生物信息学(李霞)第1章
- 格式:ppt
- 大小:3.60 MB
- 文档页数:66
第一章什么是生物信息学生物学与信息科学是当今世界上发展最迅速、影响最大的两门科学。
而这两门科学的交叉融合形成了广义的生物信息学,正以崭新的理念吸引着科学家的注意。
生物信息学(Bioinformatics)是生命科学领域中的新兴学科,面对人类基因组计划所产生的庞大的分子生物学信息,生物信息学的重要性将越来越突出,它无疑将会为生命科学的研究带来革命性的变革。
生命现象是在信息控制下不同层次上的物质、能量与信息的交换与传递过程。
不同层次是指核酸、蛋白质、细胞、器官、系统、整体等,而目前一般意义的生物信息学是基因层次的。
生物与信息相交叉的领域是正在发展中的前沿领域。
美国已决定设立“生物、信息和微电子边缘领域的基础研究”计划,共包括7个方面:生物的遗传信息指DNA―RNA―蛋白质、遗传信息――转录、翻译、遗传密码、“第二遗传密码”、生物信息学、遗传语文等。
生命活动的调控则包括基因的功能、表达和调控;蛋白的结构、功能和调控;细胞活动(分化、发育、衰老、死亡)的调控;器官、系统、整体活动的调控;节律、生物钟;分蘖、生长、开花、结果;营养的吸收、传输、转化;对外界信号的反应如含羞草、抗逆性等。
生物电磁学与电磁生物学包括1、生物电磁:生命活体在不同层次(电子、离子、原子、基因、细胞、组织、整体等)的活动和不同属性(包括思维、精神)活动时以及和外界环境(生命体周围直至宇宙)相互作用时反映出来的各种电磁信息。
2、人体的电磁辐射(包括发光):频率、强度、频谱。
3、人体信号的调制方式:调幅、调频、编码 4、电磁生物学:电磁辐射对生物体的影响。
5、电磁场导致DNA突变。
6、体内电、离、细胞等分布、极化状态变化导致疾病等。
视觉系统与光信息处理包括视网膜神经元回路与信息处理,彩色视觉及彩色图像的编码、变换机制,眼动成象机制及宽视场、消色差动态成象系统,视觉认知机制及其图像信息的智能模式识别,不同状态立体视觉机制和静态、动态立体视锐度等。
第一章绪论1.1 什么是生物信息学?生物信息学是一门交叉学科。
它包含了生物信息的获取、管理、分析、解释和应用在内的所有方面。
它综合运用生物学、计算机科学和数学等多方面知识与方法,来阐明和理解大量生物数据所包含的生物学意义,并应用于解决生命科学研究和生物技术相关产业中的各种问题。
生物信息学主要有三个组成部分:建立可以存放和管理大量生物信息学数据的数据库;研究开发可用于有效分析与挖掘生物学数据的方法、算法和软件工具;使用这些工具去分析和解释不同类型的生物学数据,包括DNA、RNA和蛋白质序列、蛋白质结构、基因表达以及生化途径等。
生物信息学这个术语从20世纪90年代开始使用,最初主要指的是DNA、RNA 及蛋白质序列的数据管理和分析。
自从20世纪60年代就有了序列分析的计算机工具,但是那时并未引起人们很大的关注,直到测序技术的发展使GenBank之类的数据库中存放的序列数量出现了迅猛的增长。
现在该术语已扩展到几乎覆盖各种类型的生物学数据,如蛋白质结构、基因表达和蛋白质互作等。
1.2 生物信息学的发展历史生物信息学早期的研究对象主要限于DNA序列的存储和分析,而其最近的迅速发展主要缘于基因组计划及相关转录组、蛋白质组、代谢组、相互作用组等计划的实施和高通量生物实验技术的发展,使生物学实验数据出现了爆炸性增长。
生物信息学作为一门独立的学科只有近20年的历史,但事实上,与生物信息学相关的研究可以追溯到远至上世纪中期对蛋白质和DNA结构预测的模型研究。
1.3 生物信息学的主要研究领域、基本问题和方法目前的生物信息学研究,已从早期以数据库的建立和DNA序列分析为主的阶段,转移到后基因组学时代以比较基因组学(comparative genomics)、功能基因组学(functional genomics)和整合基因组学(integrative genomics)为中心的新阶段。
生物信息学的研究领域也迅速扩大。
生物信息学涉及生物学、计算机学、数学、统计学等多门学科,从事生物信息学研究的工作者或生物信息学家可以来自以上任何一个领域而侧重于生物信息学的不同方面。
生物信息学李霞引言生物信息学是一门集生物学、计算机科学和统计学于一体的跨学科领域。
其研究内容包括基因组学、转录组学、蛋白质组学等,在研究生物学的同时,也利用计算机和统计学的方法进行数据分析和挖掘。
李霞是一位在生物信息学领域有着丰富经验的专家,本文将介绍她的研究方向、成就以及对生物信息学的贡献。
研究方向李霞在生物信息学领域的研究方向主要包括基因表达调控、基因功能预测和药物筛选等。
她通过整合多种生物信息学技术和工具,对于复杂的生物学问题进行深入研究。
以下将详细介绍她的研究方向。
基因表达调控基因表达调控是生物学研究中的重要环节,它涉及到基因在不同细胞类型和条件下的表达水平调控。
李霞的研究中,她利用高通量测序技术,分析了不同组织和生理状态下的基因表达谱,并通过生物信息学分析寻找关键的转录因子和调控元件。
她的研究结果对于理解基因调控网络的建立和功能研究具有重要意义。
基因功能预测基因功能预测是生物信息学中一个重要的研究方向,它涉及到对未知基因的功能进行推断和预测。
李霞通过整合多种生物信息学数据库和算法,对基因功能进行预测。
她的研究成果不仅可以帮助研究人员筛选出潜在的候选基因,并为相关疾病的研究和治疗提供线索。
药物筛选药物筛选是研发新药物的关键环节,而生物信息学技术在药物筛选中发挥着重要的作用。
李霞利用结构生物信息学和虚拟筛选技术,对候选药物进行预测和评估。
她的研究结果可以帮助研究人员筛选出具有潜在药效的化合物,并提高新药发现的效率。
科研成果李霞在生物信息学领域取得了多项重要的科研成果,以下将列举其中的几个典型例子。
1.基因调控网络构建与分析:李霞通过整合多种生物信息学数据集,构建了基因调控网络,并对网络进行了深入分析。
她的研究揭示了许多重要的基因调控关系,为相关领域的研究提供了重要的理论支持。
2.基因功能注释和预测:李霞利用机器学习和统计学方法,预测了大量未知基因的功能,为基因组学研究提供了重要的参考和工具。
第一章 生物信息学通论我们处在一个激动人心的时代——基因组时代。
科学的进步已使人类可以窥探生命的秘密,甚至包括人类自身。
人类基因组在世纪之交被人类自己破译了。
这部由30亿个字符组成的人类遗传密码本已活生生地摆在了我们面前。
于此同时,来自其它生物的基因组信息源源不断从自动测序仪中涌出,堆集如山,浩如烟海。
这些海量的生物信息是用特殊的“遗传语言”——DNA的四个碱基字符(A、T、G和C)和蛋白质的20个氨基酸字符(A、R、N、D、C、Q、E、G、H、I、L、K、M、F、P、S、T、W、Y和V)——写成。
我们身处急速上涨的数据海洋中,我们如何避免生物信息的没顶之灾呢?一叶轻舟也许可以救命!生物信息学便是我们找到的这样一条“轻舟”,而且我们已在这条轻舟上安装了诸如卫星定位系统等先进的电子设备。
也许在不久的将来,人类会造就一艘永不沉没的航空母艇……生物信息学是一门年青的学科,学科虽然年青,但它充满挑战、机遇且引人入胜。
第一节 生物信息与生物信息学一、迅速膨胀的生物信息近20年来,分子生物学发展的一个显著特点是生物信息的剧烈膨胀,且迅速形成了巨量的生物信息库。
这里所指的生物信息包括多种数据类型,如分子序列(核酸和蛋白质),蛋白质二级结构和三维结构数据、蛋白质疏水性数据等等。
由实验获得的大量核酸序列和三维结构数据被存在数据库中,这些数据库就是所谓的初级数据库(primary databases);那些由原始数据分析而来的诸如二级结构、疏水位点和功能区(domain)数据,则组成了所谓的二级数据库(secondary databases)。
那些由核酸数据库序列翻译而来的蛋白质序列数据组成的蛋白质数据库,也应被视为二级数据库。
生物信息的增长是惊人的。
近年来,核酸库的数据每10个月左右就要翻一翻,2000年底,数据库数据则达到了创记录的100亿个记录,大量生物(甚至包括我们人类自身)的整个基因组序列被测定完成或正在进行中,遍布世界各地研究实验室的高通量大型测序仪在日夜不停地运转,每天都有成千上万的数据被源源不断地输入相应的生物信息库中。
1 概述当前人类基因组研究已进入一个重要时期,2000年将获得人类基因组的全部序列,这是基因组研究的转折点和关键时刻,意味着人类基因组的研究将全面进入信息提取和数据分析阶段,即生物信息学发挥重要作用的阶段。
到1999年12月15日发布的第115版为止,GenBank中的DNA碱基数目已达46亿5千万,DNA序列数目达到535万;其中EST序列超过339万条; UniGene的数目已达到7万个;已有25个模式生物的完整基因组被测序完成,另外的70个模式生物基因组正在测序当中;到2000年1月28日为止,人类基因组已有16%的序列完成测定,另外37.7%的序列已经初步完成;同时功能基因组和蛋白质组的大量数据已开始涌现。
如何分析这些数据,从中获得生物结构、功能的相关信息是基因组研究取得成果的决定性步骤。
生物信息学是在此背景下发展起来的综合运用生物学、数学、物理学、信息科学以及计算机科学等诸多学科的理论方法的崭新交叉学科。
生物信息学是内涵非常丰富的学科,其核心是基因组信息学,包括基因组信息的获取、处理、存储、分配和解释。
基因组信息学的关键是“读懂”基因组的核苷酸顺序,即全部基因在染色体上的确切位置以及各DNA片段的功能;同时在发现了新基因信息之后进行蛋白质空间结构模拟和预测,然后依据特定蛋白质的功能进行药物设计。
了解基因表达的调控机理也是生物信息学的重要内容,根据生物分子在基因调控中的作用,描述人类疾病的诊断、治疗内在规律。
它的研究目标是揭示"基因组信息结构的复杂性及遗传语言的根本规律",解释生命的遗传语言。
生物信息学已成为整个生命科学发展的重要组成部分,成为生命科学研究的前沿。
近来的研究表明,基因组不仅是基因的简单排列,它有其特有的组织结构和信息结构,这种结构是在长期的演化过程中产生的,也是基因发挥其功能所必须的。
弄清楚生物体基因组特有的组织结构和信息结构,解译生命的遗传语言的关键。
生物信息学简介生物信息学是什么?生物信息学是一门交叉学科,它包含了生物信息的获取、加工、储存、分配、分析、解释在内的所有方面,它综合运用数学、计算机科学和生物学的各种工具来阐明和理解大量数据所包含的生物学意义[李霞教授主编的《生物信息学》]。
广义生物信息学是研究整个生命过程的相关信息;狭义生物信息学是研究生物大分子(主要是核酸和蛋白质)所包含的生物信息,有时候也称为分子生物信息学生物信息学发展前基因组时代•1956年,生物信息学概念诞生;•1970年,Hogeweg使用了bioinformatics一词;•1982年,GeneBank数据库建立;•1986年,Swiss-Prot数据库建立;基因组时代•1990年,人类基因组计划启动;•1995年,第一个细菌基因组测序完成;•1996年,第一个真核生物基因组测序完成(面包酵母);•1998年,第一个多细胞生物测序完成(秀丽线虫);•2002年,人类基因组单体型图计划启动(HapMap);后基因组时代•蛋白组;•转录组;•代谢组;•比较基因组;•结构基因组;•功能基因组•……生物信息学研究内容生物分子数据的收集与管理数据库搜索及序列比较基因组序列分析基因表达数据分析与处理蛋白结构预测非编码RNA研究表观遗传学研究☐遗传定律•分离定律;•自由组合定律;•连锁交换定律。
☐DNA分子结构:A-T,C-G,双螺旋,键能等☐基因结构:•原核生物:启动区、5’UTR、编码区、3’UTR、终止区;•真核生物:增强子、启动区、5’UTR、外显子、内含子、3’UTR、终止区☐中心法则☐密码子表☐蛋白质结构与功能☐PCR技术☐测序技术☐……☆参数统计正态分布泊松分布贝叶斯统计马尔可夫模型(隐马尔科夫模型)统计学检验方法(U检验、T检验、卡方检验、贝叶斯检验等)……☆非参数统计如果所研究的随机变量是独立的,但是是非正态的,并且无法通过一定手段改善数据或者构造成已知数据分布,那么可以使用非参数检验手段。
生物信息学讲义第一章:生物信息学概述什么是生物信息学:又称计算生物学(computational biology),是生物学与信息学、计算机科学相互交叉形成的新兴学科,它应用数学、计算机科学的方法研究生物学问题,它所研究的主要对象是生物学的数据。
生物信息学是为了适应人类基因组计划(Human Genome Project,HGP)的需要产生的,最主要的应用是对人类基因组计划所得到的大量生物学数据进行存储、检索和分析。
目前生物信息学已被广泛的应用于医学、人类学、结构生物学和蛋白质组学(Proteomics)等研究领域。
生物信息学的研究内容:广义地说,生物信息学从事对基因组研究相关生物信息的获取、加工、储存、分配、分析和解释。
这一定义包括了两层含义,一是对海量数据的收集、整理与服务,也就是管好这些数据;另一个是从中发现新的规律,也就是用好这些数据。
具体地说,生物信息学是把基因组DNA序列信息分析作为源头,找到基因组序列中代表蛋白质和RNA基因的编码区;同时,阐明基因组中大量存在的非编码区的信息实质,破译隐藏在DNA序列中的遗传语言规律;在此基础上,归纳、整理与基因组遗传信息释放及其调控相关的转录谱和蛋白质谱的数据,从而认识代谢、发育、分化、进化的规律。
生物信息学还利用基因组中编码区的信息进行蛋白质空间结构的模拟和蛋白质功能的预测,并将此类信息与生物体和生命过程的生理生化信息相结合,阐明其分子机理,最终进行蛋白质、核酸的分子设计、药物设计和个体化的医疗保健设计。
基因组信息学、蛋白质的结构计算与模拟以及药物设计,这三者紧密地围绕着遗传信息传递的中心法则,因而必然有机地连接在一起。
1、基因组序列数据的拼接和组装基因组研究的首要目标是获得人的整套遗传密码。
人的遗传密码有32亿个碱基,而目前DNA测序多采用鸟枪法(shotgun),每个反应只能读取几百到上千个碱基。
在进行测序前,首先应用物理方法将人的基因组打碎,得到基因组片段进行测序,然后再把这些片段重新拼接起来。