Cr12MoV模具开裂原因分
- 格式:doc
- 大小:19.91 MB
- 文档页数:2
模具烧焊开裂的原因
模具烧焊开裂可能有多种原因,主要包括以下几点:
1.热应力引起的开裂:模具在使用过程中会受到高温的影响,尤其是在烧焊过程中,局部区域的温度急剧升高,而冷却速度又较快,导致模具表面和内部产生温度梯度。
这种温度梯度会引起不均匀的热应力分布,导致模具表面或内部产生应力集中,最终导致开裂。
2.材料选择不当:如果模具的材料强度不足或者耐热性不够,也容易在烧焊过程中发生开裂。
材料的选择应考虑到烧焊工艺中的温度和压力等因素,以确保模具能够承受这些环境的影响而不发生开裂。
3.制造工艺不当:制造过程中可能存在的缺陷,如气孔、夹杂物等,会在烧焊过程中成为应力集中点,导致模具表面或内部容易发生开裂。
4.模具设计问题:模具的设计参数如半径、壁厚、形状等都会影响到烧焊过程中的热应力分布。
如果设计不合理或者存在缺陷,容易导致模具在烧焊过程中发生开裂。
5.烧焊工艺参数不当:烧焊过程中的温度、压力、焊接速度等参数的选择不当,也会影响到模具的热应力分布,进而导致开裂。
因此,需要对烧焊工艺进行合理的优化和控制。
综上所述,模具烧焊开裂的原因可能与材料选择、制造工艺、设计参数以及烧焊工艺参数等诸多因素相关。
为避免模具烧焊开裂
问题的发生,需要在材料选择、制造工艺、设计和工艺参数优化等方面进行全面考虑和严格控制。
2021年 第1期热加工63热处理Heat TreatmentCr12MoV 钢拉深模失效分析及工艺改进关慧欢,徐继东,刘燕燕,张怀青,崔鹏飞,吴传博潍柴动力(潍柴)装备技术服务有限公司 山东潍坊 261000摘要:Cr12MoV 钢拉深模,经过1030℃淬火+200℃回火后,发现裂纹。
对其进行化学成分、裂纹形貌、金相组织及硬度进行检测。
结果表明:拉深模失效的主要原因是原材料中网状碳化物锻造时未能改善,促使晶界处脆性增加,在淬火应力作用下出现开裂,裂纹沿碳化物分布的方向扩展。
通过对原材料重新锻打,碎化、细化共晶碳化物,把粗大的枝晶状共晶碳化物打碎,提高碳化物分布的均匀性。
热处理淬火前进行球化退火,降低升温速率,有效地解决了淬火裂纹问题。
关键词:拉深模;Cr12MoV 钢;碳化物;球化退火1 序言模具在航空航天、汽车、自动化以及日常生活用品制造中占的比重越来越大。
冷作模具钢用在金属或非金属材料的冲载、拉深、弯曲、冷镦、滚丝及压弯等工序。
为满足工模具能满足冲击、磨损、弯曲、剪切等条件,材料需具备优良的强韧性。
而Cr12MoV 钢,属高铬微变形模具钢,具有很高的耐磨性、淬透性、热稳定性,经常用于制造高耐磨、微变形、高负荷服役条件下的冷作模具和工具,该钢虽然强度、硬度高,耐磨性好,但其韧性较差。
某拉深模由Cr12MoV 钢制造,其工艺流程是:锻造→下料→加工→淬火→回火→磨削。
某单位C r12M o V 拉深模,经过1030℃淬火+200℃回火,在回火后发现裂纹,失效的拉深模如图1a 所示。
从失效拉深模上取试块,可见断口条纹沿纵向分布呈放射状,属于脆性解理断裂,如图1b 所示。
2 试验方法采用OBLF 直读光谱仪对失效拉深模检测化学成分;用线切割机截取试样,并将试样研磨、抛光后,用4%硝酸酒精进行浸蚀;用DM2000X 倒置金相显微镜检验试样金相;用数显洛氏硬度计检验硬度。
3 试验结果与分析3.1 化学成分检测用直读光谱仪检测失效拉深模及同批次板材原料化学成分,结果见表1。
cr12mov热处理后加工变形(原创实用版)目录1.介绍 CR12MOV 材料2.热处理对 CR12MOV 材料的影响3.CR12MOV 热处理后的加工变形问题4.解决 CR12MOV 热处理后加工变形的方法正文一、介绍 CR12MOV 材料CR12MOV 是一种高性能合金工具钢,广泛应用于制造各种冷作模具和工具。
它具有高硬度、高韧性、耐磨性和耐热性等优点,能够在高温和高压的环境下保持良好的性能。
二、热处理对 CR12MOV 材料的影响热处理是金属材料加工中常用的一种工艺,通过对材料进行加热和冷却,可以改变其组织结构和性能。
对于 CR12MOV 材料来说,热处理可以提高其硬度和韧性,增强其耐磨性和耐热性。
然而,热处理也会对 CR12MOV 材料产生一定的变形。
这是因为在热处理过程中,材料会因温度变化而产生内应力,这些应力在冷却过程中无法完全消除,从而导致材料的变形。
三、CR12MOV 热处理后的加工变形问题CR12MOV 热处理后的加工变形主要表现为弯曲、扭曲和胀大等。
这些变形不仅影响模具和工具的使用寿命,还会影响其加工精度和表面质量。
四、解决 CR12MOV 热处理后加工变形的方法为了解决 CR12MOV 热处理后的加工变形问题,可以采取以下几种方法:1.采用适当的热处理工艺:通过合理控制热处理的温度、时间和冷却速度等参数,可以减少材料的内应力,从而降低其变形。
2.进行加工余量设计:在模具和工具的设计中,可以增加一定的加工余量,以补偿热处理后的变形。
3.采用合理的加工顺序:在加工过程中,可以先加工变形较大的部分,然后再加工变形较小的部分,以减少变形对加工精度的影响。
4.采用适当的冷却方式:在热处理过程中,可以采用适当的冷却方式,如喷雾冷却、油冷等,以降低材料的内应力,减少变形。
5.进行后续加工:对于热处理后的模具和工具,可以进行后续加工,如磨削、抛光等,以消除变形,提高加工精度和表面质量。
Cr12MoV型钢模具失效分析及模具新工艺唐俊摘要:简述 Cr12MoV型钢的材料特性, 对Cr12MoV型钢制若干常见冷作模具的失效案例进行分析和讨论, 探讨在当前生产环境下 Cr12MoV型钢制冷作模具常见失效形式的一些主要应对方法与提高模具寿命的新技术。
关键词: Cr12型钢; 冷作模具; 失效; 锻造; 热处理;表面处理;新技术1引言在过去的近20年,尤其是近几年,我国模具工业发展非常迅速。
模具需求一直以每年18%左右的速度快速增长,国民经济的高速发展对模具工业提出了越来越高的要求,也为其发展提供了强大的动力。
Cr12MoV 钢钢是目前国内广泛使用的冷作模具钢之一,属于高耐磨微变形冷作模具钢。
该钢具有淬透性好、硬度高且耐磨、热处理变形小、高抗弯强度等优点, 仅次于高速钢,常用于制作那些承受重负荷、生产批量大、形状复杂的冷作模具, 如冷冲压、冷镦、冷挤压模等,其消耗量在冷作模具钢中居首位。
该钢钢虽然强度、硬度高,耐磨性好,但其韧度较差,对加工工艺和热处理工艺要求高,处理工艺不当很容易造成模具过早失效。
例如:某模具加工厂生产制造的冷冲模具,材料为Cr12MoV冷作模具钢,生产工艺为:冶炼→锻造→球化退火→粗加工→热处理→精加工成型。
热处理为(980±10)℃油冷+(510±20)℃空冷。
模具投入生产后,仅生产2000件即发生断裂崩落,出现过早失效,为了找出模具过早失效原因,本文对该模具进行失效分析,并进行锻造、热处理工艺的分析与改进。
2 模具的失效分析2.1 模具的化学成分及冶金质量分析通过提取模具材料样品, 对其化学成分进行分析, 所得结果如表 1 所示( 括号内为 Cr12MoV 钢的化学成分范围)。
化学成分(%)元素 C Si Mn Cr Mo V S P 质量分数 1.62 0.32 0.31 12.1 0.54 0.22 0.015 0.017成分范围(1.5~1.7) (<0.4) (<0.35) (11.5~12.5) (0.4~0.6) (0.15~0.3)(<0.03) (<0.03) 表1 Crl2MoV 钢冷冲裁模具的化学成分( 质量分数)由表1中的数据可以看出, 失效冷冲裁模具的化学成分在Cr12MoV 钢的化学成分范围内, 不会对模具的金相显微组织和力学性能造成较大的影响; 另一方面, 杂质元素硫和磷的质量分数未超标, 不至于导致模具的开裂与失效. 由此判断, 该模具的过早失效不是由材料的化学成分引起的。
Cr12MoV热处理知识Cr12MoV钢是高碳高铬莱氏体钢,常用于冷作模具,含碳量比Cr12钢低。
该钢具有高的淬透性,截面300mm以下可以完全淬透,淬火时体积变化也比Cr12钢要小。
其热处理制度为:钢棒与锻件960℃空冷+ 700~720℃回火,空冷。
最终热处理工艺:1、淬火:第一次预热:300~500℃,第二次预热840~860℃;淬火温度:1020~1040℃;冷却介质:油,介质温度:20~60℃,冷却至油温;随后,空冷,HRC=60~63。
2、回火:经过以下淬火工艺,可以达到降低硬度的作用,具体回火工艺如下:加热温度400~425℃,得到HRC=57~59。
说明:在480--520度之间回火正好是这种钢材的脆性回火区,在这个区间回火容易使模具出现崩刃。
最为理想的回火区间在380--400℃,这个区间回火,韧性最好,并且有良好的耐磨性。
如果淬火后,采用深冷处理(理想的温度是零下120)与中温回火相结合,会得到良好使用效果和高寿命。
Cr12MoV的回火脆性温度范围在325~375℃。
CR12MoV380-400回火后硬度在56-58HRC做冷冲模冲韧性好的材料具有不易开裂的优点,特别是在原材料质量不是很好的情况下,用此方法经济实惠。
Cr12MoV 分级淬火工艺:850度预热—1050度加热—620度分级,时间一般在2—3分钟—油冷冷却至200度左右—(也可260度贝氏体等温)—520回火2—3次,每次2小时。
硬度在56—61HRC左右。
Cr12Mov热处理HRC60 裂开的解决方法:分析流程:(耿工)1 材料成份2材料原始组织3工件流程4热处理工艺5开裂照片6工件尺寸不能说硬度60HRC就一定开裂。
开裂的原因很多,你可参考耿工的说明逐一检查。
如果是淬火就直接开裂可能有以下原因:1)材料错致热处理工艺不合适。
2)冷却不当,在Ms温度以下快冷,应力过大。
3)工件截面尺寸相差太大,或孔洞很多,或有应力集中的地方。
模具钢淬火中的裂纹分析及解决方案模具钢在淬火过程中容易发生裂纹问题,这会对模具的使用寿命和性能造成严重影响。
因此,进行裂纹分析并提出解决方案至关重要。
本文将围绕模具钢淬火中的裂纹问题展开讨论,包括裂纹的形成原因、常见的裂纹类型,以及相应的解决方案。
首先,淬火中裂纹的形成原因主要有以下几点:1.内应力积累:模具钢在冷却过程中会出现温度梯度,不同部位的冷却速度不一致,导致内应力积累,最终引发裂纹。
2.不均匀变形:由于模具钢的结构和尺寸复杂,淬火过程中容易产生不均匀变形,造成应力超过材料的弹性极限,从而使裂纹形成。
3.冷却速度过快:过快的冷却速度会导致模具钢表面和内部温度梯度过大,产生应力集中,从而引发裂纹。
常见的裂纹类型主要有:1.表面裂纹:表面裂纹是最常见的裂纹类型,通常由于冷却速度过快或应力集中引起。
这种裂纹通常分布在模具钢的最外层。
2.内部裂纹:内部裂纹是由于冷却速度不均匀或结构变形造成的。
这种裂纹通常分布在模具钢的内部。
针对上述裂纹问题,下面给出一些解决方案:1.控制冷却速度:合理控制冷却速度可以减少模具钢淬火过程中的热应力,降低裂纹的风险。
可以通过增加冷却介质的温度、减小冷却介质的流量或使用其他缓慢冷却方法来实现。
2.合理设计模具结构:模具的设计结构应该避免尖角和过于薄壁的部位,以减少应力集中导致的裂纹。
在可能的情况下,可以添加过渡圆角和半径,有助于减少裂纹的风险。
3.适当的预处理:通过适当的热处理工艺可以改善模具钢的力学性能和织构,减少应力集中和变形,降低裂纹的发生。
这包括应用回火、退火和正火等热处理方法。
4.使用有效的质量控制措施:在制造模具钢过程中,需要严格控制原材料的质量,以确保材料的均匀性和稳定性。
此外,必须严格控制加工中的工艺参数,以确保产品的质量。
总结起来,模具钢淬火中的裂纹问题对模具的使用寿命和性能都有很大的影响。
针对裂纹的形成原因和类型,我们可以通过控制冷却速度、合理设计模具结构、适当的预处理和使用有效的质量控制措施等方面来解决这一问题。
Cr12模具钢表面脆性开裂敏感性的研究王 辉,陈再良,李 平,张金生(北京机电研究所,北京 100083)摘要:用维氏硬度压痕法测量了不同热处理工艺处理后的Cr12模具钢的表面脆性开裂敏感性,并结合材料力学性能探讨了Cr12模具钢热处理工艺与脆性开裂敏感性的关系。
试验结果表明,Cr12模具钢的表面开裂敏感性与材料的硬度、强度、残留奥氏体量和冲击韧度有关。
经1000℃、1030℃淬火后冷处理并200℃回火的,其表面脆性开裂抗力小于在960℃、1060℃和1100℃淬火后冷处理并200℃回火的,并且呈现表面穿晶裂纹或表面沿晶裂纹。
说明了维氏硬度压痕法是一种测定表面开裂敏感性简便易行的方法。
关键词:表面脆性开裂;模具钢;压痕法中图分类号:TG 142145,TG 111191 文献标识码:A 文章编号:025426051(2000)1120011203Study on Surface Brittle Cracking Sensitivity of Cr12Die SteelWAN G Hui ,CHEN Zai 2liang ,L I Ping ,ZHAN G Jin 2sheng(Beijing Research Institute of Mechanical and Electrical Technology ,Beijing 100083,China )Abstract :Surface brittle cracking sensitivity of Cr12die steel after different heat treating processes were determined by the Vicker ′s hardness method.The relationships among the heat treatment processes ,mechanical properties and brittle cracking sensitivity of this steel were studied.The experiment results show that surface brittle cracking sensitivity of the steel was related to its hardness ,strength ,the amount of retained austenite and im pact toughness.The resistance of surface brittle cracking of Cr12die steel quenched at 1000℃or 1030℃was smaller than that quenched at 960℃or 1060℃or 1100℃,and also appeared transgranular or intergranular fracture on the surface.This test shows that it is a sim ple and non 2destructive method to determine surface brittle cracking sensitivity by Vicker ′s hardness method.K ey w ords :surface brittle cracking ;die steel ;Vicker ′s hardness method作者简介:王 辉(1956—),女,高级工程师,主要从事金属材料热处理及其金相分析等工作。
| 工程设备与材料 | Engineering Equipment and Materials·144·2019年第22期模具热处理开裂产生原因及应对措施分析胡光明(广东工程职业技术学院机电工程学院,广东 广州 510520)摘 要:模具形状复杂,精度要求较高,制造难度大,尤其在热处理过程中容易出现开裂现象。
一旦开裂将造成模具报废,文章对模具热处理开裂的原因及形式进行分析,并从材料、热处理工艺、模具结构等多个角度提出预防方法及改善措施。
关键词:模具;热处理;开裂;热加工工艺中图分类号:TG315.2 文献标志码:A 文章编号:2096-2789(2019)22-0144-03作者简介:胡光明(1972—),男,硕士,副教授,研究方向:机械制造及自动化。
模具热处理工艺好坏对模具寿命及模具性能影响甚大,热处理工艺不当将导致热处理变形、热处理开裂、内应力集中、早期断裂而提前失效。
珠三角某模具企业因热处理不当而致模具失效事故约占32%以上,文章根据珠三角某模具企业多年模具制造及使用经验对模具开裂原因情况做分析。
热处理工艺与材料、环境、热处理对象形状尺寸等等多种因素有关,具体实施中千差万别。
基本方法有以下几种:(1)退火、调质等预备热处理工艺。
主要目的改善组织,消除锻造、毛坯的组织缺陷,降低硬度改善加工性。
高碳合金模具钢经过适当的预先热处理可消除网状碳化物,使碳化物球化、细化,促进碳化物分布均匀性。
这样有利于保证淬火、回火质量,提高模具寿命。
(2)消除应力退火。
模具在粗加工后应进行消除应力退火处理,目的是消除粗加工所造成的内应力,以免淬火产生过大的变形或裂纹。
对于精度要求高的模具,在磨削或电加工后还需经过消除应力回火处理,有利于稳定模具精度,提高使用寿命。
(3)淬火、回火。
加工完成,为了获得优良的力学性能,冷作模具通常采用淬火、低温回火,热作模具通常采用淬火、高温回火。
淬火与回火是模具热处理中的关键环节。
2019年热加工(a )淬火(b )回火图1 Cr12MoV 钢的热处理工艺曲线表2 失效件样品表面硬度 检测结果 (HRC )(a )(b )图2 试样中的共晶碳化物分布(100×)图3 试样中基体组织分布(500 ×)2019年 第10期 热加工20处理注意事项模具的表面硬度和化学成分符合技术要求。
模具在轧制和锻打过程中,如果锻造工艺选用不当或锻打不充分,即未经反复的锻造将碳化物打散、打碎,就会使碳化物粗大,呈网状和树枝状分布。
网状碳化物的原始状态仍会保持在基体组织中,破坏整个基体的完整性,无形中把整个基体分割成许多小部分,使得组织的均匀性有了很大的差异(在网状及其边缘,碳和合金元素大量富集,而离网状稍远处,碳和合金元素贫乏),这样在热处理或机加工时,基体组织与网状碳化物之间产生巨大的应力差,从而使两者之间分离开来,随着组织应力进一步释放,进而向四周扩展,当应力不断加大到一定程度时,就容易导致整个模具开裂。
另外,模具材料在淬火时要控制入炉温度,多段预热,并在淬火后及时进行回火等,以减少和消除材料的组织应力,防止模具材料的变形和开裂。
7. 分析结论从上述检验及分析可以看出,试样中共晶碳化物呈网状分布、共晶碳化物不均匀度5级属于超标,不合格;材料中碳化物偏析严重,局部区域碳化物堆积,其导热性和变形率与周围基体有很大差异,并且容易引起该部位组织过热,故在锻打时形成锻造裂纹,在其后的热处理过程中该裂纹进一步延伸扩展,最终导致该模具在热处理后的精(机)加工过程中产生开裂。
参考文献:(a )50×(b )100×(c )100×(d )200×(e )200×(f )100×(g )500×图4 试样中裂纹及组织[1]郭联金,金林奎,欧海龙,等. H13钢模具镶块研配期断裂失效分析[J].锻压技术, 2018(12):126-130+135. [2]劳动部培训司.热处理工工艺学[M].北京:中国劳动出版社,1995:334.[3]蔡美良,丁惠麟,孟沪龙.新编工模具钢金相热处理[M].北京:机械工业出版社,2012:72.[4]陈永刚,金林奎,樊开夫,等.W6M o5C r4V2钢模具淬火开裂失效分析[J].金属热处理,2019(5):239-245.[5]周斌,金林奎,黄持伟,等.45K 钢冷镦钢螺栓装配过程断裂失效分析[J].金属加工(热加工),2018(10):14-19.[6]金林奎,欧海龙,黄持伟,等.铝合金用ASSAB 8407钢压铸模早期断裂失效分析[J].金属热处理,2019(2):227-233.[7]张燕敏.淬火钢高速车削过程动态特性及加工参数研究[D].北京:北方工业大学,2006.[8]金林奎,欧海龙,黄持伟,等.Stavax ESR 钢洗衣机面板模具开裂原因分析[J].锻压技术,2017(11):136-143.[9]全国钢标准化技术委员会.钢的共晶碳化物不均匀度评定法:GB/T14979—1994[S].北京:中国标准出版社,1995.[10]谢俊堂,郭联金,金林奎,等.SLD 钢模具失效原因分析[J].热处理技术与装备,2019(2):9-14.2019年热加工(a ) (b )图1 开裂轴承外圈外观形貌。
Cr12MoV 模具开裂原因分析
一、 事故概况:
某公司用Cr12MoV 材料模具,硬度要求为:HRC58-60,其热处理由XX 公司负责;模具在交付后加工时发生严重的开裂现象,实物图片如下:
二、 硬度检测:
抽样 NO.1 NO.2 NO.3 平均值 HRC
59.5
60
60
59.8
硬度结果符合客户要求。
三、 光谱成分检测:
化学元素%
C Si ≤ Mn ≤ P ≤ S ≤ 失效模具成分检
查结果 1.487
0.293
0.222
0.027
0.003
Cr12MoV 成分 (中国国标)
1.45~1.70
0.40
0.40
0.030
0.030
化学元素%
Cr Mo Ni ≤ V Cu ≤ 其它
失效模具成分检
查结果 11.61
0.566
0.134
0.213
0.043
Cr12MoV 成分 (中国国标)
11.0~12.5
0.40~0.60
0.25
0.15~0.30
0.25
该模具化学成分符合Cr12MoV 材料标准。
(图1)开裂模具实物图片:可清晰地看见该裂纹是从模具长边发展,横向撕裂至中心孔位止,线型流畅,为明显的脆性断裂。
.后面金相组织发现的共晶碳化物偏析带方向与该裂纹走向一致,说明二者之间存在一定关系。
金相取样部位
裂纹线
四、 金相检查:(4%硝酸酒精溶液浸蚀)
五、分析意见:
1、通过金相检查,发现模具材料中共晶碳化物带状偏析极其严重,在国标GB/T14979-94规定的6-7级,同时个别大块碳化物尺寸超国标JB/T7713-95规定的最高5级以上,这类材料脆性极大,材质极差。
由于材料中富碳区与贫碳区组织不同,热处理时微观受热、淬火后组织转变等均不同时,造成残余内应力(热应力+组织应力)相应较大,偏析越严重,内应力越大,材料开裂风险自然越大。
2、同时金相检查也发现,材料组织流向与宽边方向一致,这种下料方向将会降低材料横向抗断能力。
(正确下料方向应是组织流向与模具长边方向一致)
2012-9-3
100×,沿裂纹方向检查,材料中发现大块共晶碳物带状偏析极为严重,视场中白带区(富碳区)最大宽度经显微尺测量达0.17mm ,周边黑带区(贫碳区)共晶碳化物稀少,个别地方几乎看不到,白带间带宽超大,依据GB/T14979-94评定其碳化物不均匀度级别在6-7级,材质差。
400×,
共晶碳化物偏析带内(富碳区)组织情况:隐针、粗针马氏体+大块共晶碳化物+较多残余奥氏体。
其中个别碳化物最大尺寸达0.081mm ,远超JB/T7713-95最差5级0.025mm 的规定。
400×,黑带区(贫碳区)组织情况:细针马氏体+少量小块共晶碳化物+少量残余奥氏体。
该区与白带区组织差异巨大,势必造成材料存大很大的内应力。
0.17mm。