空间•如果X中有两个非空的隔离子集A和B使得X=AJ B,则称X是一个不连通空间;否则,则称X是一个连通空间.显然,包含着多于两个点的离散空间是不连通空间,而任何平庸空间都是连通空间.定理4.1.1 设X是一个拓扑空间.则下列条件等价:(I )X是一个不连通空间;(2)X中存在着两个非空的闭子集A和B使得A H 和A J B= X成立;(3)X中存在着两个非空的开子集A和B使得A H 和A J B= X成立;(4)X中存在着一个既开又闭的非空真子集.证明条件(I )蕴涵(2):设(1)成立.令A和B是X中的两个非空的隔离子集使得A J B= X,显然A H ,并且这时我们有B =Br\X =Br\(AuB) = (B nZ)u(5 = B因此B是X中的一个闭子集;同理A也是一个X中的一个闭子集.这证明了集合A和B满足条件(2)中的要求.条件(2)蕴涵(3).如果X的子集A和B满足条件(2)中的要求,所以A、B为闭集,则由于这时有A=_和B=「,因此A、B也是开集,所以A 和B也满足条件(3)中的要求.条件(3)蕴涵(4).如果X的子集A和B满足条件(3)中的要求,所以A B是开集,则由和B二匸易见A和B都是X中的闭集,因此A、B 是X中既开又闭的真(:A B M0, A U B=X ••• A B M X)子集,所以条件(4)成立.条件(4)蕴涵(I ).设X中有一个既开又闭的非空真子集 A.令•则A和B都是X中的非空的闭子集,它们是无交的并且使得A U B=X易见两个无交的闭子集必定是隔离的(因为闭集的闭包仍为自己).因此(I )成立.例4.1.1 有理数集Q作为实数空间R的子空间是一个不连通空间.这是因为对于任何一个无理数r €R-Q,集合(-X,r )n Q=(-^,r] HQ是子空间Q中的一个既开又闭的非空真子集.定理4.1.2 实数空间R是一个连通空间.证明我们用反证法来证明这个定理.假设实数空间R是不连通空间.则根据定理4.1.1 ,在R中有两个非空闭集A 和B使得A H 和A U B= R成立.任意选取a€A和b€ B,不失一般性可设a v b.令」=A H [a,b],和J =B H [a,b].于是」和J是R中的两个非空闭集分别包含a和b,并且使得」n J =二和」U J =[a,b]成立.集合」有上界b,故有上确界,设为=.由于」是一个闭集,所以匚€」,并且因此可见匚v b,因为]二b将导致b€」nF,而这与」nF =二矛盾.因此(1 , b] — F .由于J 疋一个闭集,所以「€ 一 .这又导致]€」n 一,也与」n 一 =二矛盾.定义4.1.3 设丫是拓扑空间X的一个子集.如果丫作为X的子空间是一个连通空间,则称丫是X的一个连通子集;否则,称丫是X的一个不连通子集.拓扑空间X的子集丫是否是连通的,按照定义只与子空间丫的拓扑有关(即丫的连通与否与X的连通与否没有关系.)•因此,如果/ --—丄,则丫是X 的连通子集当且仅当丫是Z的连通子集•这一点后面要经常用到.定理4.1.3 设丫是拓扑空间X的一个子集,A, B_Y.贝U A和B是子空间丫中的隔离子集当且仅当它们是拓扑空间X中的隔离子集.因此,丫是X的一个不连通子集,当且仅当存在丫中的两个非空隔离子集A和B使得A U B= Y(定义)当且仅当存在X中的两个非空隔离子集A和B使得A U B= Y.证明用分别表示A在丫,X中的闭包.因为(P J(A)nfl)u(C Y(S) n& = ((C£(A)nK)n^)u(©(B)nY)nA)=(6 ⑷n(?n fl)) u © (B) n(?n 血)=(C x⑷冲)u (0 (5)n &因此根据隔离子集的定义可见定理成立.定理4.1.4 设丫是拓扑空间X中的一个连通子集.如果X中有隔离子集A和B使得YCAUB贝U或者YCA,或者丫匚B.证明如果A和B是X中的隔离子集使得丫CAUB则((占cK) c £ eV) u ((占 c?) c / eV) c (_AnYnB)u(Br\YnA)F 0((.4 n5)u(^nl) = 0这说明A AY和B AY也是隔离子集.然而(A A Y)U( B A Y) = ( A U B)A Y= Y因此根据定理4.1.3,集合A AY和B AY中必有一个是空集.如果A A 丫二二,据上式立即可见Y —B,如果B A 丫=二,同理可见Y—A.定理4.1.5 设丫是拓扑空间X的一个连通子集,Z_X满足条件二二.则Z也是X的一个连通子集.证明假设Z是X中的一个不连通子集•根据定理 4.1.3,在X中有非空隔离子集A和B使得Z=A U B,因此Y_AUB由于丫是连通的,根据定理4.1.4 ,或者Y_A. 丄二二’I 匚」二口二二匸J或者Y_B,同理,二一门.这两种情形都与假设矛盾.定理4.1.6 设是拓扑空间X的连通子集构成的一个子集族.如果"匚贝U -■-是X的一个连通子集.证明设A和B是X中的两个隔离子集,使得- ■ J - , = AU B.任意选取x€…汀:「,不失一般性,设x€ A.对于每一个丫€ r ,由于连通,根据定理4.1.4 ,或者二-」或者;由于x€「AA ,所以;一一―.根据定理4.1.3,这就证明了「是连通的.定理4.1.7 设丫是拓扑空间X中的一个子集.如果对于任意x, y€Y存Y Y在X中的一个连通子集 r使得x, y€:-Y,则丫是X中的一个连通子集.证明如果丫=二,显然丫是连通的.下设丫工二,任意选取a€ Y,容易验证丫=七;「I并且a€ 冷‘二.应用定理4.1.6,可见丫是连通的.我们曾经说过,拓扑学的中心任务便是研究拓扑不变性质(参见§ 2. 2).所谓拓扑不变性质,乃是为一个拓扑空间具有必为任何一个与其同胚的拓扑空间所具有的性质.事实上,如果拓扑空间的某一个性质,它是藉助于开集或者藉助于经由开集定义的其他概念表达的,则此性质必然是拓扑不变性质.拓扑空间的某种性质,如果为一个拓扑空间所具有也必然为它在任何一个连续映射下的象所具有,则称这个性质是一个在连续映射下保持不变的性质.因为同胚是连续的满射,所以在连续映射下保持不变的性质必然是拓扑不变性质•拓扑空间的某种性质,如果为一个拓扑空间所具有也必然为它的任何一个商空间所具有,则称这个性质是一个可商性质.因为拓扑空间到它的商空间的自然的投射是一个连续的满射,所以在连续映射下保持不变的性质必然是可商性质.以下定理4.1.8指出,连通性(即一个拓扑空间是连通的这一性质)是一个在连续映射下保持不变的性质•因此,它是拓扑不变性质,也是可商性质.定理4.1.8 设f:X -Y是从连通空间X到拓扑空间Y的一个连续映射.则 f (X)是Y的一个连通子集.证明如果f (X)是丫的一个不连通子集,则存在丫的非空隔离子集A 和B使得f (X)= A U B.于是「' (A)和」(B)是X的非空子集,并且(厂(& n 7^)c旷S n广1@)) u屮(Q门厂(劝三于"((He 牙)u(£c7)) = 0所以「' (A)和「•(B)是X的非空隔离子集.此外,1 (A)U「(B)^ 1 (A U B) = 1 (f(X))=X这说明X不连通.与定理假设矛盾.拓扑空间的某种性质P称为有限可积性质,如果任意n>0个拓扑空间X屁•益都具有性质P,蕴涵着积空间心严XX:也具有性质p.例如,容易直接证明,如果拓扑空间丄丄「-為都是离散空间(平庸空间),则积空间紅吟心X•:也是离散空间(平庸空间),因此我们可以说拓扑空间的离散性和平庸性都是有限可积性质.根据定理3. 2. 9以及紧随其后的说明可见:假设已知拓扑空间的某一个性质p是一个拓扑不变性质.为了证明性质p是一个有限可积性质,我们只要证明任何两个具有性质p的拓扑空间的积空间也是具有性质p的拓扑空间.定理 4.1.9 -J--'是n个连通空间. 则积空间亠二I;也是连通空间.证明根据前一段中的说明,我们只要对于n=2的情形加以证明.首先我们指出:如果'■" 1 ‘1两个点有一个坐标相同,则■'〕二有一个连通子集同时包含x和y不失一般性,设定义映射k:「‘一使得对于任何有一"1 < .由于X吐是取常值;的映射,为恒同映射,它们都是连续映射,其中-.Jl j分别是到第1和第2个坐标空间的投射•因此,k是一个连续映射•根据定理 4.1.8 , k(';Q是连通的•此外易见,上(為)屮JX為,因此它同时包含x和y.现在来证明:中任何两个点"mybwJEXixx:同时属于二的某一个连通子集.这是因为这时若令-. ■•_:,则根据前段结论,可见有二■ j的一个连通子集4同时包含x和z, 也有二■- j 的一个连通子集I同时包含y和z.由于z€,因此根据定理4.1.6,是连通的,它同时包含x 和y.于是应用定理4.1.7可见「•、是一个连通空间.因为n维欧氏空间丁是n个实数空间R的笛卡儿积,而实数空间R又是一个连通空间,所以应用这个定理可见,n维欧氏空间J是一个连通空间.作业:P116 3. 5. 6. 8. 14.本节重点:掌握实数空间R中的连通子集的“形状”掌握实数空间R的子集中常见的连通子集与不连通子集掌握常见的几种空间的同胚与否的事实让我们回忆实数集合R中区间的精确定义:R的子集E称为一个区间,如果它至少包含两个点,并且如果a,b€ E, a v b,则有[a , b]={x € R|a<x< b} - E读者熟知,实数集合R中的区间共有以下9类:(-x,x),(a,x),[a,7,(-车a),(- ^,a](a,b),(a,b],[a,b),[a,b]因为,一方面以上9类集合中的每一个显然都是区间;另一方面,如果E_ R 是一个区间,可视E有无上(下)界,以及在有上(下)界的情形下视其上(下)确界是否属于E,而将E归入以上9类之一在定理4. 1. 2中我们证明了实数空间R是一个连通空间•因为区间(a, %),(—X,&)和(a,b)都同胚于R (请读者自己写出必要的同胚映射),所以这些区间也都是连通的;由于血 8)=血8),(-8,a)C[a.b) c[a9bl(a^ C @上]U[爲切c 丽根据定理4. 1. 5可见区间[a,^),(— ^,a],[a,b),(a,b]和[a,b]都是连通的.另一方面,假设E是R的一个子集,并且它包含着不少于两个点•如果E 不是一个区间,则----- -‘ ? -■■■ ■■--,也就是说,存在a<c<b,使得m ;从而,若令A= (— X, c) A E, B=(c,x)PE则可见A和B都是E的非空开集,并且有A U B=E和A A B=J ,因此E不连通.综合以上两个方面,我们已经证明了:定理421 设E是实数空间R的一个子集.E是包含着不少于两个点的一个连通子集当且仅当E是一个区间.定理422 设X是一个连通空间,f:X -R是一个连续映射.则f(X)是R 中的一个区间.因此,如果x, y€ X,则对于f(x)与f(y)之间的任何一个实数t (即当f(x) < f(y)时,f(x) < t < f(y);当f(y) < f(x)时,f(y) < t < f(x)),存在z €X 使得f(z)=t .证明这个定理的第一段是定理4. 1. 8和定理421的明显推论.以下证明第二段.设x,y€ X.如果f (x )= f (y),则没有什么要证明的.现在设f (x)工f (y),并且不失一般性,设f (x) v f (y).由于f (X)是一个区间,所以[f (x),f (y) ]_ f (X).因此对于任何t,f(x) < t < f(y),有t € f(X),所以存在z€ X,使得f (z) =t.根据定理4.2.2,立即可以推出数学分析中的介值定理和不动点定理.定理4.2.3 [介值定理]设f:[a,b]-R是从闭区间[a,b]到实数空间R的一个连续映射.则对于f (a)与f (b)之间的任何一个实数r,存在z€ [a,b]使得f(z)=r .定理4.2.4[不动点定理]设f:[0,1]0,1 ]是一个连续映射.则存在z€ [0,1]使得f(z)=z证明如同数学分析中的证法那样,只需构造F(x)=x-f(x), 再利用介值定理即可证得.容易证明欧氏平面卅中的单位圆周是连通的. 这是因为如果定义映射f:R —f使得对于任意t €尺有f(t)=(cos2 n t,si n2 n t) €「,则易于验证f 是一个连续映射,并且f(R) =〕•因此〕是连通空间R在一个连续映射下的象,所以它是连通的.设点…八厂;.1「称为点x的对径点•映射r f使得任何x€「',有r(x)=-x,称为对径映射•对径映射是一个连续映射,因为它是欧氏平面丁到自身的反射I :口一在单位圆周上的限制•其中,映射I 定义为对于任何"产卞,有I (x)= -x,容易验证(请读者自行验证)是一个连续映射.定理4.2.5[Borsuk-Ulam 定理] 设f:「—R是一个连续映射.则在二中存在一对对径点x和-x,使得f(x)=f(-x).证明(略)我们已经知道n维欧氏空间T是连通空间,下面进一步指出:定理426 n> 1维欧氏空间〔的子集丁-{0}是一个连通子集,其中0= (0,0,…,0)€ 7 .证明我们只证明n = 2的情形.根据定理4. 1. 9, 丁中的子集(-%, 0) 乂尺和(0,x)XR都是连通的.由于C[0L®)X5-{0} c [0®)xR =(O p®)xfi 所以根据定理4. 1. 5, Rn中的子集A=[0, ^) XR-{0}是连通的;同理,子集B=(- %, 0]XR-{0}是连通的.由于A H 以及A U B=T -{0},因此根据定理4.1 . 6可见,「-{0}是连通的.一般情形的证明类似,请读者自行补证.定理426可以得到进一步的改善(参见习题第4题)定理427 欧氏平面】和实数空间R不同胚.证明假设丁与R同胚,并且设f:〔-R是一个同胚•因此对于连续映射我们有J ■'•但根据定理426 , ? -{0}是连通的,而根据定理421 , R-{f(0)}是不连通的•这与定理4. 1. 8矛盾.定理427给出了利用拓扑不变性质判定两个空间不同胚的第一个实例.定理424,定理425和定理427尽管简单但确有意思,特别是这几个定理都有高维“版本”,我们分别陈述如下:定理4.2.8[Brouwer不动点定理] 设f :丄.-'是一个连续映射,其中「是n维球体.则存在z€丄■使得f (z) =z.定理4.2.9[Borsuk —Ulam定理] 设f:」一厂是一个连续映射,其中n》m 则存在x€『使得f (x) =f (-x ).定理4210 如果n^ m则欧氏空间T和不同胚.这些定理的证明 (除去我们已经证明过的情形)一般都需要代数拓扑知识,例如同调论或同伦论,请参阅有关的专门书籍.作业:P121 4.本节重点:掌握连通分支的定义(即连通”类”的分法);掌握连通分支的性质(定理431).从前面两节中的内容可以看出,知道一个拓扑空间是否连通给我们处理- 些问题带来很大的方便.这导致我们去考察一个我们并不知道是否连通的拓扑空间中的“最大”连通子集(即连通分支).定义431 设X是一个拓扑空间,x, y€ X.如果X中有一个连通子集同时包含x和y,我们则称点x和y是连通的.(注意:是点连通)根据定义可见,如果x, y, z都是拓扑空间X中的点,贝U(1)x和x连通(因为每一个单点集都是连通子集);(2)如果x和y连通,则y和x也连通;(显然)(3)如果x和y连通,并且y和z连通,则x和z连通.(这是因为,这时存在X中的连通子集A和B使得x,y€A和y,z€ B.从而由于y€ A PB 可见A UB连通,并且x,z€ A U B.因此x和z连通.)以上结论归结为:拓扑空间中点的连通关系是一个等价关系.定义432 设X是一个拓扑空间.对于X中的点的连通关系而言的每一个等价类称为拓扑空间X的一个连通分支.如果丫是拓扑空间X的一个子集.丫作为X的子空间的每一个连通分支称为X 的子集丫的一个连通分支.拓扑空间X M二的每一个连通分支都不是空集;X的不同的连通分支无交;以及X的所有连通分支之并便是X本身•此外,x, y€X属于X的同一个连通分支当且仅当x和y连通.拓扑空间X的子集A中的两个点x和y属于A的同一个连通分支当且仅当A 有一个连通子集同时包含点x和y.定理431 设X是一个拓扑空间,C是拓扑空间X的一个连通分支.则(1)如果Y是X的一个连通子集,并且Y G C M乳【一f ;(2)C是一 -个连通子集;(3)C是一一个闭集.本定理中的条件(1)和(2)说明,拓扑空间的每一个连通分支都是X的一个最大的连通子集.证明(1)任意选取x € Y G C•对于任何y €Y由于x和y连通,故y € C•这证明Y_C.Y (2)对于任何x,y€ C,根据定义可见,存在X的一个连通子集「匸使得x,y€ r- .显然「匸G C M二,故根据(1),匚—C.应用定理4. 1. 7可知, C 是连通的.(3)因为C连通,根据定理4. 1. 5,「连通.显然,一I 一■'.所以根据(1),•「二 = .从而C是一个闭集.但是,一般说来连通分支可以不是开集.例如考虑有理数集Q (作为实数空间R的子空间).设x,y€ Q x M y.不失一般性,设x v y.如果Q的一个子集E同时包含x和y,令A=(- X,r)GE和B=(r,)G E,其中r是任何一个无理数,x v r v y .此时易见A和B都是Q的非空开集,并且E= A U B.因此E不连通.以上论述说明E中任何一个包含着多于两个点的集合都是不连通的,也就是说,Q的连通分支都是单点集•然而易见Q中的每一个单点集都不是开集.记住这个事实:任一个集合A都可以由含于它内部的所有连通分支的并而成(且这些连通分支互不相交).即使是离散空间,它的每一个点自成连通分支这个结论也成立.作业:P123 1 . 3. 4. 8.本节重点:掌握局部连通的定义与性质(定理441-443);掌握连通与局部连通的关系引进新的概念之前,我们先来考察一个例子.例 4.4.1 在欧氏平面丄中令S={(x,sin(1/x))|x € (0,1]}.T={0} X[-1,1],其中S被称作拓扑学家的正弦曲线,它是区间(0, 1]在一个连续映射下的象,因此是连通的.此外,也容易验证J S U T,因此S UT也是连通的.尽管如此,倘若我们查看〕中的点,容易发现它们明显地分为两类:S中的每一个点的任何一个“较小的”邻域中都包含着一个连通的邻域,而T中的每一个点的任何一个邻域都是不连通的. 我们用以下的术语将这两个类型的点区别开来.定义441 设X是一个拓扑空间,x€ X.如果x的每一个邻域U中都包含着x 的某一个连通的邻域V,则称拓扑空间X在点x处是局部连通的.如果拓扑空间X在它的每一个点处都是局部连通的,则称X是一个局部连通空间.回到例441中所定义的拓扑空间1.容易证明,[在其属于S的每一个点处是局部连通的,而在其属于T的每一个点处都不是局部连通的.也因此,尽管〔是一个连通空间,但它却不是一个局部连通的空间.局部连通的拓扑空间也不必是连通的.例如,每一个离散空间都是局部连通空间,但包含着多于两个点的离散空间却不是连通空间.又例如,n维欧氏空间丁的任何一个开子空间都是局部连通的(这是因为每一个球形邻域都同胚于整个欧氏空间厂,因而是连通的),特别,欧氏空间J本身是局部连通的.另一方面,欧氏空间丁中由两个无交的非空开集的并作为子空间就一定不是连通的(请读者自己证明).此外根据定义立即可见:拓扑空间X在点x€X处是局部连通的当且仅当x 的所有连通邻域构成点x处的一个邻域基,定理4.4.1 设X是一个拓扑空间.则以下条件等价:(1)X是一个局部连通空间;(2)X的任何一个开集的任何一个连通分支都是开集;(3)X有一个基,它的每一个元素都是连通的.证明(1)蕴涵(2).设C是X的一个连通分支,「-- -「.如果x€ C, 由于U是x的一个邻域,所以当(1)成立时x有一个连通邻域V包含于U•又由于V GC包含着点x,所以不是空集,根据定理4. 3. 1可见-/ .因此C€二.这证明C 是属于它的任何一个点x的邻域,因此C是一个开集.条件(2)蕴涵(3).若(2)成立,则X的所有开集的所有连通分支(它们都是开集)构成的集族,由于每一个集合是它的所有连通分支之并,恰是X 的一个基.条件(3)蕴涵⑴.显然.我们常用到定理441的一个推论:局部连通空间的每一个连通分支都是开集.定理442 设X和Y都是拓扑空间,其中X是局部连通的.又设f:X -Y 是一个连续开映射.则f (X)是一个局部连通空间.证明根据定理4.4.1,可设B是X的一个基,其中的每一个元素都是连通的.对于每一个B€ B,集合f(B)是连通的,并且由于f是一个开映射,f (B) 是丫中的一个开集,因此也是f(X)的一个开集.这证明集族B1={f (B)|B € B}} 是一个由f (X)的连通开集构成的族.我们指出B1是f(X)的一个基,这是因为,如果U是f(X)中的一个开集,贝U ' ( U)是X中的一个开集,因此码匚肌厂⑺“戶/(广如))=如他是B1中某些元素之并.于是根据定理441可知f (X)是局部连通的.根据定理442易见,拓扑空间的局部连通性是一个拓扑不变性质.定理443 设是n》l个局部连通空间.则积空间免-二二':也是局部连通空间.证明(略)应用这些定理,有些事情说起来就会简单得多.例如,实数空间R由于所有的开区间构成它的一个基,所以它是局部连通的;n维欧氏空间J是n个R 的积空间,所以它也是局部连通的.当然这些事情我们早就知道了.作业:P127 123.较之于连通空间的概念,道路连通空间这个概念似觉更符合我们的直觉因而易于理解些•我们先定义“道路”.定义4.5.1 设X是一个拓扑空间•从单位闭区间[0,1] -X的每一个连续映射f:[0 , 1] -X叫做X中的一条道路,并且此时f(0)和f(1)分别称为道路f的起点和终点•当x = f (0)和y = f (1)时,称f是X中从x到y的一条道路•起点和终点相同的道路称为闭路,并且这时,它的起点(也是它的终点)称为闭路的基点.如果f是X中的一条道路,则道路f的象集f([0 ,1])称为X中的一条曲线或弧,并且这时道路f的起点和终点也分别称为曲线f([0,1])的起点和终占八、、・或许应当提醒读者,“道路”这个词在这里所表达的意思已经与我们对它原有的理解颇有不同,希望读者不要因此而混淆了我们在这里严格定义的道路和曲线这两个不同的概念.定义4.5.2 设X是一个拓扑空间•如果对于任何x,y,存在着X中的一条从x到y的道路(或曲线),我们则称X是一个道路连通空间.X中的一个子集丫称为X中的一个道路连通子集,如果它作为X的子空间是一个道路连通空间.(Y是否道路连通与X是否道路连通没有关系)实数空间R是道路连通的.这是因为如果x ,y€ R,则连续映射f:[0 ,1] -R 定义为对于任何t € [0,1]有f(t)=x+t(y-x),便是R中的一条以x为起点以y 为终点的道路、也容易验证任何一个区间都是道路连通的.定理4.5.1 如果拓扑空间X是一个道路连通空间,则X必然是一个连通空间.证明对于任何x, y€ X,由于X道路连通,故存在从x到y的一条道路f:[0,I] -X这时曲线f ([0,1]),作为连通空间[0,1]在连续映射下的象,是X中的一个连通子集,并且我们有x,y€ f ([0,1]) •因此根据定理4.1.7 可见X是一个连通空间.连通空间可以不是道路连通的•我们已经指出例4. 4. I中的〕是一个连通空间•不难证明(留作习题,见习题第3题)它不是道路连通的.道路连通与局部连通之间更没有必然的蕴涵关系、例如离散空间都是局部连通的,然而包含着多于两个点的离散空间不是连通空间,当然也就不是道路连通空间了.定理4.5.2 设X和Y是两个拓扑空间,其中X是道路连通的,f:X -Y是一个连续映射.则f (X)是道路连通的.证明设'r| " . . ' I 1 .… 由于X是道路连通的,故X中有从二到二的一条道路g: [0,1] -X.易见,映射h: [0,1] -f(X),定义为对于任意t € [0,1]有h (t) =f :g (t),是f (X)中从「到l的一条道路•这证明f (X )是道路连通的.根据定理4.5.2可见,空间的道路连通性是一个拓扑不变性质,也是一个 可商性质.定理4.5.3 设-、一_•-=是n 》l 个道路连通空间.则积空间证明 我们只需要对n = 2的情形加以证明.设■ ■': ' ■- - - 对于i=l , 2,由于…是道路连通空间,故在…中有从[到I 的一条道路,::[0 , 1] 一…•定义映射f : [0 , 1]— X 皿,使得对于任何t € [0 , l ]有f (t )=(.容易验证 (应用定理327 )f 是连续的,并且有f(0)=x,f(1)=y •这也就是说f 是■: ■ j 中从x 到y 的一条道路.这证明二「X 是一个道路连通空间.作为定理4.5.3的一个直接的推论立即可见:n 维欧氏空间T 是一个道路 连通空间.(这个结论也容易直接验证.)为了今后的需要我们证明以下引理,定理4.5.4[粘结引理]设A 和B 是拓扑空间X 中的两个开集(闭集), 并且有X = A U B.又设Y 是一个拓扑空间,< :A —Y 和I : B —Y 是两个连续映射,满足条件: /1 Zi Li定义映射f:X —Y 使得对于任何x € X ,MW xeZf (x 「J-二也是道路连通空间.则f是一个连续映射.证明首先注意,由于-3 ,映射f的定义是确切的.因为当x€A PB 时, 有加心⑴.其次,我们有:对于丫的任何一个子集Z有厂⑵忧(Z)皿(Z)这是由于厂c厂「「门-现在设U是Y的一个开集•由于】「1都连续,所以1—1 I分别是A和B的开集•然而A和B都是X的开集,所以仙啟) 也都是X的开集•因此厂二「亠-:是X的一个开集•这便证明了f是一个连续映射.当A和B都是X的闭集时,证明是完全类似的.我们现在按建立连通分支概念完全类似的方式建立道路连通分支的概念.定义4.5.3 设X是一个拓扑空间,x, y€ X.如果X中有一条从x到y 的道路,我们则称点x和y是道路连通的.(注意:是“点”道路连通)根据定义可见,如果x,y,z都是拓扑空间X中的点,贝U(1)x和x道路连通;(因为取常值的映射f: [0 ,1] -X(它必然是连续的)便是一条从x到x的道路•)(2)如果x和y连通,则y和x也连通;(设f:[0 ,1] -X是X中从x到y的一条道路•定义映射j : [0,1] -X,使得对于任何t € [0,1]有j (t )= f (1 -1) •容易验证j是一条从y到x的道路.)(3)如果x和y连通,并且y和z连通,则x和z连通.(设】::[0,1] -X分别是X中从x到y和从y到z的道路•定义映射f:[0,1] -X使得对于任何t € [0,l],fE fe[0,l/2]恥T)£E[H2」]。
第四章 紧致性紧致性是数学分析中的重要概念。
尽管这个概念出现的较早,但是,从本质上讲,它是一个拓扑概念,也是一个最基本的拓扑性质。
我们先回忆一下度量空间紧性〔列紧性〕概念〔在实直线上,紧性是描述闭区间性质的,而在实分析中,闭区间具有良好的性质〕。
§4-1 度量空间(,)X d 中紧性〔简单复习〕定义1 设A 是(,)X d 的一个子集。
如果A 中任一无穷点列有子列收敛于X 中的一点,则称A 是相对列紧的;如果A 中每个收敛子列的极限点都属于A ,则称A 是列紧的; 如果(,)X d 本身是列紧的,则称为列紧空间。
注释:这里的紧性之所以成为列紧,是因为用序列收敛描述的。
●下面的结论是显然的〔由于都是过去的知识,所以不加证明的给出〕 〔1〕 有限子集总是列紧的。
〔2〕 列紧空间是完备的〔但,完备空间未必是列紧的〕。
〔3〕 假设A 是(,)X d 的列紧子集,则A 是(,)X d 的有界闭集。
〔4〕 在一般度量空间中,〔3〕成立,反之未必;如果(,)X d 是列紧空间,则 A 列紧 ⇒ A 是闭集。
〔5〕 列紧的度量空间必是可分的。
●进一步分析:列紧性能用来刻画闭集,但是,它是利用“序列”形式刻画的。
人们找出了一种非序列刻画的方式。
定义2 设A 是(,)X d 的一个子集。
是X 的一族开集,满足U U A ∈⊃,则称为A 在X中的开覆盖;假设中只有有限个子集,称为有限开覆盖;假设X 本身的每一开覆盖都有一有限子覆盖,则称X 为紧致空间〔有的书成为紧空间〕 ★ 理论上可以证明:对于度量空间来说,列紧性与紧致性是等价的。
即列紧空间⇔紧致空间〔这在泛函分析书中都有介绍〕。
§4-2 拓扑空间的紧性在数学分析中,人们很早就注意的,实直线上闭区间[,]a b 具有某些极好的性质,它对于证明极大值定理、一致连续性定理等起着至关重要的作用。
但是,如何在拓扑空间上表述这个特性,长期不得而知。
所以,最早人们认为[,]a b 上这个特性取决于[,]a b 上任何一个无穷子集都有极限点,进而提出了列紧性概念。
操作步骤:拓扑检查及编辑
1、创建拓扑
在Topology数据中的demo_1数据集上右键,选择新建
2、选择要素
3、增加规则
4、验证拓扑
有3种方法验证拓扑:1)新建拓扑结束后会提示
2)在拓扑数据集右键
3)ArcMap拓扑工具条:验证当前范围拓扑、验证指定区域中的拓扑
5、查找拓扑错误
1)打开ArcMap,把拓扑添加至ArcMap中,选择把拓扑中的要素类型添加至地图中。
2)打开编辑状态
3)打开拓扑工具条
4)选择错误查看器
6、修改拓扑错误
选择一个拓扑错误,右键
操作步骤:拓扑构面
1)选择前面新建的面要素为当前制图模板
2)选择构建地图拓扑
3)选择参与构建拓扑的要素图层
4)选择参与构建拓扑的要素
5)选择构建面
结果如下图所示:。
第四章拓扑编辑
刚完成数字化的地图,或多或少总会有一些错误,现有的数字化地图可能存在数据源已过时或者本身包含来自初始数字化错误的问题,一般,公路、地块、森林蓄积量和其他一些数据的数字地图都要求定期修正和更新,空间数据编辑主要就是来消除数字化的错误。
拓扑编辑确保数字化的空间要素遵循数据模型固有的或者用户指定的拓扑关系。
以ArcGIS为例介绍二种类型的拓扑编辑:地图拓扑编辑、拓扑规则编辑。
1.用聚合容差修正两个shapefile之间的数字化错误
由于数字化误差,和之间存在差异,这里将用聚合容差使和的边界线重合。
1.将和添加到新的数据帧Task2中,用不同颜色的外框符号显示两
个shapefile,把land_dig的标识字段命名为LAND_DIG_I,Selection 栏中不勾选land_dig,用Measure检查两图间的偏差;
图1 边界线未重合
2.在两个shapefile之间建立地图拓扑。
View\Toolbar勾选Editor和
Topology,Start Editing,任务栏指向Modify Edge,目标是trial_dig,
Topology\Map Topology,弹出的对话框中,选择和为地图拓扑图层,并键入1m为聚合容差;
图2
图2-1 和为地图拓扑图层,聚合容差为1m;
3.对trial_dig多边形修正数字化错误,在Topology点击工具条下
Topology Edit Tool,双击多边形边界,右击红色节点,选择Move,再敲Enter,此时在使用指定的容差值结合节点和边缘,用相同步骤对剩余多边形进行修正;
图3 修正多边形数字化错误
4.剩下的误差是因为它的误差值大于指定的聚合容差(1m),使用
基本编辑操作修正大误差的方法:用Edit Tool双击不一致的边界
线,把一个个节点拖至与目标线段接合;
Editing,保存编辑。
2.用拓扑规则修订悬挂弧段
这里的两个道路shapefiles,在州界没有正好连接,因此图层存在缝隙,我们要用拓扑规则对缝隙所在处用符号表示,然后用编辑工具消除缝隙。
1.在ArcCatalog中准备一个个人的geodatabase()和一个要素数
据集,把作为一个要素分类导入要素数据集;
2.建立一个新的拓扑,右击Merge,选择New\Topology;
图1 第三个面板,对Merge_result打钩
图2 第四个面板
图3 第五个面板、Add对话框
图4
3.确认结果保存在Merge要素数据集的名为Merge_Topology图层拓扑中;
图4 Merge_result有96个悬挂节点
4.在ArcMap中新建数据帧Task3,添加Merge要素数据集和,,为区分明显,用不同颜色表示Merge_result、idroads、mtroads_idtm;
5.第一种方法:检查和修正Merge_result的错误,Start Editing,选择作为数据库编辑数据,选择第一个交叉口区域,不断放大直至看到一对悬挂弧段,先测量两点之间的距离,再用Topology 工具条的Fix Topology Error Tool,选中正方形,再右击选择Snap,输入6m,按Enter键完成,正方形消失;
图5 修正第一个交叉口区域的错误
6.第二种方法:先设置编辑环境,Editor\Snapping\
Merge_result,如下图设置,Editor\Opitions\General,输入10为结合容差值,用Sketch Tool右击左边的正方形,Snap to Feature\Endpoint,对右边的正方形进行同样的操作,按F2完成绘图,Topology\Current Extent\Validate Topology,正方形符号消失,对剩余的三个错误进行同样的修正;
图6 设置图7修正交叉口区域的错误7.保存编辑。
3.用拓扑规则确保两个多边形图层重合
因为数字化的源地图不同,这里的两个shapefile的轮廓不完全重合,我们要用运用拓扑规则,用符号表示这两个shapefile之间的差异,之后用编辑工具修正不重合。
1.在ArcCatalog中准备一个个人的geodatabase()和一个要素数据
集LandSoil,把和作为一个要素分类导入要素数据集;
2.建立一个新的拓扑,右击LandSoil,选择New\Topology,在第五
个面板进行如下设置;
图1
图2
3.在ArcMap中新建数据帧Task4,添加LandSoil,查看区域错误,两
个要素类之间的差异大多在1m之内;
4. Editor\Start Editing,Topology\Fix Topology Error Tool,选中区域,右
击任一区域,选择Subtract;
图3 图4
5.保存编辑。