MATHEMATIC教案
- 格式:ppt
- 大小:1.09 MB
- 文档页数:117
一、了解数学软件Mathematic1、Mathematic的特点Mathematic是1988年美国Wolfram Research公司开发的一个著名的数学分析型的软件,以符号计算见长,也具有高精度的数值计算功能和强大的图形功能.它显示数学表格和图形的功能使用户对问题的理解更加形象和具体.Mathematic是人——机对话式软件,使用者在Mathematic的notebook环境中,只要在计算机上输入数学符号、公式,系统可以立即进行处理,然后返回结果,用户不必关心中间的计算过程,其交互性能非常好.2、Mathematic5.0的工作环境在WindXP(或Win98)环境下安装好Mathematic5.0,用鼠标双击Mathematic 图标(刺球状),启动Mathematic系统,显示器上就会出现如图1的窗口,这时可以键入你想计算的东西,比如键入1+1,然后同时按下Shift键和Enter键(数字键盘上只要按Enter键),这时Mathematic开始工作,计算出结果后,窗口变为图2.图1 Mathematic的窗口图2 完成运算后的Mathematic的窗口Mathematic的窗口上方是工作条.第一行为标题,显示所使用的Notebook 文件名.第二行为工具菜单.下面的是Notebook窗口(工作窗口),它可以随时关闭,只留下工具条,也可以打开多个工作窗,它们是相互分开的,每个工作窗就是一个Notebook文件,其文件名以.nb为后缀.用鼠标单击工作窗,此时工作窗上方的标题栏呈高亮度显示,表明工作窗已被选中,这时可以从键盘输入命令或表达式了.要退出系统,只要单击右上角的关闭按钮即可.Mathematic的简单使用说明:(1)Mathematic第一次计算时因为要进行一次初始化,所需时间要长一些,从第二次开始计算就会很迅速了,(2)在Mathematica的Notebook工作窗口中,可以完成各种运算,如函数作图,求极限、解方程等,也可以用它编写像C语言那样的结构化程序.(3)图1-2中的“In[n]:=”表示第n个输入;“Out[n]=”表示第n个输出结果.要注意的是:“In[n]:= ”和“Out[n]=”是系统自动添加的,不需用户键入.(4)公式输完后,按下“Shift”键和“Enter”键或按数字键盘中“Enter”键将完成计算.(5)用户的每一次输入和Mathematic的每一次输出,以及相应的输入、输出,都被称为“cell”或“细胞”,用“]”来标识.单击“]”,就选中了这个“细胞“,然后可对这个“细胞“进行复制、剪切、计算、全选.(6)工作菜单中共有9个菜单,其中File是文件管理菜单.主要有新建文件、打开或关闭文件、保存文件以及退出系统的功能. Help是帮助菜单,使用时打开“Help Browser“项,以获得系统帮助文件,它是一个名符其实的使用手册,使用者可以在其中了解系统所有函数、命令的使用格式和功能.使用时,只要在窗口内输入命令项,系统就可显示该命令的使用方法及相关信息.(7)按“Alt“键可中断计算.(8)使用Mathematic时, 如果输入了不合语法规则的表达式,系统会显示出错信息,并且不给出计算结果.学会看系统出错信息,较快找出错误,可以提高工作效率.3、Mathematic的基本运算功能1、算术运算Mathematic 最基本的功能是进行算术运算,包括加(+),减(-),乘(*),除(/),乘方(^),阶乘(!)等.注意事项:(1)在Mathematic 中,也可用空格代表乘号;数字和字母相乘,乘号可以省去,例如:3*2可写成3 2,2*x 可写成2x ,但字母和字母相乘,乘号不能省去.(2)在Mathematic 中,表达式中用来表示运算的结合次序的括号只允许是圆括号(无论多少层).例如:4*(2+3/(2-5))(3)当输入式子中不含小数点,输出结果是完全精确的。
学习必备欢迎下载绪论0.1 符号计算系统简介# 数值计算与符号计算1946 年世界上第一台计算机ENIAC (The Electronic Numerical Integrator and Computer) 是为数值积分服务的。
一提起计算机求解人们立刻想到的是数值求解,这是因为计算机的早期应用范围主要是数值求解。
其实数值求解是计算机求解的一个方面,计算机进行计算的另一方面即对数学表示式的处理已形成一门新的科学分支,称为符号计算或计算机代数,它是一门研究使用计算机进行数学公式推导的理论和方法,演算数学公式的理论和算法是它研究的中心课题。
数值计算:常量、变量、函数、运算符--〉数值、字符、逻辑量表达式€一个值多€一近似计算例:计算y=sin10+ln10。
其结果是1.75856。
在高级语言中,算术表达式由常量、变量、函数和运算符等组成,算术表达式的值为某一精度范围内的数值。
计算各类表达式的值是高级语言的主要工作。
符号计算(计算机代数):常量、变量值、函数值--〉数值、字符、逻辑量表达式€表达式多€多准确计算x 2 sin xdx =-(-2 + x 2 )cos x + 2 x sin x与数值计算相比,符号计算对计算机硬件和软件提出了更高的要求。
# 符号计算系统符号计算系统是一个表示数学知识和数学工具的系统,一个集成化的计算机数学软件系统。
# 数值计算、# 符号计算、# 图形演示# 程序设计公式推导、数值计算和图形可视化操作一致性和连贯性。
符号计算系统的对象从初等数学到高等数学,几乎涉及所有数学学科。
包括各种数学表达式的化简、多项式的四则运算、求最大公因式、因式分解(factor)、常微分方程和偏微分方程的解函数。
各种特殊函数的推导、函数的级数展开、矩阵和行列式的各种运算和线性方程组的符号解等。
和数值计算一样,算法也是符号计算的核心。
就算法而言,符号计算比数值计算能继承更多的更丰富的数学遗产,古典数学家许多算法仍然是核心算法的成员,近代数学的算法成果也在不断地充实到符号计算中。
Mathematic简单教程§1 初等代数1.有理式的运算1.多项式的展开(常用命令见表1.1)In[1]:= f=Expand[(x+y+3)^2]Out[1]:= 9+6x+x^2+6y+2xy+y^2In[2]:= Factor[f]Out[2]:= (3+x+y)^2In[3]:= Exponent[f,x]Out[3]:= 2In[4]:= Coefficient[f,x]Out[4]:= 6+2y2.有理式的运算(常用命令见表1.2)In[5]:= Factor[(x^3+2x+1)/(x^3+x^2+x+1)]Out[5]:= (1+2x+x^3)/(1+x)(1+x^2)In[6]:= Apart[%]In[6]:= 1-1/(1+x)+1/(1+x^2)3.多项式的代数运算(常用命令见表1.3)In[7]:=PolynomialQuotient[1+x^2,x+1,x]Out[7]:=-1+xIn[8]: =PolynomialGCD[x^2+2X+1,x^3+1,x^5+1]Out[8]:=1+x1.2 方程求解In[1]:=Solve[a*x+b==0,x]Out[1]={{x->-b/a}}In[2]:=Reduce[a*x+b==0,x]Out[2]= b==0&&a==0\\a≠0&&x==-b/aIn[3]: = FindRoot[Sin[x]==0,{x,3}]Out[3]= {x->3.14159}In[4]:= FindRoot[Sin[x]==0,{x,{6,6.5}}]Out[4]= {x->6.28319}In[5]:= FindRoot[{2^x+y^2==4,x^2+Sin[y]==1},{x,0},{y,0}]2微积分In[1]: = Limit[Sin[x]/x,x->0]Out[1]=1In[2]:=DI[Sin[n*x],x]Out[2]=nCos[nx]微积分的常用命令如表1.5所示,下面是一些例子。
天水师范学院数学与统计学院实验报告实验项目名称无穷级数所属课程名称数学实验实验类型微积分实验实验日期2011.11.16班级学号姓名成绩fx=Normal[Series[Exp[x],{x,0,3}]]Plot[fx,{x,-3,3}]则只能得到去掉余项后的展开式,得不到函数的图形,这时要使用强制求值命令Evaluate,改成输入Plot[Evaluate[fx],{x,-3,3}]便可以得到函数的图形5.作散点图命令ListPlot.ListPlot[Table[j^2,{j,16}],PlotStyle PointSize[0.012]] 6.用符号“/;”定义分段函数.符号“/;”用于定义某种规则,“/;”后面是条件,例如输入Clear[g,gf];g[x_]:=x/;0x<1g[x_]:=-x/;-1x<0g[x_]:=g[x-2]/;x 1gf=Plot[g[x],{x,-1,6}]用which命令也可以定义分段函数,从这个例子中看到,用“…(表达式)/;…(条件)”来定义周期性分段函数更方便些.用Plot命令可以作出分段函数的图形,但用Mathematica命令求分段函数的导数或积分时往往会有问题.用which定义的分段函数可以求导,但不能积分.Mathematica内部函数中有一些也是分段函数,如:Mod[x,1],Abs[x],Floor[x]和Unitstep[x].其中只有单位阶跃函数Uniltstep[x]可以用Mathematica命令来求导和求定积分,因此在求ListPlot[vals,PlotStyle PointSize[0.012]] Sum[a[n],{n,1,Infinity}]2.求幂级数的收敛域.例9.4 求24(3)1n nnxn∞=-+∑收敛域与和函数.Clear[a];a[n_]=4^(2n)*(x-3)^n/(n+1);stepone=a[n+1]/a[n]//Simplifysteptwo=Limit[stepone,n Infinity]ydd=Solve[steptwo1,x]zdd=Solve[steptwo-1,x]Simplify[a[n]/.x(49/16)]Simplify[a[n]/.x(47/16)]Sum[4^(2n)*(x-3)^n/(n+1),{n,0,Infinity}] 3.函数的幂级数展开.例9.5 求cos x的6阶麦克劳林展开式.Series[Cos[x],{x,0,6}]例9.6 求ln x在1x=处的6阶泰勒展开式.Series[Log[x],{x,1,6}]例9.7 求arctan x的5阶麦克劳林展开式.ser1=Series[ArcTan[x],{x,0,5}];poly=Normal[ser1]Plot[Evaluate[{ArcTan[x],poly}],{x ,-3/2,3/2},PlotStyle {Dashing[{0.01}],GrayLevel[0]},AspectRatio 1]例9.8 求22(1)(1)x x e --+在1x =处的8阶泰勒展开,并通过作图比较函数和它的近似多项式.Clear[f];f[x_]=Exp[-(x-1)^2*(x+1)^2]; poly2=Normal[Series[f[x],{x ,1,8}]] Plot[Evaluate[{f[x],poly2}],{x ,-1.5,1.5},PlotRange {-2,3/2},PlotStyle {Dashing[{0.01}],GrayLevel[0]}]例9.9 求函数x sin 在0=x 处的3,5,7,…,9l 阶泰勒展开,通过作图比较函数和它的近似多项式,并形成动画进一步观察.Do[Plot[{Sum[(-1)^j*x^(2j+1)/(2j+1)!,{j ,0,k}],Sin[x]},{x ,-40,40},PlotStyle {RGBColor[1,0,0],RGBColor[0,0,1]}],{k ,1,45}] 4.傅里叶级数.例9.10 设()f x 是周期为2的周期函数它在一个周期内的表达式为1,01(),10x f x x x ≤<⎧=⎨--≤<⎩求它的傅立叶级数展开式的前5项和前8项,作出()f x 和它的近似三角级数的图形.Clear[f ,a ,b ,fs ,L]; f[x_]:=1/;0x<1 f[x_]:=-x/;-1x<0 f[x_]:=f[x-2]/;1x gf=Plot[f[x],{x ,-1,5}] Clear[L ,a ,b ,fs ,f1,f2]; L=1;a[n_]:=(Integrate[-x*Cos[n*Pi*x/L],{x,-L,0}]+Integrate[Cos[n*Pi*x/L],{x ,0,L}])/Lb[n_]:=(Integrate[-x*Sin[n*Pi*x/L],{x,-L,0}]+Integrate[Sin[n*Pi*x/L],{x ,0,L}])/Lfs[k_,x_]:=a[k]*Cos[k*Pi*x/L]+b[k]*Sin[k*Pi*x/L] fourier[n_,x_]:=a[0]/2+Sum[fs[k ,x],{k ,1,n}] f1=fourier[5,x]//N f2=fourier[10,x]//NPlot[Evaluate[{f[x],f1}],{x ,-1,5},PlotStyle {GrayLevel[0],GrayLevel[0.4]}]Plot[Evaluate[{f[x],f2}],{x ,-1,5},PlotStyle {GrayLevel[0],GrayLevel[0.4]}]设)(x g 是以2Pi 为周期的周期函数,它在],[ππ-的表达式是1,0()1,0x g x x ππ--≤<⎧=⎨≤<⎩,将)(x g 展开成傅里叶级数. Clear[g];g[x_]:=-1/;-Pi x<0 g[x_]:=1/;0x<Pi g[x_]:=g[x-2Pi]/;Pi xPlot[g[x],{x ,-Pi ,5Pi},PlotStyle {RGBColor[0,1,0]}]; Clear[b2,fourier2,tu ,tu2,toshow];b2[n_]:=b2[n]=2Integrate[1*Sin[n*x],{x ,0,Pi}]/Pi ; fourier2[n_,x_]:=Sum[b2[k]*Sin[k*x],{k ,1,n}]; tu[n_]:=Plot[{g[x],Evaluate[fourier2[n ,x]]},{x ,-Pi ,5Pi}, PlotStyle{RGBColor[0,1,0],RGBColor[1,0.3,0.5]},DisplayFunctionIdentity];tu2=Table[tu[n],{n ,1,30,5}]; toshow=Partition[tu2,2]; Show[GraphicsArray[toshow]]【实验结论】(结果)1.用Mathematica 求无穷级数的和;2.求幂级数的收敛域;3.展开函数为幂级数以及展开周期函数为傅里叶级数.附录1:源程序1Sum k2^k,k,1,Infinity2Sum12k1^2,k,1,Infinity 283Sum12k^2,k,1,Infinity 2244Sum1^k1k,k,1,Infinity Log2Clear a;a n_x1^2n15^n; stepone a n1a n Simplify11x25steptwo Limit stepone,n Infinity11x25ydd Solve steptwo1,xzdd Solve steptwo1,xx15,x15x15,x15x15,x15Simplify a n.x1Sqrt5Sin kkSimplify a n.x1Sqrt5Sin kkSum x1^2n15^n,n,0,Infinity 51x62x x2Series1x Log1x,x,0,6Log2Log x Log x2O x7Series ArcSin x,x,0,6x x363x540O x7Clear f;f x_x x^21;Series f x,x,0,5Series f x,x,0,10p1Normal Series f x,x,0,5p2Normal Series f x,x,0,10p3Plot Evaluate f x,p1,p2,x,3,3,PlotRange2,32, PlotStyle Dashing0.01,GrayLevel0x x3x5O x6x x3x5x7x9O x11x x3x5x x3x5x7x9GraphicsClear f,a,b,fs,L;f x_:1x^2;12x12 f x_:f x1;x12gf Plot f x,x,1,5GraphicsL12;a n_:Integrate x Cos n Pi x L,x,L,0Integrate Cos n Pi x l,x,0,LLb n_:Integrate x Sin n Pi x L,x,L,0Integrate Sin n Pi x l,x,0,L L fs k_,x_:a k Cos k Pi x L b k Sin k Pi x Lfourier n_,x_:a02Sum fs k,x,k,1,6f1fourier5,x Nf2fourier10,x N0.625 2.Cos 6.28319x0.05066060.31831l Sin 1.5708l0.31831l Cos12.5664x Sin 3.14159l2.Cos18.8496x0.005628950.106103l Sin 4.71239l0.159155l Cos25.1327x Sin 6.28319l2.Cos31.4159x0.002026420.063662l Sin 7.85398l0.106103l Cos37.6991x Sin 9.42478l2.0.07957750.31831l0.31831l Cos 1.5708lSin 6.28319x2.0.03978870.159155l0.159155l Cos3.14159lSin12.5664x2.0.02652580.106103l0.106103l Cos 4.71239lSin18.8496x2.0.01989440.0795775l0.0795775l Cos 6.28319lSin25.1327x2.0.01591550.063662l0.063662l Cos 7.85398lSin31.4159x2.0.01326290.0530516l0.0530516l Cos 9.42478lSin37.6991x0.625 2.Cos 6.28319x0.05066060.31831l Sin 1.5708l0.31831l Cos12.5664x Sin 3.14159l2.Cos18.8496x0.005628950.106103l Sin 4.71239l0.159155l Cos25.1327x Sin 6.28319l2.Cos31.4159x0.002026420.063662l Sin 7.85398l0.106103l Cos37.6991x Sin 9.42478l2.0.07957750.31831l0.31831l Cos 1.5708lSin 6.28319x2.0.03978870.159155l0.159155l Cos3.14159lSin12.5664x2.0.02652580.106103l0.106103l Cos 4.71239lSin18.8496x2.0.01989440.0795775l0.0795775l Cos 6.28319lSin25.1327x2.0.01591550.063662l0.063662l Cos 7.85398lSin31.4159x2.0.01326290.0530516l0.0530516l Cos 9.42478lSin37.6991xPlot Evaluate f x,f1,x,1,5,PlotStyle GrayLevel0,GrayLevel0.4Plot Evaluate f x,f2,x,1,5,PlotStyle GrayLevel0,GrayLevel0.4Plot::plnr:f x is not a machine size real number at x 1..Plot::plnr:f x is not a machine size real number at x0.756598.Plot::plnr:f x is not a machine size real number at x0.629911.General::stop:Further output of Plot::plnr will be suppressed during this calculation.GraphicsPlot::plnr:f x is not a machine size real number at x 1..Plot::plnr:f x is not a machine size real number at x0.756598.Plot::plnr:f x is not a machine size real number at x0.629911.General::stop:Further output of Plot::plnr will be suppressed during this calculation.GraphicsClear f,a,b,fs,L;f x_:1;0x1f x_:2x;1x2 f x_:f x2;x2 gf Plot f x,x,1,5GraphicsL1;a n_:Integrate x Cos n Pi x L,x,L,0Integrate Cos n Pi x l,x,0,LLb n_:Integrate x Sin n Pi x L,x,L,0Integrate Sin n Pi x l,x,0,L L fs k_,x_:a k Cos k Pi x L b k Sin k Pi x Lfourier n_,x_:a02Sum fs k,x,k,1,8f1fourier5,x Nf2fourier10,x N0.75Cos 3.14159x0.2026420.31831l Sin 3.14159l0.159155l Cos 6.28319x Sin 6.28319lCos9.42478x0.02251580.106103l Sin 9.42478l0.0795775l Cos12.5664x Sin 12.5664lCos15.708x0.008105690.063662l Sin 15.708l0.0530516l Cos18.8496x Sin 18.8496lCos21.9911x0.004135560.0454728l Sin 21.9911l0.0397887l Cos25.1327x Sin 25.1327l0.318310.31831l0.31831l Cos 3.14159lSin 3.14159x0.1591550.159155l0.159155l Cos 6.28319lSin 6.28319x0.1061030.106103l0.106103l Cos 9.42478lSin9.42478x0.07957750.0795775l0.0795775l Cos 12.5664lSin12.5664x0.0636620.063662l0.063662l Cos 15.708lSin15.708x0.05305160.0530516l0.0530516l Cos 18.8496lSin18.8496x0.04547280.0454728l0.0454728l Cos 21.9911lSin21.9911x0.03978870.0397887l0.0397887l Cos 25.1327lSin25.1327x0.75Cos 3.14159x0.2026420.31831l Sin 3.14159l0.159155l Cos 6.28319x Sin 6.28319lCos9.42478x0.02251580.106103l Sin 9.42478l0.0795775l Cos12.5664x Sin 12.5664lCos15.708x0.008105690.063662l Sin 15.708l0.0530516l Cos18.8496x Sin 18.8496lCos21.9911x0.004135560.0454728l Sin 21.9911l0.0397887l Cos25.1327x Sin 25.1327l0.318310.31831l0.31831l Cos 3.14159lSin 3.14159x0.1591550.159155l0.159155l Cos 6.28319lSin 6.28319x0.1061030.106103l0.106103l Cos 9.42478lSin9.42478x0.07957750.0795775l0.0795775l Cos 12.5664lSin12.5664x0.0636620.063662l0.063662l Cos 15.708lSin15.708x0.05305160.0530516l0.0530516l Cos 18.8496lSin18.8496x0.04547280.0454728l0.0454728l Cos 21.9911lSin21.9911x0.03978870.0397887l0.0397887l Cos 25.1327lSin25.1327xPlot Evaluate f x,f1,x,1,5,PlotStyle GrayLevel0,GrayLevel0.4Plot Evaluate f x,f2,x,1,5,PlotStyle GrayLevel0,GrayLevel0.4Plot::plnr:f x is not a machine size real number at x 1..Plot::plnr:f x is not a machine size real number at x0.756598. Plot::plnr:f x is not a machine size real number at x0.491147. General::stop:Further output of Plot::plnr will be suppressed during this calculation.GraphicsPlot::plnr:f x is not a machine size real number at x 1..Plot::plnr:f x is not a machine size real number at x0.756598. Plot::plnr:f x is not a machine size real number at x0.491147. General::stop:Further output of Plot::plnr will be suppressed during thisGraphicsClear a;a n_Sin k k;vals Table a k,k,1,50;ListPlot vals,PlotStyle PointSize0.015Graphics附录2:实验报告填写说明1.实验项目名称:要求与实验教学大纲一致。