生物信息学第一章 生物信息学引论
- 格式:ppt
- 大小:9.40 MB
- 文档页数:60
第一章什么是生物信息学生物学与信息科学是当今世界上发展最迅速、影响最大的两门科学。
而这两门科学的交叉融合形成了广义的生物信息学,正以崭新的理念吸引着科学家的注意。
生物信息学(Bioinformatics)是生命科学领域中的新兴学科,面对人类基因组计划所产生的庞大的分子生物学信息,生物信息学的重要性将越来越突出,它无疑将会为生命科学的研究带来革命性的变革。
生命现象是在信息控制下不同层次上的物质、能量与信息的交换与传递过程。
不同层次是指核酸、蛋白质、细胞、器官、系统、整体等,而目前一般意义的生物信息学是基因层次的。
生物与信息相交叉的领域是正在发展中的前沿领域。
美国已决定设立“生物、信息和微电子边缘领域的基础研究”计划,共包括7个方面:生物的遗传信息指DNA―RNA―蛋白质、遗传信息――转录、翻译、遗传密码、“第二遗传密码”、生物信息学、遗传语文等。
生命活动的调控则包括基因的功能、表达和调控;蛋白的结构、功能和调控;细胞活动(分化、发育、衰老、死亡)的调控;器官、系统、整体活动的调控;节律、生物钟;分蘖、生长、开花、结果;营养的吸收、传输、转化;对外界信号的反应如含羞草、抗逆性等。
生物电磁学与电磁生物学包括1、生物电磁:生命活体在不同层次(电子、离子、原子、基因、细胞、组织、整体等)的活动和不同属性(包括思维、精神)活动时以及和外界环境(生命体周围直至宇宙)相互作用时反映出来的各种电磁信息。
2、人体的电磁辐射(包括发光):频率、强度、频谱。
3、人体信号的调制方式:调幅、调频、编码 4、电磁生物学:电磁辐射对生物体的影响。
5、电磁场导致DNA突变。
6、体内电、离、细胞等分布、极化状态变化导致疾病等。
视觉系统与光信息处理包括视网膜神经元回路与信息处理,彩色视觉及彩色图像的编码、变换机制,眼动成象机制及宽视场、消色差动态成象系统,视觉认知机制及其图像信息的智能模式识别,不同状态立体视觉机制和静态、动态立体视锐度等。
第一章绪论1.1 什么是生物信息学?生物信息学是一门交叉学科。
它包含了生物信息的获取、管理、分析、解释和应用在内的所有方面。
它综合运用生物学、计算机科学和数学等多方面知识与方法,来阐明和理解大量生物数据所包含的生物学意义,并应用于解决生命科学研究和生物技术相关产业中的各种问题。
生物信息学主要有三个组成部分:建立可以存放和管理大量生物信息学数据的数据库;研究开发可用于有效分析与挖掘生物学数据的方法、算法和软件工具;使用这些工具去分析和解释不同类型的生物学数据,包括DNA、RNA和蛋白质序列、蛋白质结构、基因表达以及生化途径等。
生物信息学这个术语从20世纪90年代开始使用,最初主要指的是DNA、RNA 及蛋白质序列的数据管理和分析。
自从20世纪60年代就有了序列分析的计算机工具,但是那时并未引起人们很大的关注,直到测序技术的发展使GenBank之类的数据库中存放的序列数量出现了迅猛的增长。
现在该术语已扩展到几乎覆盖各种类型的生物学数据,如蛋白质结构、基因表达和蛋白质互作等。
1.2 生物信息学的发展历史生物信息学早期的研究对象主要限于DNA序列的存储和分析,而其最近的迅速发展主要缘于基因组计划及相关转录组、蛋白质组、代谢组、相互作用组等计划的实施和高通量生物实验技术的发展,使生物学实验数据出现了爆炸性增长。
生物信息学作为一门独立的学科只有近20年的历史,但事实上,与生物信息学相关的研究可以追溯到远至上世纪中期对蛋白质和DNA结构预测的模型研究。
1.3 生物信息学的主要研究领域、基本问题和方法目前的生物信息学研究,已从早期以数据库的建立和DNA序列分析为主的阶段,转移到后基因组学时代以比较基因组学(comparative genomics)、功能基因组学(functional genomics)和整合基因组学(integrative genomics)为中心的新阶段。
生物信息学的研究领域也迅速扩大。
生物信息学涉及生物学、计算机学、数学、统计学等多门学科,从事生物信息学研究的工作者或生物信息学家可以来自以上任何一个领域而侧重于生物信息学的不同方面。
1 概述当前人类基因组研究已进入一个重要时期,2000年将获得人类基因组的全部序列,这是基因组研究的转折点和关键时刻,意味着人类基因组的研究将全面进入信息提取和数据分析阶段,即生物信息学发挥重要作用的阶段。
到1999年12月15日发布的第115版为止,GenBank中的DNA碱基数目已达46亿5千万,DNA序列数目达到535万;其中EST序列超过339万条; UniGene的数目已达到7万个;已有25个模式生物的完整基因组被测序完成,另外的70个模式生物基因组正在测序当中;到2000年1月28日为止,人类基因组已有16%的序列完成测定,另外37.7%的序列已经初步完成;同时功能基因组和蛋白质组的大量数据已开始涌现。
如何分析这些数据,从中获得生物结构、功能的相关信息是基因组研究取得成果的决定性步骤。
生物信息学是在此背景下发展起来的综合运用生物学、数学、物理学、信息科学以及计算机科学等诸多学科的理论方法的崭新交叉学科。
生物信息学是内涵非常丰富的学科,其核心是基因组信息学,包括基因组信息的获取、处理、存储、分配和解释。
基因组信息学的关键是“读懂”基因组的核苷酸顺序,即全部基因在染色体上的确切位置以及各DNA片段的功能;同时在发现了新基因信息之后进行蛋白质空间结构模拟和预测,然后依据特定蛋白质的功能进行药物设计。
了解基因表达的调控机理也是生物信息学的重要内容,根据生物分子在基因调控中的作用,描述人类疾病的诊断、治疗内在规律。
它的研究目标是揭示"基因组信息结构的复杂性及遗传语言的根本规律",解释生命的遗传语言。
生物信息学已成为整个生命科学发展的重要组成部分,成为生命科学研究的前沿。
近来的研究表明,基因组不仅是基因的简单排列,它有其特有的组织结构和信息结构,这种结构是在长期的演化过程中产生的,也是基因发挥其功能所必须的。
弄清楚生物体基因组特有的组织结构和信息结构,解译生命的遗传语言的关键。
第一章绪言生物信息学的主要信息载体:DNA和蛋白质生物主要的遗传物质DNA生物的物质基础蛋白质一、生物信息学概述1、定义生物信息学(Bioinformatics)是生命科学、现代信息科学、数学、物理学以及化学等多个学科交叉结合形成的一门学科,是利用信息技术和数学方法对生命科学研究中的生物学数据进行存储、检索和分析的科学。
2、特点⁕以计算机为主要工具,以大量生物数据库和分析软件为基础⁕依赖于Internet⁕为人类揭示生命的奥秘提供了一条新的途径二、生物信息学的发展前基因组时代——生物数据库的建立、检索工具的开发、DNA和蛋白质序列分析、全局和局部的序列对位排列基因组时代——基因寻找和识别、网络数据库系统的建立、交互界面的开发后基因组时代——大规模基因组分析、蛋白质组分析三、生物信息学应用基础研究和教学:分子生物学研究的重要手段之一;生命科学的教学药物开发:新药筛选、药靶设计、分子药理学研究疾病诊断:利用疑难病症的病原DNA序列诊断疾病;遗传病的筛查其他:环境监测;食品安全检测;海关检测第二章数据库及其检索生物信息学数据库的建立及定义生物信息数据库:生物分子数据、分子结构结构及功能等实验证据一级数据库是直接来源于实验室获得的数据,即DNA和蛋白质数据库(X)在生物信息学中数据库查询是指对数据库中的注释信息进行基于关键词匹配查找,而数据库检索是指通过特定的序列相似性比对算法,在核酸或蛋白质序列数据库中获得序列信息(√)一、数据库定义数据库(database)是一类用于存储和管理数据的计算机文档,是统一管理的相关数据的集合,其存储形式有利于数据信息的检索与调用。
数据库的每一条记录(record),也可以称为条目(entry),包含了多个描述某一类型数据特性或属性的字段(field),如基因名、来源物种、序列的创建日期等;值(value)则是指每条记录中某个字段的具体内容。
二、生物信息数据库的分类(1)按照数据来源一级数据库:数据直接来源于实验获得的原始数据,只经过简单的归类整理和注释二级数据库:对原始生物分子数据进行整理、分类的结果,是在一级数据库、实验数据和理论分析的基础上针对特定的应用目标而建立的。
生物信息学知识点总结分章第一章:生物信息学概述生物信息学是一门综合性学科,结合计算机科学、数学、统计学和生物学的知识,主要研究生物系统的结构、功能和演化等方面的问题。
生物信息学的发展可以追溯到20世纪70年代,随着基因组学、蛋白质组学和生物技术的发展,生物信息学逐渐成为生物学研究的重要工具。
生物信息学的主要研究内容包括基因组学、蛋白质组学、代谢组学、系统生物学等。
生物信息学方法主要包括序列分析、结构分析、功能预测和系统分析等。
第二章:生物数据库生物数据库是生物信息学研究的重要基础,主要用于存储、管理和共享生物学数据。
生物数据库包括基因组数据库、蛋白质数据库、代谢数据库、生物通路数据库等。
常用的生物数据库有GenBank、EMBL、DDBJ等基因组数据库,Swiss-Prot、TrEMBL、PDB等蛋白质数据库,KEGG、MetaCyc等代谢数据库,Reactome、KeggPathway等生物通路数据库等。
生物数据库的建设和维护需要大量的人力和物力,目前国际上已建立了众多生物数据库,为生物信息学研究提供了丰富的数据资源。
第三章:序列分析序列分析是生物信息学研究的重要内容,主要应用于DNA、RNA、蛋白质序列的比对、搜索和分析。
常用的序列分析工具包括BLAST、FASTA、ClustalW等,这些工具可以帮助研究人员快速比对和分析生物序列数据,从而挖掘出序列的相似性、保守性和功能等信息。
序列分析在基因组学、蛋白质组学和系统生物学等领域发挥着重要作用,是生物信息学研究的基础工具之一。
第四章:结构分析结构分析是生物信息学研究的另一个重要内容,主要应用于蛋白质、核酸等生物分子的三维结构预测、模拟和分析。
常用的结构分析工具包括Swiss-Model、Modeller、Phyre2等,这些工具可以帮助研究人员预测蛋白质或核酸的三维结构,分析结构的稳定性、功能和相互作用等特性。
结构分析在蛋白质结构与功能研究、蛋白质药物设计等方面发挥着重要作用,为生物信息学研究提供了重要的技术支持。
生物信息学讲义第一章:生物信息学概述什么是生物信息学:又称计算生物学(computational biology),是生物学与信息学、计算机科学相互交叉形成的新兴学科,它应用数学、计算机科学的方法研究生物学问题,它所研究的主要对象是生物学的数据。
生物信息学是为了适应人类基因组计划(Human Genome Project,HGP)的需要产生的,最主要的应用是对人类基因组计划所得到的大量生物学数据进行存储、检索和分析。
目前生物信息学已被广泛的应用于医学、人类学、结构生物学和蛋白质组学(Proteomics)等研究领域。
生物信息学的研究内容:广义地说,生物信息学从事对基因组研究相关生物信息的获取、加工、储存、分配、分析和解释。
这一定义包括了两层含义,一是对海量数据的收集、整理与服务,也就是管好这些数据;另一个是从中发现新的规律,也就是用好这些数据。
具体地说,生物信息学是把基因组DNA序列信息分析作为源头,找到基因组序列中代表蛋白质和RNA基因的编码区;同时,阐明基因组中大量存在的非编码区的信息实质,破译隐藏在DNA序列中的遗传语言规律;在此基础上,归纳、整理与基因组遗传信息释放及其调控相关的转录谱和蛋白质谱的数据,从而认识代谢、发育、分化、进化的规律。
生物信息学还利用基因组中编码区的信息进行蛋白质空间结构的模拟和蛋白质功能的预测,并将此类信息与生物体和生命过程的生理生化信息相结合,阐明其分子机理,最终进行蛋白质、核酸的分子设计、药物设计和个体化的医疗保健设计。
基因组信息学、蛋白质的结构计算与模拟以及药物设计,这三者紧密地围绕着遗传信息传递的中心法则,因而必然有机地连接在一起。
1、基因组序列数据的拼接和组装基因组研究的首要目标是获得人的整套遗传密码。
人的遗传密码有32亿个碱基,而目前DNA测序多采用鸟枪法(shotgun),每个反应只能读取几百到上千个碱基。
在进行测序前,首先应用物理方法将人的基因组打碎,得到基因组片段进行测序,然后再把这些片段重新拼接起来。
生物信息学(系统发生)http://www.lmbe.seu.ed /chenyuan/xsun/bio infomatics/web/Index.html第一章生物信息学引论========= 选择章节 ==========1.1 引言1.1.1 生物信息学概念20世纪是科学技术迅速发展的世纪,物理和化学的发展使我们可以清楚地认识物质的组成,从分子、原子、电子等各层次上深入地了解微观世界,而天文技术、空间技术的发展则使得我们可以了解地球以外的客观世界,以电子信息技术为龙头的工业技术的飞速发展,使得我们可以不断地改造世界,甚至为人类更加舒适地生活创造新的世界。
生命科学在20世纪同样也得到了发展,生理学、细胞生物学、分子生物学等学科的发展使我们从器官、组织、细胞、生物大分子等各个层次认识了生命的物质基础。
生物与其他物质有本质的区别,生物并非只是物质的简单堆积,生物体的生长发育是生命信息控制之下的复杂而有序的过程。
目前,我们对生命的奥秘还不甚了解,对生命信息的组织、传递和表达还知之甚少。
既然这牵涉到信息的组织、传递和表达,我们就可以用信息科学的方法和技术来尝试认识和分析生命信息。
人类为了更深入地了解和认识自身,制定了宏伟的人类基因组计划。
人类基因组计划顺利实施,产生了大量的生物分子数据。
据权威机构统计,目前生物分子数据量每15个月翻一翻,生物分子数据发展的速度甚至超过了摩尔定律(即半导体芯片上的晶体管数量每18个月翻一翻)。
这些生物分子数据具有丰富的内涵,其背后隐藏着人类目前尚不知道的生物学知识。
充分利用这些数据,通过数据分析、处理,揭示这些数据的内涵,从而得到对人类有用的信息,是生物学家、数学家和计算机科学家所面临的一个严峻的挑战。
生物信息学就是为迎接这种挑战而发展起来的一门新型学科,它是由生物学、应用数学、计算机科学相互交叉所形成的学科,是当今生命科学和自然科学的重大前沿领域之一,也是21世纪自然科学的核心领域之一。
第一单元生物信息学引论1人基因组大小约为:BA. 3.1*10A10bpB.3.1*10A9bpC.3.1*10A8bpD.3.1*10A7bp2(单选题|1分)人基因组大约有多少是编码蛋白的基因区间:CA.10%B.30%C.不足5%D.90%3(单选题|1分)Genbank数据库存储的数据是什么AA.核酸序列B.蛋白结构C.核酸结构D.蛋白序列4(单选题|1分)SRA数据库存储的数据是什么CA.存储基因芯片的数据B.存储Sanger测序数据C.存储新一代测序技术的数据5(单选题|1分)高通量测序错误率和传统Sanger测序相比AA.低B.高C.差不多6(单选题|1分)生物信息学对数据的处理一般是一个什么样的过程AA.数据管理-数据计算-数据挖掘-建立模型/进行预测B.数据挖掘-数据管理-建立模型/进行预测-数据计算C.数据挖掘-数据管理-数据计算-建立模型/进行预测D.建立模型/进行预测-数据挖掘-数据管理-数据计算7(单选题|1分)Sanger测序哪年发表DA.1965B.2002C.1970D.19778(单选题|1分)人基因组计划哪年启动?哪一年发表草图?CA.1988-2004B.1977-2001C.1988-2001D.1990-20039(单选题|1分)PAM打分矩阵是为什么设计的AA.氨基酸替换B.核苷酸替换10(单选题|1分)序列匹配(比对)算法哪年出现:DA.1991B.1977C.1988D.1970第二单元生物学基础、数据库基础和网络与数学及算法基础)1•以下哪一个是mRNA条目序列号:BA.J01536B.NM_15392C.NP_52280D.AAB1345062(单选题|1分)确定某个基因在哪些组织中表达的最直接获取相关信息方式是:AA.UnigeneB.EntrezC.LocusLinkD.PCR3(单选题|1分)一个基因可能对应两个Unigene簇吗?:AA.可能B.不可能4(单选题|1分)下面哪种数据库源于mRNA信息:AA.dbESTB.PDBC.OMIMD.HTGS5(单选题|1分)下面哪个数据库面向人类疾病构建:CA.ESTB.PDBC.OMIMD.HTGS6(单选题|1分)Refseq和GenBank有什么区别:CA.Refseq包括了全世界各个实验室和测序项目提交的DNA序列B.GenBank提供的是非冗余序列C.Refseq源于GenBank,提供非冗余序列信息D.GenBank源于Refseq7(单选题|1分)如果你需要查询文献信息,下列哪个数据库是你最佳选择:CA.OMIMB.EntrezC.PubMedD.PROSITE8(单选题|1分)比较从Entrez和ExPASy中提取有关蛋白质序列信息的方法,下列哪种说法正确:CA.因为GenBank的数据比EMBL更多,Entrez给出的搜索结果将更多B.搜索结果很可能一样,因为GenBank和EMBL的序列数据实际一样C.搜索结果应该相当,但是ExPASy中的SwissProt记录的输出格式不同1口49(单选题|1分)天冬酰胺、色氨酸和酪氨酸的单字母代码分别对应于:AA.N/W/YB.Q/W/YC.F/W/YD.Q/N/W10(单选题|1分)直系同源定义为:AA.不同物种中具有共同祖先的同源序列B.具有较小的氨基酸一致性但是有较大的结构相似性的同源序列C.同一物种中由基因复制产生的同源序列D.同一物种中具有相似的并且通常是冗余的功能的同源序列11(单选题|1分)下列那个氨基酸最不容易突变:DA.丙氨酸B.谷氨酰胺C.甲硫氨酸D.半胱氨酸12(单选题|1分)PAM250矩阵定义的进化距离为两同源序列在给定的时间有多少百分比的氨基酸发生改变:DA.1%B.20%C.80%D.250%13(单选题|1分)下列哪个句子最好的描述了两个序列全局比对和局部比对的不同:DA.全局比对通常用于比对DNA序列,而局部比对通常用于比对蛋白质序列B.全局比对允许间隙,而局部比对不允许C.全局比对寻找全局最大化,而局部比对寻找局部最大化D.全局比对比对整体序列,而局部比对寻找最佳匹配子序列14(单选题|1分)假设你有两条远源相关蛋白质序列。