控制系统设计与仿真实验报告
- 格式:docx
- 大小:394.25 KB
- 文档页数:25
基于Simulink 控制系统仿真与综合设计一、实验目的(1) 熟悉Simulink 的工作环境及其功能模块库; (2) 掌握Simulink 的系统建模和仿真方法; (3) 掌握Simulink 仿真数据的输出方法与数据处理;(4) 掌握利用Simulink 进行控制系统的时域仿真分析与综合设计方法; (5) 掌握利用 Simulink 对控制系统的时域与频域性能指标分析方法。
二、实验内容图2.1为单位负反馈系统。
分别求出当输入信号为阶跃函数信号)(1)(t t r =、斜坡函数信号t t r =)(和抛物线函数信号2/)(2t t r =时,系统输出响应)(t y 及误差信号)(t e 曲线。
若要求系统动态性能指标满足如下条件:a) 动态过程响应时间s t s 5.2≤;b) 动态过程响应上升时间s t p 1≤;c) 系统最大超调量%10≤p σ。
按图1.2所示系统设计PID 调节器参数。
图2.1 单位反馈控制系统框图图2.2 综合设计控制系统框图三、实验要求(1) 采用Simulink系统建模与系统仿真方法,完成仿真实验;(2) 利用Simulink中的Scope模块观察仿真结果,并从中分析系统时域性能指标(系统阶跃响应过渡过程时间,系统响应上升时间,系统响应振荡次数,系统最大超调量和系统稳态误差);(3) 利用Simulink中Signal Constraint模块对图2.2系统的PID参数进行综合设计,以确定其参数;(4) 对系统综合设计前后的主要性能指标进行对比分析,并给出PID参数的改变对闭环系统性能指标的影响。
四、实验步骤与方法4.1时域仿真分析实验步骤与方法在Simulink仿真环境中,打开simulink库,找出相应的单元部件模型,并拖至打开的模型窗口中,构造自己需要的仿真模型。
根据图2.1 所示的单位反馈控制系统框图建立其仿真模型,并对各个单元部件模型的参数进行设定。
所做出的仿真电路图如图4.1.1所示。
一、实验目的1. 熟悉MATLAB/Simulink仿真软件的基本操作。
2. 学习控制系统模型的建立与仿真方法。
3. 通过仿真分析,验证理论知识,加深对自动控制原理的理解。
4. 掌握控制系统性能指标的计算方法。
二、实验内容本次实验主要分为两个部分:线性连续控制系统仿真和非线性环节控制系统仿真。
1. 线性连续控制系统仿真(1)系统模型建立根据题目要求,我们建立了两个线性连续控制系统的模型。
第一个系统为典型的二阶系统,其开环传递函数为:\[ G(s) = \frac{1}{(s+1)(s+2)} \]第二个系统为具有迟滞环节的系统,其开环传递函数为:\[ G(s) = \frac{1}{(s+1)(s+2)(s+3)} \](2)仿真与分析(a)阶跃响应仿真我们对两个系统分别进行了阶跃响应仿真,并记录了仿真结果。
(b)频率响应仿真我们对两个系统分别进行了频率响应仿真,并记录了仿真结果。
(3)性能指标计算根据仿真结果,我们计算了两个系统的性能指标,包括上升时间、超调量、调节时间等。
2. 非线性环节控制系统仿真(1)系统模型建立根据题目要求,我们建立了一个具有饱和死区特性的非线性环节控制系统模型。
其传递函数为:\[ W_k(s) = \begin{cases}1 & |s| < 1 \\0 & |s| \geq 1\end{cases} \](2)仿真与分析(a)阶跃响应仿真我们对非线性环节控制系统进行了阶跃响应仿真,并记录了仿真结果。
(b)相轨迹曲线绘制根据仿真结果,我们绘制了四条相轨迹曲线,以分析非线性环节对系统性能的影响。
三、实验结果与分析1. 线性连续控制系统仿真(a)阶跃响应仿真结果表明,两个系统的性能指标均满足设计要求。
(b)频率响应仿真结果表明,两个系统的幅频特性和相频特性均符合预期。
2. 非线性环节控制系统仿真(a)阶跃响应仿真结果表明,非线性环节对系统的性能产生了一定的影响,导致系统响应时间延长。
《MATLAB与控制系统仿真》实验报告一、实验目的本实验旨在通过MATLAB软件进行控制系统的仿真,并通过仿真结果分析控制系统的性能。
二、实验器材1.计算机2.MATLAB软件三、实验内容1.搭建控制系统模型在MATLAB软件中,通过使用控制系统工具箱,我们可以搭建不同类型的控制系统模型。
本实验中我们选择了一个简单的比例控制系统模型。
2.设定输入信号我们需要为控制系统提供输入信号进行仿真。
在MATLAB中,我们可以使用信号工具箱来产生不同类型的信号。
本实验中,我们选择了一个阶跃信号作为输入信号。
3.运行仿真通过设置模型参数、输入信号以及仿真时间等相关参数后,我们可以运行仿真。
MATLAB会根据系统模型和输入信号产生输出信号,并显示在仿真界面上。
4.分析控制系统性能根据仿真结果,我们可以对控制系统的性能进行分析。
常见的性能指标包括系统的稳态误差、超调量、响应时间等。
四、实验步骤1. 打开MATLAB软件,并在命令窗口中输入“controlSystemDesigner”命令,打开控制系统工具箱。
2.在控制系统工具箱中选择比例控制器模型,并设置相应的增益参数。
3.在信号工具箱中选择阶跃信号,并设置相应的幅值和起始时间。
4.在仿真界面中设置仿真时间,并点击运行按钮,开始仿真。
5.根据仿真结果,分析控制系统的性能指标,并记录下相应的数值,并根据数值进行分析和讨论。
五、实验结果与分析根据运行仿真获得的结果,我们可以得到控制系统的输出信号曲线。
通过观察输出信号的稳态值、超调量、响应时间等性能指标,我们可以对控制系统的性能进行分析和评价。
六、实验总结通过本次实验,我们学习了如何使用MATLAB软件进行控制系统仿真,并提取控制系统的性能指标。
通过实验,我们可以更加直观地理解控制系统的工作原理,为控制系统设计和分析提供了重要的工具和思路。
七、实验心得通过本次实验,我深刻理解了控制系统仿真的重要性和必要性。
MATLAB软件提供了强大的仿真工具和功能,能够帮助我们更好地理解和分析控制系统的性能。
第1篇一、实验目的1. 掌握系统控制的基本原理和方法。
2. 熟悉最少拍控制系统的分析方法。
3. 了解输入信号对最小拍控制系统的影响及其改进措施。
4. 培养实验操作能力和数据分析能力。
二、实验原理最少拍控制系统是一种直接数字设计方法,其目的是使闭环系统对于某种特定的输入在最少个采样周期内达到无静差的稳态,使系统输出值尽快地跟踪期望值的变化。
其闭环传递函数具有形式:\[ G(s) = \frac{1}{(z-1)^N} \]其中,N是可能情况下的最小正整数。
这一传递形式表明闭环系统的脉冲响应在N个采样周期后变为零,从而意味着系统在N拍之内到达稳态。
三、实验设备1. 硬件环境:- 微型计算机一台,Pentium 4以上各类微机2. 软件平台:- 操作系统:Windows 2000- 仿真软件:MATLAB6.0四、实验内容与步骤1. 计算控制器:- 按照系统要求计算最少拍有纹波控制器。
2. 构造系统结构图模型:- 在Simulink下构造系统结构图模型。
- 取输入信号为单位阶跃信号和单位速度信号。
3. 设计控制器:- 设计控制器,观察输入输出波型,标明参数,打印结果。
4. 观察系统输出波形:- 观察系统输出波形在采样点以外的波形。
五、实验结果与分析1. 单位阶跃输入下的最少拍有纹波控制系统:- 通过仿真,可以得到单位阶跃输入下的最少拍有纹波控制系统的输出波形,如图1-2所示。
- 从图中可以看出,系统在3个采样周期内达到稳态,且稳态误差较小。
2. 单位速度输入下的最少拍有纹波控制系统:- 通过仿真,可以得到单位速度输入下的最少拍有纹波控制系统的输出波形。
- 从图中可以看出,系统在3个采样周期内达到稳态,且稳态误差较小。
3. 输入信号对系统的影响:- 通过改变输入信号,可以观察到输入信号对系统输出波形的影响。
- 例如,当输入信号为单位阶跃信号时,系统输出波形呈现出明显的纹波现象;而当输入信号为单位速度信号时,系统输出波形则较为平滑。
一、实验目的1. 掌握控制系统仿真的基本原理和方法;2. 熟练运用MATLAB/Simulink软件进行控制系统建模与仿真;3. 分析控制系统性能,优化控制策略。
二、实验内容1. 建立控制系统模型2. 进行仿真实验3. 分析仿真结果4. 优化控制策略三、实验环境1. 操作系统:Windows 102. 软件环境:MATLAB R2020a、Simulink3. 硬件环境:个人电脑一台四、实验过程1. 建立控制系统模型以一个典型的PID控制系统为例,建立其Simulink模型。
首先,创建一个新的Simulink模型,然后添加以下模块:(1)输入模块:添加一个阶跃信号源,表示系统的输入信号;(2)被控对象:添加一个传递函数模块,表示系统的被控对象;(3)控制器:添加一个PID控制器模块,表示系统的控制器;(4)输出模块:添加一个示波器模块,用于观察系统的输出信号。
2. 进行仿真实验(1)设置仿真参数:在仿真参数设置对话框中,设置仿真时间、步长等参数;(2)运行仿真:点击“开始仿真”按钮,运行仿真实验;(3)观察仿真结果:在示波器模块中,观察系统的输出信号,分析系统性能。
3. 分析仿真结果根据仿真结果,分析以下内容:(1)系统稳定性:通过观察系统的输出信号,判断系统是否稳定;(2)响应速度:分析系统对输入信号的响应速度,评估系统的快速性;(3)超调量:分析系统超调量,评估系统的平稳性;(4)调节时间:分析系统调节时间,评估系统的动态性能。
4. 优化控制策略根据仿真结果,对PID控制器的参数进行调整,以优化系统性能。
调整方法如下:(1)调整比例系数Kp:增大Kp,提高系统的快速性,但可能导致超调量增大;(2)调整积分系数Ki:增大Ki,提高系统的平稳性,但可能导致调节时间延长;(3)调整微分系数Kd:增大Kd,提高系统的快速性,但可能导致系统稳定性下降。
五、实验结果与分析1. 系统稳定性:经过仿真实验,发现该PID控制系统在调整参数后,具有良好的稳定性。
控制系统设计实验报告本实验旨在设计并验证一个基本控制系统,通过对系统的各种参数进行调整,以实现对被控对象的控制。
在本实验中,我们将尝试使用PID控制器来控制一个由电机驱动的转动物体的角度。
通过调整PID控制器的参数,我们将研究不同参数对系统性能的影响,以及如何优化控制系统以实现更精确的控制。
1. 实验设备与原理我们使用的控制系统由以下几个部分组成:电机驱动的转动物体、编码器、PID控制器、电机驱动器以及PC这几个基础模块。
电机驱动的转动物体作为被控对象,编码器用于检测物体的实际角度,PID控制器根据检测到的角度与期望角度之间的误差来调整控制信号,电机驱动器根据PID控制器输出的信号驱动电机进行运动,PC用于设置期望角度、监控系统运行情况以及调整PID控制器的参数。
2. 实验步骤首先,我们需要连接各个模块,确保他们能够正常工作。
然后,在PC上设置期望角度,并将PID控制器初始参数设为0,0,0。
启动系统后,我们可以观察到被控对象的实际角度逐渐接近期望角度。
接下来,我们开始调整PID控制器的参数,首先逐步增大比例系数Kp,观察系统响应速度以及超调量的变化。
然后,我们继续增大积分系数Ki,观察系统的稳定性和静差的变化。
最后,我们调整微分系数Kd,观察系统对干扰的抑制能力。
通过这一系列操作,我们可以找到最佳的PID控制器参数组合,使系统表现出最优的性能。
3. 实验结果与分析经过多次实验,我们得到了一组最佳的PID控制器参数:Kp=1.2,Ki=0.5,Kd=0.1。
使用这组参数,系统能够在较短的时间内将被控对象的实际角度调整到期望角度,且幅度较小的超调量。
同时,系统对干扰的抑制也表现出较好的效果,能够快速回到期望角度。
4. 结论与展望通过本实验,我们成功设计并验证了一个基本的控制系统,并找到了最佳的PID控制器参数组合。
在今后的研究中,我们可以进一步优化控制系统,尝试其他类型的控制器,如模糊控制器、神经网络控制器等,以实现更加精确和高效的控制。
控制系统设计与仿真上机实验报告学院:自动化学院班级:自动化姓名:学号:一、 第一次上机任务1、熟悉matlab 软件的运行环境,包括命令窗体,workspace 等,熟悉绘图命令。
2、采用四阶龙格库塔法求如下二阶系统的在幅值为1脉宽为1刺激下响应的数值解。
222()2nn nG s s s ωξωω=++ ,0.5,10n ξω== 3、采用四阶龙格库塔法求高阶系统阶单位跃响应曲线的数值解。
222()(2)(1)nn nG s s s Ts ωξωω=+++,0.5,10n ξω==,5T =4、 自学OED45指令用法,并求解题2中二阶系统的单位阶跃响应。
程序代码如下:;曲线如下:二、 第二次上机任务1、试用simulink 方法解微分方程,并封装模块,输出为i x 。
得到各状态变量的时间序列,以及相平面上的吸引子。
112322331223x x x x x x x xx x x x αββγ=-+⎧⎪=-+⎨⎪=-+-⎩&&&参数入口为,,αβγ的值以及i x 的初值。
(其中8/3,10,28αβγ===,以及初值分别为1230,0,0.001x x x ===) 提示:1s模块输入是输出量的微分。
Simulink :曲线如下:2、用simulink搭建PI控制器的控制回路,被控对象传递函数:151s+,分别分析(1)、比例系数由小到大以及积分时间由小到大对阶跃响应曲线的影响。
(2)、控制器输出有饱和以及反馈有时滞情况下,阶跃响应曲线的变化。
(3)、主控制回路传递函数为:1201s+,副回路为:151s+,主回路采用PI控制器,副回路采用P控制器,分析控制系统对主回路以及副回路的阶跃扰动的抑制。
注:PI控制器表达式为1()(1)()iU s Kp E sT s=+,串级控制如图所示。
(1)(2)(3)3.编写S函数模块,实现两路正弦信号的叠加,正弦信号相位差为60度。
《控制系统设计与仿真》课程设计报告目录摘要 (1)一、概述 (2)二、设计任务与要求 (2)2.1 设计任务 (2)2.2 设计要求 (2)三、理论设计 (3)3.1 双闭环调速系统总设计 (3)3.2 设计电流调节器 (5)3.2.1.2 确定时间常数 (5)3.2.1.3 选择电流调节器的结构 (5)3.2.1.4 校验近似条件 (5)3.2.1.5 计算调节器电阻和电容 (6)3.3 速度环设计 (6)3.3.1 确定时间常数 (7)3.3.2 选择转速调节器结构 (7)3.2.2.3 检验近似条件 (7)3.2.2.4 计算调节器电阻和电容 (7)3.2.2.5 校核转速超调量 (7)四、系统建模及仿真实验 (8)4.1 MATLAB 仿真软件介绍 (8)4.2 仿真建模及实验 (8)4.2.1 单闭环仿真实验 (8)4.2.2 电流环仿真实验 (10)4.2.3 双闭环仿真实验 (10)4.2.4 反馈回路扰动仿真实验 (14)五、总结 (15)六、体会 (16)参考文献 (17).摘要从七十年代开始,由于晶闸管直流调速系统的高效、无噪音和快速响应等优点而得到广泛应用。
双闭环直流调速系统就是一个典型的系统,该系统一般含晶闸管可控整流主电路、移相控制电路、转速电流双闭环调速控制电路、以及缺相和过流保护电路等.给定信号为0~10V直流信号,可对主电路输出电压进行平滑调节。
采用双PI调节器,可获得良好的动静态效果。
电流环校正成典型I型系统。
为使系统在阶跃扰动时无稳态误差,并具有较好的抗扰性能,速度环设计成典型Ⅱ型系统。
根据转速、电流双闭环调速系统的设计方法,用MATLAB做了双闭环直流调速系统仿真综合调试,分析系统的动态性能,并进行校正,得出正确的仿真波形图。
本文还对实际中可能出现的各种干扰信号进行了仿真,另外本文还介绍了实物验证的一些情况。
关键词:MATLAB 直流调速双闭环转速调节器电流调节器干扰一、概述我们都知道,对于调速系统来说,闭环调速比开环调速具有更好的调速性能。
《MATLAB与控制系统仿真》实验报告实验报告:MATLAB与控制系统仿真引言在现代控制工程领域中,仿真是一种重要的评估和调试工具。
通过仿真技术,可以更加准确地分析和预测控制系统的行为和性能,从而优化系统设计和改进控制策略。
MATLAB是一种强大的数值计算软件,广泛应用于控制系统仿真。
实验目的本实验旨在掌握MATLAB在控制系统仿真中的应用,通过实践了解控制系统的建模与仿真方法,并分析系统的稳定性和性能指标。
实验内容1.建立系统模型首先,根据控制系统的实际情况,建立系统的数学模型。
通常,控制系统可以利用线性方程或差分方程进行建模。
本次实验以一个二阶控制系统为例,其传递函数为:G(s) = K / [s^2 + 2ζω_ns + ω_n^2],其中,K表示放大比例,ζ表示阻尼比,ω_n表示自然频率。
2.进行系统仿真利用MATLAB软件,通过编写代码实现控制系统的仿真。
可以利用MATLAB提供的函数来定义传递函数,并通过调整参数来模拟不同的系统行为。
例如,可以利用step函数绘制控制系统的阶跃响应图像,或利用impulse函数绘制脉冲响应图像。
3.分析系统的稳定性与性能在仿真过程中,可以通过调整控制系统的参数来分析系统的稳定性和性能。
例如,可以改变放大比例K来观察系统的超调量和调整时间的变化。
通过观察控制系统的响应曲线,可以判断系统的稳定性,并计算出性能指标,如超调量、调整时间和稳态误差等。
实验结果与分析通过MATLAB的仿真,我们得到了控制系统的阶跃响应图像和脉冲响应图像。
通过观察阶跃响应曲线,我们可以得到控制系统的超调量和调整时间。
通过改变放大比例K的值,我们可以观察到超调量的变化趋势。
同时,通过观察脉冲响应曲线,我们还可以得到控制系统的稳态误差,并判断系统的稳定性。
根据实验结果分析,我们可以得出以下结论:1.控制系统的超调量随着放大比例K的增大而增大,但当K超过一定值后,超调量开始减小。
2.控制系统的调整时间随着放大比例K的增大而减小,即系统的响应速度加快。
控制系统设计与仿真上机实验报告
学院:自动化学院
班级:自动化
姓名:
学号:
一、 第一次上机任务
1、熟悉matlab 软件的运行环境,包括命令窗体,workspace 等,熟
悉绘图命令。
2、采用四阶龙格库塔法求如下二阶系统的在幅值为1脉宽为1刺激
下响应的数值解。
222()2n n n
G s s s ωξωω=++ ,0.5,10n ξω== 3、采用四阶龙格库塔法求高阶系统阶单位跃响应曲线的数值解。
222
()(2)(1)n
n n G s s s Ts ωξωω=+++,0.5,10n ξω==,5T =
4、 自学OED45指令用法,并求解题2中二阶系统的单位阶跃响应。
程序代码如下:
;曲线如下:
二、 第二次上机任务
1、试用simulink 方法解微分方程,并封装模块,输出为i x 。
得到各
状态变量的时间序列,以及相平面上的吸引子。
11232233
1223x x x x x x x x x x x x αββγ=-+⎧⎪=-+⎨⎪=-+-⎩ 参数入口为,,αβγ的值以及i x 的初值。
(其中8/3,10,28αβγ===,以及初值分别为1230,0,0.001x x x ===) 提示:1s
模块输入是输出量的微分。
Simulink :
曲线如下:
2、用simulink搭建PI控制器的控制回路,被控对象传递函数:
1
51
s+
,分别分
析
(1)、比例系数由小到大以及积分时间由小到大对阶跃响应曲线的影响。
(2)、控制器输出有饱和以及反馈有时滞情况下,阶跃响应曲线的变化。
(3)、主控制回路传递函数为:
1
201
s+
,副回路为:
1
51
s+
,主回路采用PI
控制器,副回路采用P控制器,分析控制系统对主回路以及副回路的阶跃扰动的
抑制。
注:PI控制器表达式为
1
()(1)()
i
U s Kp E s
T s
=+,串级控制如图所示。
(1)
(2)
(3)
3.编写S函数模块,实现两路正弦信号的叠加,正弦信号相位差为60度。
还没做出来,正在努力做。
三、 第三次上机任务
1、 利用使能原理构成一个半波整流器,并模拟市电输入下(220v, 50Hz),整流器接一一阶惯性环节8
.058.0)(+=s s G ,惯性环节的输出波形。
2、利用触发子系统构建以零阶保持器,实现对正弦信号的采样,并比较不同采用周期下
的采样波形。
3、若被控对象传递函数为0.2()(1)G s s s =+,控制器为0.10.11()1T T T T e z e D z e z e
------=--,试用simulink 搭建一单位反馈控制系统,分析采用周期T 对系统单位阶跃响应
的影响。
4、设一单位反馈控制系统,控制器采用PI 控制,Kp=200,Ki=10, 控制器饱和
非线性宽度为2,受控对象为时变模型,由微分方程给出,如下:
0.25()()s i n (26)()()
t t y t e y t e t y t u t --+++= 求系统单位阶跃响应,并分析不同Kp 取值对响应曲线的影响。
四、第四次上机任务
1、熟悉控制系统各个模型表示方法的命令以及它们之间的相互转化。
(展开
形式,零极点形式,状态空间形式以及部分分式形式。
)
2、试用至少三种方法,判断一下系统的稳定性::
(1)
32
432
231
()
521
s s s
G s
s s s s
+++
=
++++(2)
13
52
X X
⎡⎤
=⎢⎥
⎣⎦
解:(1)
(2)
3、试产生一周期为5秒,时长为30秒,最大值为1,最小值为0的三角波;得
到如下一阶系统在三角波输入下的时间响应曲线。
1()21
G s S =
+
4、对如下二阶系统做时域分析,得到阻尼比在0~1之间变化的时候,阶跃响应的上升时间,调节时间,峰值时间,超调量以及衰减比(第一个峰值与稳态值
之差与第二个峰值与稳态值之差的比)其中5n ω=。
222()2n n n
G s s s ωξωω=++
6、已知开环传递函数如下,1)试用根轨迹方法得到其临界稳定增益。
2)若k=10,
试用伯德图方法,判断其稳定性。
()()(21)(1)(0.11)
k G s H s s s s =+++
7、已知系统开环传递函数如下
2()()(0.51)(0.11)
G s H s S S S =++ 试设计一超前校正环节,使得超调量为20%,调节时间为1s 。
系统单位斜坡稳态响应误差为10%。
并作出校正前后后的系统单位阶跃响应时域曲线加以比较。