射频电路理论与设计第2章史密斯圆图
- 格式:ppt
- 大小:1.53 MB
- 文档页数:104
史密期圆图(Smith chart )分析长线的工作状态离不开计算阻抗、反射系数等参数,会遇到大量繁琐的复数运算,在计算机技术还未广泛应用的过去,图解法就是常用的手段之一。
在天线和微波工程设计中,经常会用到各种图形曲线,它们既简便直观,又具有足够的准确度,即使计算机技术广泛应用的今天,它们仍然对天线和微波工程设计有着重要的影响作用。
Smith chart 就是其中最常用一种。
1、Smith chart 的构成在Smith chart 中反射系数和阻抗一一对应;Smith chart 包含两部分,一部分是阻抗Smith 圆图(Z-Smith chart ),它由等反射系数圆和阻抗圆图构成;另外一部分是导纳Smith 圆图(Y-Smith chart ),它由等反射系数圆和导纳圆图构成;它们共同构成YZ-Smith chart 。
阻抗圆图又由电阻和电抗两部分构成,导纳圆图由电导和电纳构成。
1.1等反射系数圆在如图1所示的带负载的传输线电路图中,由长线理论的知识我们可以得到负载处的反射系数0Γ为:000000Lj L u v L Z Z j eZ Z θ-Γ==Γ+Γ=Γ+其中00arctan(/)L v u θ=ΓΓ。
图1 带负载的传输线电路图在离负载距离为z 处的反射系数Γ为:2000Lj j z in u v in Z Z j eeZ Z θβ--Γ==Γ+Γ=Γ+其中0Γ=arctan(/)L v u θ=ΓΓ。
椐此我们用极坐标当负载和传输线的特征阻抗确定下来之后,传输线上不同位置处的反射系数辐值(1Γ≤)将不再改变,而变得只是反射系数的辐角;辐角的变化为2z β-∆,传输线上的位置向负载方向移动时,辐角逆时针转动,向波源方向移动时,辐角向顺时针方向转动,如图2所示。
图2 等反射系数圆传输线上不同位置处的反射系数的辐角变化只与2z β-,其中传波常数2/p βπλ=,所以Γ是一个周期为0.5p λ的周期性函数。
射频工程师必知必会——史密斯圆图这篇文章盘算了很久,迟迟不敢下笔,对于圆图的巧夺天工实在不敢多语。
有人用圆图做阻抗匹配,也有人用圆图做电路调试,甚至还有滤波器的调试。
感谢史密斯大神的圆图,让射频设计变得简单——一切逃不开这个⚪。
今天我们尝试着再去学习一下这个圆,水平有限,还望海涵。
上图所示的就是一个完整版的史密斯圆图,它是一种求解传输线问题的辅助工具,它是在1939年由P.Smith 在贝尔实验室工作时开发的。
也许有人会有疑问,在计算机和计算机辅助设计如此发达的今天,图形在已经用的很少了。
包括我自己也有这样的疑问,我们可以直观的测试得到阻抗曲线,可以利用计算机去模拟优化阻抗匹配。
但是如果我们掌握了史密斯圆图的方法,进入⚪内,也许会有更加直观的见解,开发出关于传输线和阻抗匹配问题的直观想象力。
初看起来,史密斯圆图似乎很可怕,密密麻麻的小字,到底是什么意思?但理解他的关键它基本上就是电压发射系数的极坐标图。
史密斯圆图又称为阻抗圆图,将归一化等电阻圆,归一化的等电抗圆叠画在反射系数复平面上而形成的。
为了使圆图对传输线的特性阻抗具有普遍意义,设计圆图时采用归一化阻抗。
归一化阻抗就是阻抗与所接传输线特性阻抗之比,即:式中的r(z)和x(z)分别为归一化电阻和归一化电抗。
根据前文的介绍,我们知道归一化阻抗与反射系数之间的关系为:利用上式就可以做出反应归一化阻抗和反射系数关系的图。
首先要建立一个坐标系,用反射系数的实部作为横坐标,虚部作为纵坐标。
同时在坐标平面上标明反射系数的模和相角。
然后把归一化电阻和归一化电抗的关系曲线画在该坐标系上,这样就建立了阻抗圆图。
1,建立反射系数复平面反射系数复平面:横坐标:反射系数的实部u,纵坐标: 反射系数的虚部v。
2,等反射系数圆(1)所有点均落在单位圆内。
(2)沿均匀无耗传输线移动时,反射系数的模保持不变,只有相角变化,对应到Γ平面上就是沿着平面上的某一圆旋转。
(a)向信号源方向移动时,z 增大,反射系数相位滞后,对应在Γ平面上沿某圆顺时针方向旋转;(b)向负载方向移动时,z 减小,反射系数的相位超前,对应在Γ 平面上沿某圆向逆时针方向旋转;(c)在圆图上标有旋转时对应的波长数。
不管这是今天1、是2、为3、干1、是该图“在我史密当中管多么经典的射是什么东东?天解答三个问题是什么? 为什么? 干什么?是什么?表是由菲利普我能够使用计算密斯图表的基本的Γ代表其线射频教程,为什题: 普·史密斯(Phillip 算尺的时候,我本在于以下的算线路的反射系数从容面对“史什么都做成黑白p Smith)于193我对以图表方式算式。
数(reflection coe 史密斯圆图白的呢?让想理39年发明的,当式来表达数学上efficient)”,不再懵逼理解史密斯原图当时他在美国的上的关联很有兴图的同学一脸懵的RCA 公司工作兴趣”。
懵逼。
作。
史密斯曾说说过,即S参数(S-parameter)里的S11,ZL是归一负载值,即ZL / Z0。
当中,ZL是线路本身的负载值,Z0是传输线的特征阻抗(本征阻抗)值,通常会使用50Ω。
简单的说:就是类似于数学用表一样,通过查找,知道反射系数的数值。
2、为什么?我们现在也不知道,史密斯先生是怎么想到“史密斯圆图”表示方法的灵感,是怎么来的。
很多同学看史密斯原图,屎记硬背,不得要领,其实没有揣摩,史密斯老先生的创作意图。
我个人揣测:是不是受到黎曼几何的启发,把一个平面的坐标系,给“掰弯”了。
我在表述这个“掰弯”的过程,你就理解,这个图的含义了。
(坐标系可以掰弯、人尽量不要“弯”;如果已经弯了,本人表示祝福)现在,我就掰弯给你看。
世界地图,其实是一个用平面表示球体的过程,这个过程是一个“掰直”。
史密斯原图,巧妙之处,在于用一个圆形表示一个无穷大的平面。
2.1、首先,我们先理解“无穷大”的平面。
首先的首先,我们复习一下理想的电阻、电容、电感的阻抗。
在具有电阻、电感和电容的电路里,对电路中的电流所起的阻碍作用叫做阻抗。
阻抗常用Z表示,是一个复数,实际称为电阻,虚称为电抗,其中电容在电路中对交流电所起的阻碍作用称为容抗,电感在电路中对交流电所起的阻碍作用称为感抗,电容和电感在电路中对交流电引起的阻碍作用总称为电抗。
史密斯圆图设计摘要射频电路设计(RF)对于现代电子电路的作用日益突出,自从电路引入了波的概念后,以往普通的基尔霍夫类型的电压和电流定律等分析工具,严格的讲只能应用于DC和低频集总参数系统,包括由电阻器,电容器和电感器组成的网络,而应用于电磁波传输发挥作用的电路就失灵了。
并且频率越高波长越短这种不适应就越明显,因此有一套新的理论应运而生,本课程就是以电磁场与电磁波和微波技术为基础的一门介绍射频技术基础的课程,在学习这个课程的时候就会认识到,在射频微波环境下很多在低频下可以直接测量的参数却没有办法或很难测量,而是需要借助于其他易于直接测量的参数来间接得到,其中很重要的两个就是反射参量和驻波参量。
史密斯圆图就是根据反射参量和驻波参量的关系,以及他们和输入阻抗的关系而设计出来的一个用来求解均匀传输线有关阻抗计算和阻抗匹配问题的一簇簇曲线坐标图,可以有效的简化遇到大量复杂繁琐的复数运算,可以很容易的对不同阻抗电路进行更直观的阻抗匹配。
通过几步简单的计算并在史密斯圆图上推导就可以得到输入阻抗等参数,甚至根本上避免了枯燥的场理论计算,所以史密斯圆图不但在科研领域非常不可或缺,更在工程应用上备受青睐。
关键词:射频电路设计课程设计史密斯圆图阻抗匹配一引言射频电路设计(RF)不但应用在通信电子电路中,而且越来越多其他应用到电磁波理论的电路中,随着频率的升高波长变得很短,当接近于电路尺寸的时候,电路上的电压分布差异就越明显,因此用到电磁与电磁波的理论来解决射频问题。
学习这门课的时候,首先从传输线理论开始分析,输入阻抗,电压电流等效,传输模型,反射参数,驻波参数等一系列概念。
然后引入了阻抗匹配的概念,史密斯圆图就是为阻抗匹配而设计的一种曲线坐标图,包括阻抗圆图,导纳圆图,阻抗值一一对应。
二 史密斯圆图基本参数2.1 反射参量传输线上某点处的反射系数(reflection coefficient )定义为该点的反射电压(或电流)与该点的入射波电压(或电流)之比,即000000Lj L u v L Z Z j eZ Z θ-Γ==Γ+Γ=Γ+ (2-1)其中00arctan(/)Lv u θ=ΓΓ。
Smith 圆图—原理与分析
Smith 圆图是一种用于分析电路中的匹配网络的工具。
它由美国电气工程师Phillip H. Smith于1950年提出,并被广泛应用于射频电路设计和天线设计领域。
Smith 圆图的原理基于复阻抗的概念。
在Smith 圆图中,电路中的每个点都可
以表示为一个复阻抗,即由实部和虚部组成的复数。
这样,整个电路可以表示为一个复阻抗的集合。
Smith 圆图将复阻抗表示为一个圆形图形,其中圆心表示纯电阻,圆的边界表
示纯电抗。
圆的半径表示电阻的大小,而圆的位置表示电抗的大小和相位。
通过在Smith 圆图上绘制电路中的复阻抗,可以直观地分析电路的匹配情况。
当电路的复阻抗位于Smith 圆图的边界上时,表示电路是纯电抗的,即无功。
当电路的复阻抗位于Smith 圆图的圆心时,表示电路是纯电阻的,即有功。
通过分析Smith 圆图上的复阻抗,可以确定电路的匹配情况。
匹配是指电路中
的负载阻抗与发射源或传输线的特性阻抗相匹配。
在Smith 圆图中,当负载阻抗与特性阻抗相匹配时,负载阻抗位于Smith 圆图的边界上,此时电路的反射系数为零,表示无反射。
Smith 圆图还可以用于计算电路中的反射系数、驻波比、传输线的特性阻抗等
参数。
通过在Smith 圆图上测量复阻抗的位置,可以直接读取这些参数的数值。
总之,Smith 圆图是一种简单直观的工具,可以帮助工程师分析电路中的匹配
情况,并优化电路设计。
它在射频电路设计和天线设计中具有重要的应用价值。
2-4史密斯Smith圆图(传输线理论的计算工具)Smith圆图-传输线理论的计算工具主要内容: Smith圆图的参量 Smith圆图的构造Smith圆图的应用使用圆图前提:归一化 2.等x圆常用:圆图上特殊的三个点三点:匹配点O 短路点A 开路点B l开路、短路点(全反射的驻波):计算沿线各点的阻抗、反射系数、电压驻波比等方向小结: * * 一:Smith圆图的参量史密斯圆图 Smith chart 是利用图解法来求解无耗传输线上任一点的参数。
围绕以下三个公式: 2.反射系数 1.输入阻抗 3. 电压驻波比阻抗归一:圆图作用:使我们可能在一有限空间读出无耗传输线的三个参量Z、Γ、和ρ。
ZL d=0 二: smith圆图的构造 1.归一化电阻圆:等r圆2.归一化电抗圆:等x圆 3. 反射系数模值圆:等圆等式两端展开实部和虚部,并令两端的实部和虚部分别相等。
归一化阻抗圆上式为两个圆的方程。
可得代入上式为归一化电阻的轨迹方程,当r等于常数时,其轨迹为一簇圆; 1.等r圆半径圆心坐标 r 0;圆心(0,0)半径 1 r 1;圆心(0.5,0)半径 0.5 r ∞;圆心(1,0)半径 0 归一化电抗的轨迹方程,当x等于常数时,其轨迹为一簇圆弧;在的直线上半径圆心坐标 x +1;圆心(1,1)半径 1 x -1;圆心(1,-1)半径 1 x 0;圆心(1,∞)半径∞x ∞;圆心(1,0)半径 0 Gi Gr 归一化阻抗圆:等r圆和等x圆例:在圆图上具体的找归一化阻抗点:z=1+j 分两步:(1)找r=1的电阻圆(2)找x=1的电抗圆 r 1 X 1 传输线上任一点的反射系数为:是一簇|G|?1同心圆。
3. 等圆复角增加复角减少例:在圆图上具体的找反射系数点:分两步:(1)找大小为0.6的等圆(2)找角度为45度的线等反射系数模值圆对应于驻波比也是一簇同心圆说明:等驻波比圆 B A O 三个点的物理意义 l匹配点(没反射的行波):中心点O 对应的电参数:匹配点 O 开路点纯电抗圆与正实轴的交点B(阻抗无穷)B A 短路点电抗圆与负实轴的交点A(阻抗为0)纯电抗圆三:Smith圆图应用应用过程分以下三步: 1.起点(已知P) 2.终点(所求Q) 3.旋转(方向) ZL 传输线上的点与圆图上的点一一对应,所以圆图可以用来: Q P L 向电源:d 增加―从负载移向信号源,在圆图上顺时针方向旋转;向负载:d减小―从信号源移向负载,在圆图上逆时针方向旋转; ZL d=0 例1 已知:求:距离负载0.24波长处的Zin. 解:查史密斯圆图,其对应的向电源波长数为则此处的输入阻抗为: 向电源顺时针旋转0.24 等半径 ZL 0.24l 思考:已知输入阻抗,求距离0.24波长处的负载阻抗?。
《射频电路》课程设计题目:SMITH圆图分析与归纳系部电子信息工程学院学科门类工学专业电子信息工程学号姓名2012年6月25日SMITH 圆图分析与归纳摘 要Smith 圆图在计算机时代就开发了,至今仍被普遍使用,几乎所有的计算机辅助设计程序都应用Smith 圆图进行电路阻抗的分析、匹配网路的设计及噪声系数、增益和环路稳定性的计算。
在Smith 圆图中能简单直观地显示传输线阻抗以及反射系数。
Smith 圆图是在反射系数复平面上,以反射系数圆为低圆,将归一化阻抗圆或归一化导纳圆盖在底图上而形成的。
因而Smith 圆图又分为阻抗圆图和导纳圆图。
关键字:Smith 圆图 阻抗圆图 导纳圆图 归一化阻抗圆 归一化导纳圆一 引言通过对射频电路的学习,使我对射频电路的视野得到了拓宽,以前自己的视野只局限于低频电路的设计,从来没考虑过波长和传输线之间的关系,而且从来没想过,一段短路线就可以等效为一个电感,一段开路线可以等效为一个电容,一条略带厚度的微带竟然可以传输电波,然而在低频电路我们只把它当做一条阻值可以忽略的导线,同时在低频电路设计时好多原件,都要自己手动计算,然而在学习射频电路时,我发现我们不仅要考虑波长和传输线之间的关系,同时还要考虑每一条微带的长度和宽度,当然我感到最重要的是,通过Smith 圆图可以大大的简化了,我对电阻和电容的计算,二 史密斯圆图功能分析2.1 史密斯圆图的基本基本知识史密斯圆图的基本在于以下的算式: )0/()0(Z ZL Z ZL +-=ΓΓ代表其线路的反射系数,即散射矩阵里的S11,Z 是归一负载值,即0/Z ZL 。
当中,ZL 是线路的负载值,Z0是传输线的特征阻抗值,通常会使用50Ω。
圆图中的横坐标代表反射系数的实部,纵坐标代表虚部。
圆形线代表等电阻圆,每个圆的圆心为()1/(+R R ,0),半径为)1/(1+R 。
R 为该圆上的点的电阻值。
中间的横线与向上和向下散出的线则代表阻抗的虚数值,即等电抗圆,圆心为(1,X /1),半径为X /1。
Smith圆图简介对于射频人员来讲,做的最多的,可能就是匹配。
而做匹配,最常用到的就是Smith圆图。
当年在学校的时候,觉着Smith圆图好难;工作久了,再加上软件的帮助,觉着Smith圆图还是比较好理解的。
要用好Smith圆图,关键是熟悉它的构成。
主要包括等电阻圆,等电导圆,等Q线,等电抗圆,等电纳圆。
通常匹配的话,一般都采用电感和电容,所以用的最多的,是等电阻圆和等电导圆,如图1和图2所示。
图 1 等电阻圆图 2 等电导圆Smith圆图的上半部分代表感抗,下半部分代表容抗。
在等电阻圆上顺时针旋转,相当于串联电感;逆时针旋转,相当于串联电容。
在等电导圆上顺时针旋转,相当于并联电容;逆时针旋转,相当于并联电感(我一般这样记忆,从圆图中心点,沿着等电阻圆往上旋转为顺时针旋转,而一般串联电路用电阻来标称阻值,且圆图上半部分为感抗,所以顺时针旋转时,相当于串联电感;同理,沿着等电导圆往上旋转为逆时针,一般并联电路用电导来表示,且圆图上半部分为感抗,所以沿电导圆逆时针旋转时,相当于并联电感)。
具体如图3所示。
图 3 串并联电容电感如果想设计宽带匹配电路的话(适合于源阻抗和负载阻抗不随频率变化的情况),就需要用到等Q线了,如图4所示。
Q值越低,也就是等Q线越接近圆图横轴,越容易设计出宽带匹配电路。
而且,沿着低等Q线,规划匹配路线,也会使得匹配电路里的值有较大的容差范围,减少调试难度。
图 4 等Q线了解了这些知识,在已知源阻抗和负载阻抗的情况下,在现有Smith圆图软件的帮助下,很容易就能设计出匹配电路。
注意,设计时,要遵循‘往前看,向后退’的原则。
如图5所示。
图 5 往前看,向后退原则。