万有引力定律应用的10种典型案例
- 格式:doc
- 大小:146.50 KB
- 文档页数:9
万有引力定律在天文学上的应用(精选9篇)万有引力定律在天文学上的应用篇1教学目标学问目标1、使同学能应用万有引力定律解决天体问题:2、通过万有引力定律计算天体的质量、天体的密度、天体的重力加速度、天体运行的速度等;3、通过应用万有引力定律使同学能在头脑中建立一个清楚的解决天体问题的图景:卫星作圆周运动的向心力是两行星间的万有引力供应的。
力量目标1、通过使同学能娴熟的把握万有引力定律;情感目标1、通过使同学感受到自己能应用所学物理学问解决实际问题——天体运动。
教学建议应用万有引力定律解决天体问题主要解决的是:天体的质量、天体的密度、天体的重力加速度、天体运行的速度天文学的初步学问等。
老师在备课时应了解下列问题:1、天体表面的重力加速度是由天体的质量和半径打算的.2、地球上物体的重力和地球对物体的万有引力的关系:物体随地球的自转所需的向心力,是由地球对物体引力的一个分力供应的,引力的另一个分力才是通常所说的物体受到的重力.(相关内容可以参考扩展资料)教学设计教学重点:万有引力定律的应用教学难点:地球重力加速度问题教学方法:争论法教学用具:计算机教学过程:一、地球重力加速度问题一:在地球上是赤道的重力加速度大还是两极的加速度大?这个问题让同学充分争论:1、有的同学认为:地球上的加速度是不变化的.2、有的同学认为:两极的重力加速度大.3、也有的的同学认为:赤道的重力加速度大.消失以上问题是由于:同学可能没有考虑到地球是椭球形的,也有不记得公式的等.老师板书并讲解:在质量为、半径为的地球表面上,假如忽视地球自转的影响,质量为的物体的重力加速度,可以认为是由地球对它的万有引力产生的.由万有引力定律和牛顿其次定律有:则该天体表面的重力加速度为:由此式可知,地球表面的重力加速度是由地球的质量和半径打算的.而又由于地球是椭球的赤道的半径大,两极的半径小,所以赤道上的重力加速度小,两极的重力加速度大.也可让同学发挥得:离地球表面的距离越大,重力加速度越小.问题二:有1kg的物体在北京的重力大还是在上海的重力大?这个问题有同学回答问题三:1、地球在作什么运动?人造地球卫星在作什么运动?通过展现图片为同学建立清楚的图景.2、作匀速圆周运动的向心力是谁供应的?回答:地球与卫星间的万有引力即由牛顿其次定律得:3、由以上可求出什么?①卫星绕地球的线速度:②卫星绕地球的周期:③卫星绕地球的角速度:老师可带领同学分析上面的公式得:当轨道半径不变时,则卫星的周期不变、卫星的线速度不变、卫星的角速度也不变.当卫星的角速度不变时,则卫星的轨道半径不变.课堂练习:1、假设火星和地球都是球体,火星的质量和地球质量 .之比,火星的半径和地球半径之比,那么离火星表面高处的重力加速度和离地球表面高处的重力加速度 . 之比等于多少?解:因物体的重力来自万有引力,所以:则该天体表面的重力加速度为:所以:2、若在相距甚远的两颗行星和的表面四周,各放射一颗卫星和,测得卫星绕行星的周期为,卫星绕行星的周期为,求这两颗行星密度之比是多大?解:设运动半径为,行星质量为,卫星质量为 .由万有引力定律得:解得:所以:3、某星球的质量约为地球的的9倍,半径约为地球的一半,若从地球上高处平抛一物体,射程为60米,则在该星球上,从同样高度以同样的初速度平抛同一物体,射程应为:A、10米B、15米C、90米D、360米解得:(A)布置作业:探究活动组织同学收集资料,编写相关论文,可以参考下列题目:1、月球有自转吗?(针对这一问题,同学会很简单回答出来,但是关于月球的自转状况却不肯定很清晰,老师可以加以引伸,比如月球自转周期,为什么我们看不到月球的另一面?)2、观看月亮有条件的让同学观看月亮以及星体,收集相关资料,练习地理天文学问编写小论文.万有引力定律在天文学上的应用篇2教学目标学问目标1、使同学能应用万有引力定律解决天体问题:2、通过万有引力定律计算天体的质量、天体的密度、天体的重力加速度、天体运行的速度等;3、通过应用万有引力定律使同学能在头脑中建立一个清楚的解决天体问题的图景:卫星作圆周运动的向心力是两行星间的万有引力供应的。
万有引力运用到生活的例子
万有引力在生活中的应用有很多,以下是一些例子:
1.物体下落:物体下落是因为受到地球的引力作用,这个现象在我们的生活中非常常见,例如落叶掉落、石头落地等。
2.飞机飞行:飞机飞行时需要达到一定的速度以产生升力,从而能够飞离地面。
这个速度差就是通过万有引力来实现的,飞机需要克服重力(地球对物体的引力)才能够升空。
3.水循环:水循环是万有引力在自然界中的应用之一。
由于地球的引力作用,水从高处流向低处,形成了河流、湖泊等水体,并参与了地球上的气候循环。
4.计时器:计时器中的摆锤受到地球引力的作用而摆动,从而推动计时器的指针运转,使我们能够准确地知道时间。
5.行星运转:太阳对行星的引力让行星绕着太阳公转,这个现象是万有引力在太阳系中的表现。
此外,万有引力还应用于潮汐现象、建筑工地打桩机、指南针等方面。
万有引力的应用广泛,是物理学中的一个重要概念。
万有引力定律应用典型案例万有引力定律不仅是高考的一个大重点,而且是自然科学的一个重大课题,也是同学们最感兴趣的科学论题之一。
特别是我国“神州五号”载人飞船的发射成功,更激发了同学们研究卫星,探索宇宙的信心。
下面我们就来探讨一下万有引力定律在天文学上应用几个典型案例:【案例1】天体的质量与密度的估算下列哪一组数据能够估算出地球的质量 A.月球绕地球运行的周期与月地之间的距离 B.地球表面的重力加速度与地球的半径 C.绕地球运行卫星的周期与线速度 D.地球表面卫星的周期与地球的密度解析:人造地球卫星环绕地球做匀速圆周运动。
月球也是地球的一颗卫星。
设地球的质量为M ,卫星的质量为m ,卫星的运行周期为T ,轨道半径为r根据万有引力定律:r T 4m r Mm G 222π=……①得:232G Tr 4M π=……②可见A 正确 而Tr2v π=……由②③知C 正确 对地球表面的卫星,轨道半径等于地球的半径,r=R ……④ 由于3R 4M3π=ρ……⑤结合②④⑤得:G3T 2π=ρ 可见D 错误 地球表面的物体,其重力近似等于地球对物体的引力由2RMmG mg =得:G g R M 2=可见B 正确【剖析点评】根据牛顿定律,只能求出中心天体的质量,不能解决环绕天体的质量;能够根据已知条件和已知的常量,运用物理规律估算物理量,这也是高考对学生的要求。
总之,牛顿万有引力定律是解决天体运动问题的关键。
【案例2】普通卫星的运动问题我国自行研制发射的“风云一号”“风云二号”气象卫星的运行轨道是不同的。
“风云一号”是极地圆形轨道卫星,其轨道平面与赤道平面垂直,周期为12 h ,“风云二号”是同步轨道卫星,其运行轨道就是赤道平面,周期为24 h 。
问:哪颗卫星的向心加速度大?哪颗卫星的线速度大?若某天上午8点,“风云一号”正好通过赤道附近太平洋上一个小岛的上空,那么“风云一号”下次通过该岛上空的时间应该是多少?解析:本题主要考察普通卫星的运动特点及其规律由开普勒第三定律T 2∝r 3知:“风云二号”卫星的轨道半径较大又根据牛顿万有引力定律r v mma rMm G 22==得:2r MG a =,可见“风云一号”卫星的向心加速度大, rGMv =,可见“风云一号”卫星的线速度大, “风云一号”下次通过该岛上空,地球正好自转一周,故需要时间24h ,即第二天上午8点钟。
关于开普勒的三大定律例1 月球环绕地球运动的轨道半径约为地球半径的60倍,运行周期约为27天。
应用开普勒定律计算:在赤道平面内离地面多少高度,人造地球卫星可以随地球一起转动,就像停留在无空中不动一样.分析:月球和人造地球卫星都在环绕地球运动,根据开普勒第三定律,它们运行轨道的半径的三次方跟圆周运动周期的二次方的比值都是相等的.解:设人造地球卫星运行半径为R,周期为T,根据开普勒第三定律有:同理设月球轨道半径为,周期为,也有:由以上两式可得:在赤道平面内离地面高度:km点评:随地球一起转动,就好像停留在天空中的卫星,通常称之为定点卫星.它们离地面的高度是一个确定的值,不能随意变动。
利用月相求解月球公转周期例2 若近似认为月球绕地球公转与地球绕日公转的轨道在同一平面内,且都为正圆.又知这两种转动同向,如图所示,月相变化的周期为29.5天(图是相继两次满月,月、地、日相对位置示意图).解:月球公转(2π+)用了29.5天.故转过2π只用天.由地球公转知.所以=27.3天.例3如图所示,A、B、C是在地球大气层外的圆形轨道上运行的三颗人造地球卫星,下列说法中正确的是哪个?()A.B、C的线速度相等,且大于A的线速度B.B、C的周期相等,且大于A的周期C.B、C的向心加速度相等,且大于A的向心加速度D.若C的速率增大可追上同一轨道上的B分析:由卫星线速度公式可以判断出,因而选项A是错误的.由卫星运行周期公式,可以判断出,故选项B是正确的.卫星的向心加速度是万有引力作用于卫星上产生的,由,可知,因而选项C是错误的.若使卫星C速率增大,则必然会导致卫星C偏离原轨道,它不可能追上卫星B,故D也是错误的.解:本题正确选项为B。
点评:由于人造地球卫星在轨道上运行时,所需要的向心力是由万有引力提供的,若由于某种原因,使卫星的速度增大。
则所需要的向心力也必然会增加,而万有引力在轨道不变的时候,是不可能增加的,这样卫星由于所需要的向心力大于外界所提供的向心力而会作离心运动。
万有引力定律的应用万有引力定律是牛顿在17世纪提出的,它描述了任何两个物体之间的引力大小与距离和质量有关。
这个定律在科学和工程领域有广泛的应用,下面将分析其中一些重要的应用。
一、天体运动万有引力定律被广泛应用于研究天体运动,如行星绕太阳的公转,卫星围绕地球的轨道等。
根据万有引力定律,行星和卫星之间的引力与它们的质量和距离有关。
通过计算引力和质量之间的平衡,科学家能够预测天体的轨道和运动方式,为航天飞行和地球观测提供了重要的依据。
二、地球引力地球的引力是万有引力定律的典型应用。
地球对物体的引力会使物体朝向地心方向运动,并决定了物体的重量。
人类在地球表面所感受到的重力就是地球对我们的引力。
地球引力对于建筑设计、桥梁建设和运输等领域的设计和计算非常重要。
三、人造卫星人造卫星的运行离不开万有引力定律的应用。
人造卫星需要在地球轨道上绕地球运行,以实现通信、气象观测和全球定位等功能。
科学家通过计算卫星与地球之间的引力平衡,确定卫星的速度和轨道,以便卫星能够稳定地绕地球运行。
四、航天器轨道设计航天器轨道设计也利用了万有引力定律。
在航天器发射时,它需要进入特定的轨道才能完成任务。
科学家利用万有引力定律计算出航天器需要达到的速度和轨道倾角,以便使航天器成功进入预定的轨道,从而实现科学研究、遥感观测和空间探索等目标。
五、行星间引力相互作用除了天体运动,万有引力定律还解释了行星间引力相互作用。
行星之间的引力相互作用决定了它们的相对位置和运动。
这种引力相互作用还解释了潮汐现象,即海洋潮汐和地球上其他物体的周期性起伏。
利用万有引力定律,科学家能够预测和解释行星间的引力相互作用,进而研究太阳系的演化和宇宙的结构。
六、重力加速度测量重力加速度是指物体受到引力作用时的加速度。
利用万有引力定律,可以计算出地球上某一点的重力加速度。
这对建筑工程、地质勘探和地质灾害预测等领域非常重要。
科学家可以通过测量物体的自由落体加速度,计算出该点所受的重力加速度,从而提供精确的数据。
《万有引力与航天》万有引力定律的应用1.研究天体运动的基本方法:研究人造卫星、行星等天体的运动时,我们进行了以下近似:中心天体是不动的,绕行天体以中心天体的球心为圆心做匀速圆周运动;绕行天体只受到中心天体的万有引力作用。
(1)中心天体对绕行天体的引力充当绕行天体的向心力: F 引=F n即 2rMm G = ma n = m υ2r = m ω2r = r T m 224π① 中心天体质量:2323224GT r G r G r v M πω=== (公转周期易于测量,常用含周期的表达式) 密度: 又ρπ⋅=34R M 得 3233r πρ= (r 为公转轨道半径,R 为中心天体球体半径)② 卫星(行星)的线速度υ、角速度ω、加速度a n 、周期T 和轨道半径r 的关系 ①υ=GM r , 线速度 υ∝1r ; ②ω =GM r 3, 角速度 ω∝1r 3③T = GMr 324π,周期T ∝r 3,2234πGM T r k ==,(即开普勒第三定律k 由中心天体质量决定)④a n = GMr2, 向心加速度a n ∝1r 2(与距离成“平方反比”关系)(2)将重力看成与万有引力相等(忽略星球自转): F 引=mg地球质量:地球表面物体 G gR M mg RMm G 22=∴=重要代换式: 在星球表面:GM gR mg RMmG=∴=22 行星表面重力加速度g 、距地表一定高度处重力加速度h g 地表重力加速度: 22RGMg mg R Mm G=∴= 距地表一定高度处重力加速度: ()()g h R R h R GMg mg h R GMmh h 2222)(+=+=∴=+第一宇宙速度:v 1=gR R GM =/(最小发射速度,圆周运动最大绕行速度,近地卫星速度)2.课堂延伸:“双星”是两颗相距较近,它们之间的万有引力对两者运动都有显著影响,而其他天体的作用力影响可以忽略的特殊天体系统.它们之所以没有被强大的引力吸引到一起而保持距离L 不变,是因为它们绕着共同“中心”以相同的角速度做匀速圆周运动,它们之间的万有引力提供它们做圆周运动的向心力. “黑洞”是近代引力理论预言..的一种特殊天体,它的质量十分巨大,以致于其逃逸速度有可能超过真空中的光速,因此任何物体都不能脱离它的束缚,即光子也不能射出.已知物体从星球上的逃逸速度(即第二宇宙速度)是υ=2GMR,故一个质量为M 的天体,若它是一个黑洞,则其半径R 应有:R ≤2GMc2.假如把地球变成黑洞,那么半径就要缩小到几毫米。
牛顿万有引力定律的应用牛顿万有引力定律是描述物体间引力相互作用的重要定律。
这个定律指出,两个物体之间的引力大小与它们的质量成正比,与它们之间的距离的平方成反比。
在科学和工程领域,牛顿万有引力定律有许多重要的应用,下面将重点介绍其中几个案例。
1. 行星运动牛顿万有引力定律被广泛应用于研究行星、卫星和其他天体之间的运动。
根据定律,太阳对行星的引力与行星质量和距离太阳的距离的平方成正比。
这使得我们能够计算行星的轨道、速度和加速度,从而更好地了解行星的运动规律。
2. 地球引力地球作为一个大的物体,也受到牛顿万有引力定律的影响。
地球对物体的引力是使物体保持在地球表面的原因。
这种引力还可应用于测量物体的质量,通过测量物体在地球上受到的重力来推算物体的质量。
3. 卫星轨道卫星轨道设计依赖于牛顿万有引力定律。
科学家需要根据卫星的质量、所处高度和所需轨道来计算卫星所需要的速度。
通过精确的计算,可以将卫星放置在预期轨道上,来满足通信、气象等各种应用需求。
4. 弹道学弹道学是研究飞行物体的运动和飞行轨迹的科学。
在这个领域,牛顿万有引力定律被应用于计算导弹、火箭等飞行物体的轨迹与所需速度。
通过准确计算引力的大小和方向,可以帮助飞行物体准确地到达目标地点。
5. 天体测量利用牛顿万有引力定律的原理,天文学家可以通过测量天体之间的引力来确定它们的质量。
例如,通过观察行星或恒星与其他天体的相互作用,可以计算出它们的质量。
这为我们更好地了解宇宙中的天体提供了重要的数据基础。
总结起来,牛顿万有引力定律的应用非常广泛,涵盖了行星运动、地球引力、卫星轨道、弹道学以及天体测量等多个领域。
这个定律的重要性在于它为科学家和工程师提供了计算和预测物体之间引力相互作用的数学工具,推动了许多技术和科学的发展。
通过深入研究和应用牛顿万有引力定律,我们可以更好地理解自然界,并应用于实际生活和工作中。
万有引力定律在生活中的应用
万有引力定律是牛顿在1687年发表的一项重要成果,它描述了任何两个物体之间都存在着一种相互吸引的力,这种力的大小与两个物体的质量和它们之间的距离有关。
这个定律不仅在天文学和物理学中有着广泛的应用,而且在我们日常生活中也有着许多实际的应用。
1. 行星的运动:万有引力定律是描述行星运动的基础。
行星绕着太阳公转的轨道是由于太阳的引力作用而产生的。
这个定律也可以解释为什么行星在轨道上的速度是不断变化的,因为它们的距离在不断变化。
2. 地球的重力:地球的重力是由于地球的质量和我们身体的质量之间的相互吸引力。
这个力使我们保持在地球表面,而不飞走。
这个定律也可以解释为什么我们在不同的地方体重不同,因为地球的质量在不同的地方是不同的。
3. 弹跳运动:当我们跳起来时,我们的身体会受到地球的引力作用,但我们也会受到地球对我们的反作用力。
这个反作用力会使我们弹起来,并且在我们落地时减缓我们的速度。
4. 卫星的轨道:人造卫星绕地球运动的轨道是由于地球的引力作用而产生的。
这个定律也可以解释为什么卫星的轨道是稳定的,因为它们的速度和距离是经过精确计算的。
5. 摆钟的运动:摆钟的运动是由于地球的引力作用而产生的。
当摆钟摆动时,它的重力会使它回到中心位置,这个过程会不断重复。
总之,万有引力定律在我们的日常生活中有着广泛的应用,它可以解释许多我们所看到的现象,并且对于科学研究和技术应用都有着重要的意义。
万有引力的应用:1. 地球质量的计算地面附近的重力与万有引力实质相同,不考虑地球自转的影响,重力等于引力2Mmmg GR = 质点m 所在处的g 值与到底薪距离R 对应。
R ↑,g ↓,因此测出离地心R 处的g 值,就可算出地球质量2gR M G =,此法在其他星球上成立2. 在任何星球表面,g 值比较容易测量,当用到GM 时,可用GM= gR ²换算,该公式称为“黄金代换”。
由于g 、R 为人们所熟知,因此常用gR ²替代GM 来解题,此式可推广,如M 为某天体的质量,g 则为某天体表面的重力加速度,R 为该天体的半径题1:已知引力常量116.6710G -=⨯N ·m ²/kg ²,重力加速度g 取9.8m/s ²,地球半径66.410R =⨯m ,则可知地球质量的数量级是(D )A 1810kgB 2010kgC 2210kgD 2410kg题2:已知地球表面重力加速度为g ,地球半径为R ,求同步地球卫星离地面的高度h答案:h R =;T 为24小时 3. 计算天体的质量某星体围绕中心天体z m 做圆周运动的周期为T ,圆周运动的轨道半径为r ,由222z m m G m r r T π⎛⎫= ⎪⎝⎭得2324z r m GT π=题3:太阳光经过500s 到达地球,地球的半径为66.410R =⨯m ,试估算太阳质量与地球质量的比值(保留一位有效数字) 答案:5310⨯ 4. 发现未知天体由最外侧天体轨道的“古怪”现象提出猜想,根据轨道的古怪情况和万有引力定律计算新天体的可能轨道,根据计算出的轨道预测新天体可能出现的时刻和位置,进行实地观察验证海王星和哈雷彗星按时回归的意义不仅在于发现了新天体,更重要的是确立了万有引力定律的地位。
表明了一个科学的理论不仅能解释已知的事情还能推测未知的事实题4.海王星的发现是万有引力定律应用的一个成功范例,但是发现海王星后,人们发现海王星的轨道与理论计算值有较大差异,于是沿用了发现海王星的办法,经过多年努力,才由美国以落维尔天文台在理论上计算出的轨道附近天区内找到了质量比理论值晓得多的冥王星,冥王星绕太阳运行的轨道半径是40个天文单位,(日地距离为一个天文单位),求冥王星与地球绕太阳运行的线速度之比。
万有引力定律应用的12种典型案例万有引力定律是牛顿力学中的基本定律之一,它描述了物体之间的引力相互作用。
根据万有引力定律,两个物体之间的引力与它们的质量和距离的平方成正比,与它们的质量之积成正比。
以下是12种典型案例,展示了万有引力定律的应用。
1.行星运动:行星绕着太阳运动的路径是通过万有引力定律来解释的。
行星受到太阳的引力作用,使其绕太阳运行。
2.月球引力:地球对于月球的引力使月球绕地球运动,并导致潮汐现象的发生。
3.人造卫星轨道:人造卫星绕地球运动的轨道也是通过万有引力定律计算得出的。
它们的轨道必须满足引力和离心力的平衡。
4.天体运动:星系、恒星、星云等天体之间的相互作用和星系的相对运动等现象也可以通过万有引力定律来解释。
5.天体测量:通过测量天体之间的引力相互作用,可以研究天体的质量、密度和结构等重要参数。
6.卫星通信:卫星通信的成功依赖于精确的轨道计算和调整,其中也会考虑万有引力的影响。
7.建筑结构:在设计大桥、高楼和其他高度建筑物时,需要考虑到物体的质量以及地球引力对其产生的影响。
8.全球定位系统(GPS):GPS依赖于卫星的精确定位,而卫星的运行轨道需要考虑到地球的引力。
9.天体轨迹模拟:通过利用万有引力定律,可以开发出模拟软件,用于模拟行星、卫星和彗星等天体的轨迹。
10.飞行器轨迹规划:在飞行器的轨迹规划中,需要考虑地球的引力场,以确保飞行器达到预定的目标。
11.岩石运动:山体滑坡、泥石流等自然灾害的预测和防范也需要考虑到万有引力的作用。
12.模拟地球重力:在电影特效、虚拟现实和游戏开发中,为了提高真实感,需要模拟地球重力对角色或物体的影响。
这些典型案例展示了万有引力定律的广泛应用范围。
它不仅在天文学和航天领域中起着重要的作用,也在建筑、工程和计算机图形学等领域中得到广泛应用。
万有引力定律的正确应用有助于解释自然界中的许多现象,并促进科学研究和技术发展。
3232万有引力定律应用典型案例万有引力定律不仅是高考的一个大重点,而且是自然科学的一个重大课题,也是同学们最感兴趣的科学论题之一。
特别是我国“神州五号”载人飞船的发射成功,更激发了同学们研究卫星,探索宇宙的信心。
下面我们就来探讨一下万有引力定律在天文学上应用几个典型案例:【案例1】天体的质量与密度的估算下列哪一组数据能够估算出地球的质量 A.月球绕地球运行的周期与月地之间的距离 B.地球表面的重力加速度与地球的半径 C.绕地球运行卫星的周期与线速度 D.地球表面卫星的周期与地球的密度解析:人造地球卫星环绕地球做匀速圆周运动。
月球也是地球的一颗卫星。
设地球的质量为M ,卫星的质量为m ,卫星的运行周期为T ,轨道半径为r根据万有引力定律:r T 4m r Mm G 222π=……①得:232G T r 4M π=……②可见A 正确而Tr2v π=……由②③知C 正确 对地球表面的卫星,轨道半径等于地球的半径,r=R ……④ 由于3R 4M3π=ρ……⑤结合②④⑤得:G3T 2π=ρ 可见D 错误 地球表面的物体,其重力近似等于地球对物体的引力由2RMmG mg =得:G g R M 2=可见B 正确3333【剖析点评】根据牛顿定律,只能求出中心天体的质量,不能解决环绕天体的质量;能够根据已知条件和已知的常量,运用物理规律估算物理量,这也是高考对学生的要求。
总之,牛顿万有引力定律是解决天体运动问题的关键。
【案例2】普通卫星的运动问题我国自行研制发射的“风云一号”“风云二号”气象卫星的运行轨道是不同的。
“风云一号”是极地圆形轨道卫星,其轨道平面与赤道平面垂直,周期为12 h ,“风云二号”是同步轨道卫星,其运行轨道就是赤道平面,周期为24 h 。
问:哪颗卫星的向心加速度大哪颗卫星的线速度大若某天上午8点,“风云一号”正好通过赤道附近太平洋上一个小岛的上空,那么“风云一号”下次通过该岛上空的时间应该是多少解析:本题主要考察普通卫星的运动特点及其规律由开普勒第三定律T 2∝r 3知:“风云二号”卫星的轨道半径较大又根据牛顿万有引力定律r v mma rMm G 22==得:2rMG a =,可见“风云一号”卫星的向心加速度大, rGMv =,可见“风云一号”卫星的线速度大, “风云一号”下次通过该岛上空,地球正好自转一周,故需要时间24h ,即第二天上午8点钟。
【剖析点评】由万有引力定律得:2M a G r =,v =ω=2T =⑴所有运动学量量都是r 的函数。
我们应该建立函数的思想。
⑵运动学量v 、a 、ω、f 随着r 的增加而减小,只有T 随着r 的增加而增加。
⑶任何卫星的环绕速度不大于7.9km/s ,运动周期不小于85min 。
⑷学会总结规律,灵活运用规律解题也是一种重要的学习方法。
【案例3】同步卫星的运动下列关于地球同步卫星的说法中正确的是:A 、为避免通讯卫星在轨道上相撞,应使它们运行在不同的轨道上B 、通讯卫星定点在地球赤道上空某处,所有通讯卫星的周期都是24hC 、不同国家发射通讯卫星的地点不同,这些卫星的轨道不一定在同一平面上3434D 、不同通讯卫星运行的线速度大小是相同的,加速度的大小也是相同的。
解析:本题考察地球同步卫星的特点及其规律。
同步卫星运动的周期与地球自转周期相同,T=24h ,角速度ω一定根据万有引力定律r T4m r mM G 222π=得知通讯卫星的运行轨道是一定的,离开地面的高度也是一定的。
地球对卫星的引力提供了卫星做圆周运动的向心力,因此同步卫星只能以地心为为圆心做圆周运动,它只能与赤道同平面且定点在赤道平面的正上方。
故B 正确,C 错误。
不同通讯卫星因轨道半径相同,速度大小相等,故无相对运动,不会相撞,A 错误。
由r v m m a rMm G 22==知:通讯卫星运行的线速度、向心加速度大小一定。
故正确答案是:B 、D【剖析点评】通讯卫星即地球同步通讯卫星,它的特点是:与地球自转周期相同,角速度相同;与地球赤道同平面,在赤道的正上方,高度一定,绕地球做匀速圆周运动;线速度、向心加速度大小相同。
三颗同步卫星就能覆盖地球。
【案例4】“双星”问题天文学中把两颗距离比较近,又与其它星体距离比较远的星体叫做双星,双星的间距是一定的。
设双星的质量分别是m 1、m 2,星球球心间距为L 。
问:⑴两星体各做什么运动⑵两星的轨道半径各多大⑶两星的速度各多大 解析:本题主要考察双星的特点及其运动规律⑴由于双星之间只存在相互作用的引力,质量不变,距离一定,则引力大小一定,根据牛顿第二定律知道,每个星体的加速度大小不变。
因此它们只能做匀速圆周运动。
⑵由牛顿定律222121221r m r m Lm m Gω=ω=……① 得:1221m m r r = 又L r r 21=+……② 解得:L m m m r L m m m r 21122121+=+=……③3535⑶由①得:)m m (L Gm Lr Gm r v 21221211+==ω= )m m (L Gm L r Gm r v 21122122+==ω= 【剖析点评】双星的特点就是距离一定,它们间只存在相互作用的引力,引力又一定,从而加速度大小就是一个定值,这样的运动只能是匀速圆周运动。
这个结论很重要。
同时利用对称性,巧妙解题,找到结论的规律,搞清结论的和谐美与对称美对我们以后的学习也很有帮助。
【案例5】卫星追及相遇问题如图是在同一平面不同轨道上运行的两颗人造地球卫星。
设它们运行的周期分别是T 1、T 2,(T 1<T 2),且某时刻两卫星相距最近。
问:⑴两卫星再次相距最近的时间是多少 ⑵两卫星相距最远的时间是多少解析:本题考察同一平面不同轨道上运行的两颗人造地球卫星的位置特点及其卫星的运动规律 ⑴依题意,T 1<T 2,周期大的轨道半径大,故外层轨道运动的卫星运行一周的时间长。
设经过△t 两星再次相距最近则它们运行的角度之差πφ2=∆……① π=π-π2t T 2t T 2:21即 ……② 解得:1221T T T T t -=⑵两卫星相距最远时,它们运行的角度之差()πφ12+=∆k ……③ ()π+=π-π1k 2t T 2t T 2:21即……④ k=0.1.2…… 解得:1221T T T T 21k 2t -⋅+=……⑤ k=0.1.2……【剖析点评】曲线运动求解时间,常用公式φ=ωt ;通过作图,搞清它们转动的角度关系,以及终边相同的角,是解决这类问题的关键。
【案例6】同步卫星的发射问题发射地球同步卫星时,先将卫星发射至近地圆形轨道1运行,然后点火,使其沿3636椭圆轨道2运行,最后再次点火,将卫星送入同步圆形轨道3运行。
设轨道1、2相切于Q 点,轨道2、3相切于P 点,则卫星分别在1、2、3轨道上正常运行时,⑴比较卫星经过轨道1、2上的Q 点的加速度的大小;以及卫星经过轨道2、3上的P 点的加速度的大小⑵设卫星在轨道1、3上的速度大小为v 1、v 3 ,在椭圆轨道上Q 、P 点的速度大小分别是v 2、v 2/,比较四个速度的大小解析:同步卫星的发射有两种方法,本题提供了同步卫星的一种发射方法,并考察了卫星在不同轨道上运动的特点。
⑴根据牛顿第二定律,卫星的加速度是由于地球吸引卫星的引力产生的。
即:ma rMmG 2=可见 卫星在轨道2、3上经过P 点的加速度大小相等;卫星在轨道1、2上经过Q 点的加速度大小也相等;但P 点的加速度小于Q 点的加速度。
⑵1、3轨道为卫星运行的圆轨道,卫星只受地球引力做匀速圆周运动由r v m rMm G 22=得:rGMv =可见:v 1>v 3由开普勒第二定律知,卫星在椭圆轨道上的运动速度大小不同,近地点Q 速度大,远地点速度小,即:v 2>v 2/卫星由近地轨道向椭圆轨道运动以及由椭圆轨道向同步轨道运动的过程中,引力小于向心力,r v m rMm G 22=,卫星做离心运动,因此随着轨道半径r 增大,卫星运动速度增大,它做加速运动,可见:v 2>v 1,v 3>v 2/因此:v 2>v 1>v 3>v 2/【剖析点评】卫星运动的加速度是由地球对卫星的引力提供的,所以研究加速度首先应考虑牛顿第二定律;卫星向外轨道运行时,做离心运动,半径增大,速度必须增大,只能做加速运动。
同步卫星是怎样发射的呢通过上面的例题及教材学习,我们知道:同步卫星的发射有两种方法,一是直接发射到同步轨道;二是先发射到近地轨道,然后再加速进入椭圆轨道,再加速进入地球的同步轨道。
3737【案例7】 “连续群”与“卫星群”土星的外层有一个环,为了判断它是土星的一部分,即土星的“连续群”,还是土星的“卫星群”,可以通过测量环中各层的线速度v 与该层到土星中心的距离R 之间的关系来判断:A 、 若v ∝R ,则该层是土星的连续群B 、 若v 2∝R ,则该层是土星的卫星群C 、 若R 1v ∝,则该层是土星的连续群 D 、 若R1v 2∝,则该层是土星的卫星群解析:本题考察连续物与分离物的特点与规律⑴该环若是土星的连续群,则它与土星有共同的自转角速度, R v ω=,因此v ∝R⑵该环若是土星的卫星群,由万有引力定律R v m RMm G 22=得:R1v 2∝故A 、D 正确 【剖析点评】土星也在自转,能分清环是土星上的连带物,还是土星的卫星,搞清运用的物理规律,是解题的关键。
同时也要注意,卫星不一定都是同步卫星。
【案例8】宇宙空间站上的“完全失重”问题假定宇宙空间站绕地球做匀速圆周运动,则在空间站上,下列实验不能做成的是: A 、天平称物体的质量 B 、用弹簧秤测物体的重量 C 、用测力计测力D 、用水银气压计测飞船上密闭仓内的气体压强E 、用单摆测定重力加速度F 、用打点计时器验证机械能守恒定律解析:本题考察了宇宙空间站上的“完全失重”现象。
宇宙飞船绕地球做匀速圆周运动时,地球对飞船的引力提供了向心加速ma rMmG2=,可见38382rMGa =……① 对于飞船上的物体,设F 为“视重”,根据牛顿第二定律得:a m F rMm G /2/=-……②解得:F=0,这就是完全失重在完全失重状态下,引力方向上物体受的弹力等于零,物体的重力等于引力,因此只有C 、F 实验可以进行。
其它的实验都不能进行。
【剖析点评】当物体的加速度等于重力加速度时,引力方向上物体受的弹力等于零,但物体的重力并不等于零;在卫星上或宇宙空间站上人可以做机械运动,但不能测定物体的重力。
【案例9】黑洞问题“黑洞”问题是爱因斯坦广义相对论中预言的一种特殊的天体。
它的密度很大,对周围的物质(包括光子)有极强的吸引力。
根据爱因斯坦理论,光子是有质量的,光子到达黑洞表面时,也将被吸入,最多恰能绕黑洞表面做圆周运动。