《三维设计》2016级数学一轮复习基础讲解函数的单调性与最值(含解析)
- 格式:doc
- 大小:303.00 KB
- 文档页数:13
第三章三角函数、解三角形第一节任意角和弧度制及任意角的三角函数基础盘查一角的有关概念(一)循纲忆知了解任意角的概念(角的定义、分类、终边相同角).(二)小题查验1.判断正误(1)三角形的内角必是第一、二象限角( )(2)第一象限角必是锐角( )(3)不相等的角终边一定不相同( )(4)若β=α+k·720°(k∈Z),则α和β终边相同( )答案:(1)×(2)×(3)×(4)√2.(人教A版教材习题改编)3 900°是第________象限角,-1 000°是第________象限角.答案:四一3.若α=k·180°+45°(k∈Z),则α在第________象限.答案:一、三基础盘查二弧度的定义和公式(一)循纲忆知了解弧度制的概念,能进行弧度与角度的互化.(二)小题查验1.判断正误(1)终边落在x轴非正半轴上的角可表示为α=2πk+π(k∈Z)( )(2)一弧度是长度等于半径长的弧所对的圆心角的大小,它是角的一种度量单位( )答案:(1)×(2)√2.(人教A版教材练习改编)已知半径为120 mm的圆上,有一条弧的长是144 mm,则该弧所对的圆心角的弧度数为________.答案:1.2基础盘查三任意角的三角函数(一)循纲忆知理解任意角的三角函数(正弦、余弦、正切)的定义.(二)小题查验1.判断正误(1)三角函数线的长度等于三角函数值( )(2)三角函数线的方向表示三角函数值的正负( )(3)点P (tan α,cos α)在第三象限,则角α终边在第二象限( ) (4)α为第一象限角,则sin α+cos α>1( ) 答案:(1)× (2)√ (3)√ (4)√2.(人教A 版教材练习改编)已知角θ的终边经过点P (-12,5),则cos θ=________,sin θ=________,tan θ=________.答案:513 -1213 -1253.若角α终边上有一点P (x,5),且cos α=x13(x ≠0),则 sin α=________.答案:513对应学生用书P44考点一 角的集合表示及象限角的判定(基础送分型考点——自主练透)[必备知识]角的概念(1)分类⎩⎪⎨⎪⎧按旋转方向不同分为正角、负角、零角.按终边位置不同分为象限角和轴线角.(2)终边相同的角:所有与角α终边相同的角,连同角α在内,可构成一个集合S ={β|β=α+k ·360°,k ∈Z }.[题组练透]1.给出下列四个命题:①-3π4是第二象限角;②4π3是第三象限角;③-400°是第四象限角;④-315°是第一象限角.其中正确的命题有( )A .1个B .2个C .3个D .4个解析:选C -3π4是第三象限角,故①错误;4π3=π+π3,从而4π3是第三象限角,故②正确;-400°=-360°-40°,从而③正确;-315°=-360°+45°,从而④正确.2.设集合M =⎩⎨⎧x ⎪⎪⎪⎭⎬⎫x =k2·180°+45°,k ∈Z ,N =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x =k4·180°+45°,k ∈Z,那么( )A .M =NB .M ⊆NC .N ⊆MD .M ∩N =∅解析:选B 法一:由于M =⎩⎨⎧x ⎪⎪⎪⎭⎬⎫x =k2·180°+45°,k ∈Z ={…,-45°,45°,135°,225°,…},N =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x =k4·180°+45°,k ∈Z={…,-45°,0°,45°,90°,135°,180°,225°,…},显然有M ⊆N .法二:由于M 中,x =k2·180°+45°=k ·90°+45°=45°·(2k +1),2k +1是奇数;而N 中,x =k4·180°+45°=k ·45°+45°=(k +1)·45°,k +1是整数,因此必有M ⊆N .3.在-720°~0°范围内所有与45°终边相同的角为________. 解析:所有与45°有相同终边的角可表示为: β=45°+k ×360°(k ∈Z ), 则令-720°≤45°+k ×360°<0°,得-765°≤k ×360°<-45°,解得-765360≤k <-45360,从而k =-2或k =-1,代入得β=-675°或β=-315°. 答案:-675°或-315°[类题通法](1)利用终边相同的角的集合可以求适合某些条件的角,方法是先写出与这个角的终边相同的所有角的集合,然后通过对集合中的参数k 赋值来求得所需角.(2)利用终边相同的角的集合S ={β|β=2k π+α,k ∈Z }判断一个角β所在的象限时,只需把这个角写成[0,2π)范围内的一个角α与2π的整数倍的和,然后判断角α的象限.考点二 三角函数的定义(题点多变型考点——全面发掘)[必备知识]任意角的三角函数(1)定义:设α是一个任意角,它的终边与单位圆交于点P (x ,y ),则sin α=y ,cos α=x ,tan α=yx(x ≠0).(2)三角函数值在各象限内符号为正的口诀 一全正,二正弦,三正切,四余弦.(3)几何表示:三角函数线可以看作是三角函数的几何表示.正弦线的起点都在x 轴上,余弦线的起点都是原点,正切线的起点都是(1,0).如图中有向线段MP ,OM ,AT 分别叫做角α的正弦线,余弦线和正切线.[提醒] 三角函数线是有向线段.[一题多变][典型母题]设角α终边上一点P (-4a,3a )(a <0),求 sin α的值.[解] 设P 与原点的距离为r , ∵P (-4a,3a ),a <0, ∴r =-4a2+3a2=|5a |=-5a .∴sin α=3a -5a =-35. [题点发散1] 若本例中“a <0”,改为“a ≠0”,求 sin α的值. 解:当a <0时,sin α=-35;当a >0时, r =5a, sin α=35.[题点发散2] 若本例中条件变为:已知角α的终边在直线3x +4y =0上,求sin α, cos α, tan α的值.解:设α终边上任一点为P (-4a,3a ),当a >0时,r =5a ,sin α=35,cos α=-45,tan α=-34;当a <0时,r =-5a ,sin α=-35,cos α=45,tan α=-34.[题点发散3] 若本例中条件变为:已知角α的终边上一点P (-3,m )(m ≠0), 且sin α=2m4,求cos α, tan α的值. 解:由题设知x =-3,y =m ,∴r 2=|OP |2=()-32+m 2(O 为原点),r =3+m 2.∴sin α=m r=2m 4=m 22, ∴r =3+m 2=22, 即3+m 2=8,解得m =± 5.当m =5时,r =22,x =-3,y =5, ∴cos α=-322=-64, tan α=-153;当m =-5时,r =22,x =-3,y =-5, ∴cos α=-322=-64, tan α=153.[类题通法]用定义法求三角函数值的两种情况(1)已知角α终边上一点P 的坐标,则可先求出点P 到原点的距离r ,然后用三角函数的定义求解;(2)已知角α的终边所在的直线方程,则可先设出终边上一点的坐标,求出此点到原点的距离,然后用三角函数的定义来求解.考点三 扇形的弧长及面积公式(题点多变型考点——全面发掘)[必备知识]弧度的定义和公式(1)定义:长度等于半径长的弧所对的圆心角叫做1弧度的角,弧度记作rad. (2)公式:①弧度与角度的换算:360°=2π弧度;180°=π弧度;②弧长公式:l =|α|r ;③扇形面积公式:S 扇形=12lr 和12|α|r 2.[一题多变][典型母题][题点发散1] 去掉本例条件“面积是4”,问当它的半径和圆心角取何值时,才使扇形面积最大?解:设圆心角是θ,半径是r , 则2r +r θ=10.S =12θ·r 2=12r (10-2r )=r (5-r )=-⎝ ⎛⎭⎪⎫r -522+254≤254,当且仅当r =52时,S max =254,θ=2.所以当r =52,θ=2时,扇形面积最大.[题点发散2] 若本例中条件变为:圆弧长度等于该圆内接正方形的边长,则其圆心角的弧度数是________.解析:设圆半径为r ,则圆内接正方形的对角线长为2r , ∴正方形边长为2r , ∴圆心角的弧度数是2rr= 2.答案: 2[题点发散3] 若本例条件变为:扇形的圆心角是α=120°,弦长AB =12 cm ,求弧长l .解:设扇形的半径为r cm ,如图.由sin 60°=6r,得r =4 3 cm ,∴l =|α|·r =2π3×43=833π cm.[类题通法]应用弧度制解决问题的方法(1)利用扇形的弧长和面积公式解题时,要注意角的单位必须是弧度.(2)求扇形面积最大值的问题时,常转化为二次函数的最值问题,利用配方法使问题得到解决.(3)在解决弧长问题和扇形面积问题时,要合理地利用圆心角所在的三角形.对应A 本课时跟踪检测十七一、选择题1.将表的分针拨快10分钟,则分针旋转过程中形成的角的弧度数是( ) A.π3 B.π6C .-π3D .-π6解析:选C 将表的分针拨快应按顺时针方向旋转,为负角. 故A 、B 不正确,又因为拨快10分钟,故应转过的角为圆周的16.即为-16×2π=-π3.2.已知角α的终边经过点(3a -9,a +2),且cos α≤0,sin α>0,则实数a 的取值范围是( )A .(-2,3]B .(-2,3)C .[-2,3)D .[-2,3]解析:选A ∵cos α≤0,sin α>0,∴角α的终边落在第二象限或y 轴的正半轴上.∴⎩⎪⎨⎪⎧3a -9≤0,a +2>0,∴-2<a ≤3.故选A.3.已知α是第二象限角,P (x ,5)为其终边上一点,且cos α=24x ,则x =( ) A. 3 B .± 3 C .- 2D .- 3解析:选D 依题意得cos α=x x 2+5=24x <0,由此解得x =-3,选D. 4.点P 从(1,0)出发,沿单位圆逆时针方向运动2π3弧长到达Q 点,则Q 点的坐标为( )A.⎝ ⎛⎭⎪⎫-12,32 B.⎝ ⎛⎭⎪⎫-32,-12C.⎝ ⎛⎭⎪⎫-12,-32D.⎝ ⎛⎭⎪⎫-32,12 解析:选A 由三角函数定义可知Q 点的坐标(x ,y )满足x =cos 2π3=-12,y =sin 2π3=32. 5.已知角θ的顶点与原点重合,始边与x 轴的正半轴重合,终边在直线y =2x 上,则cos 2θ=( )A .-45B .-35C.35D.45解析:选B 取终边上一点(a,2a )(a ≠0),根据任意角的三角函数定义,可得cos θ=±55,故 cos 2θ=2cos 2θ-1=-35. 6.已知角α=2k π-π5(k ∈Z ),若角θ与角α的终边相同,则y =sin θ|sin θ|+cos θ|cos θ|+tan θ|tan θ|的值为( )A .1B .-1C .3D .-3解析:选B 由α=2k π-π5(k ∈Z )及终边相同的概念知,角α的终边在第四象限,又角θ与角α的终边相同,所以角θ是第四象限角,所以sin θ<0,cos θ>0,tan θ<0.所以y =-1+1-1=-1. 二、填空题7.在与2 010°终边相同的角中,绝对值最小的角的弧度数为________. 解析:2 010°=676π=12π-5π6,∴与2 010°终边相同的角中绝对值最小的角的弧度数为-5π6.答案:-5π68.在直角坐标系中,O 是原点,A (3,1),将点A 绕O 逆时针旋转90°到B 点,则B 点坐标为__________.解析:依题意知OA =OB =2,∠AOx =30°,∠BOx =120°,设点B 坐标为(x ,y ),所以x =2cos 120°=-1,y =2sin 120°=3,即B (-1,3). 答案:(-1,3)9.已知角θ的终边上有一点(a ,a ),a ∈R 且a ≠0,则sin θ的值是________. 解析:由已知得r =a 2+a 2=2|a |,则sin θ=ar=a2|a |=⎩⎪⎨⎪⎧22,a >0,-22,a <0.所以sin θ的值是22或-22. 答案:22或-2210.设角α是第三象限角,且⎪⎪⎪⎪⎪⎪sin α2=-sin α2,则角α2是第________象限角.解析:由α是第三象限角,知2k π+π<α<2k π+3π2(k ∈Z ),k π+π2<α2<k π+3π4(k∈Z ),知α2是第二或第四象限角,再由⎪⎪⎪⎪⎪⎪sin α2=-sin α2知sin α2<0,所以α2只能是第四象限角.答案:四 三、解答题11.已知扇形AOB 的周长为8.(1)若这个扇形的面积为3,求圆心角的大小;(2)求这个扇形的面积取得最大值时圆心角的大小和弦长AB . 解:设扇形AOB 的半径为r ,弧长为l ,圆心角为α, (1)由题意可得⎩⎪⎨⎪⎧2r +l =8,12lr =3,解得⎩⎪⎨⎪⎧r =3,l =2或⎩⎪⎨⎪⎧r =1,l =6,∴α=l r =23或α=lr=6.(2)法一:∵2r +l =8 ∴S 扇=12lr =14l ·2r≤14⎝ ⎛⎭⎪⎫l +2r 22=14×⎝ ⎛⎭⎪⎫822=4, 当且仅当2r =l ,即α=lr=2时,扇形面积取得最大值4. ∴圆心角α=2,弦长AB =2sin 1×2=4sin 1. 法二:∵2r +l =8,∴S 扇=12lr =12r (8-2r )=r (4-r )=-(r -2)2+4≤4,当且仅当r =2,即α=l r=2时,扇形面积取得最大值4. ∴弦长AB =2sin 1×2=4sin 1. 12.已知sin α<0,tan α>0. (1)求α角的集合; (2)求α2终边所在的象限;(3)试判断 tan α2sin α2cos α2的符号.解:(1)由sin α<0,知α在第三、四象限或y 轴的负半轴上; 由tan α>0, 知α在第一、三象限,故α角在第三象限,其集合为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫α⎪⎪⎪2k π+π<α<2k π+3π2,k ∈Z . (2)由2k π+π<α<2k π+3π2,k ∈Z ,得k π+π2<α2<k π+3π4,k ∈Z ,故α2终边在第二、四象限. (3)当α2在第二象限时,tan α2<0,sin α2>0, cos α2<0,所以tan α2 sin α2 cos α2取正号;当α2在第四象限时, tan α2<0, sin α2<0, cos α2>0,所以 tan α2sin α2cos α2也取正号.因此,tan α2sin α2cos α2取正号.第二节同角三角函数的基本关系与诱导公式对应学生用书P46基础盘查一 同角三角函数的基本关系 (一)循纲忆知理解同角三角函数的基本关系式:sin 2α+cos 2α=1,sin αcos α=tan α.(二)小题查验 1.判断正误(1)对任意角α,sin 23α+cos 23α=1都成立( ) (2)对任意角α,sinα2cosα2=tan α2都成立( )(3)对任意的角α,β有sin 2α+cos 2β=1( ) 答案:(1)√ (2)× (3)×2.(人教A 版教材例题改编)已知sin α=-35,则tan α=________.答案:34或-343.化简:2sin 2α-11-2cos 2α=________. 答案:1基础盘查二 三角函数的诱导公式 (一)循纲忆知能利用单位圆中的三角函数线推导出π2±α,π±α的正弦、余弦、正切的诱导公式.(二)小题查验 1.判断正误(1)六组诱导公式中的角α可以是任意角( )(2)诱导公式的记忆口诀中“奇变偶不变,符号看象限”,其中的奇、偶是指π2的奇数倍和偶数倍,变与不变指函数名称的变化( )(3)角π+α和α终边关于y 轴对称( ) 答案:(1)√ (2)√ (3)× 2.(人教A 版教材习题改编)(1)sin ⎝ ⎛⎭⎪⎫-31π4=________,(2)tan ⎝ ⎛⎭⎪⎫-263π=________. 答案:(1)22(2) 3对应学生用书P46考点一 三角函数的诱导公式(基础送分型考点——自主练透)[必备知识][提醒] 对于角“k π2±α”(k ∈Z )的三角函数记忆口诀“奇变偶不变,符号看象限”,“奇变偶不变”是指“当k 为奇数时,正弦变余弦,余弦变正弦;当k 为偶数时,函数名不变”.“符号看象限”是指“在α的三角函数值前面加上当α为锐角时,原函数值的符号”.[题组练透]1.已知sin ⎝⎛⎭⎪⎫5π2+α=15,那么cos α=( )A .-25B .-15C.15D.25解析:选C sin ⎝⎛⎭⎪⎫5π2+α=sin ⎝ ⎛⎭⎪⎫π2+α=cos α=15.2.已知A =k π+αsin α+k π+αcos α(k ∈Z ),则A 的值构成的集合是( )A .{1,-1,2,-2}B .{-1,1}C .{2,-2}D .{1,-1,0,2,-2}解析:选C 当k 为偶数时,A =sin αsin α+cos αcos α=2;k 为奇数时,A =-sin αsin α-cos αcos α=-2.3.sin 600°+tan 240°的值等于________.解析:sin 600°+tan 240°=sin(720°-120°)+tan(180°+60°)=-sin 120°+tan 60°=-32+3=32. 答案:324.已知tan ⎝ ⎛⎭⎪⎫π6-α=33,则tan ⎝ ⎛⎭⎪⎫5π6+α=________. 解析:tan ⎝⎛⎭⎪⎫5π6+α=tan ⎝ ⎛⎭⎪⎫π-π6+α=tan ⎣⎢⎡⎦⎥⎤π-⎝ ⎛⎭⎪⎫π6-α=-tan ⎝ ⎛⎭⎪⎫π6-α=-33.答案:-335.化简:π-απ-α⎝ ⎛⎭⎪⎫-α+3π2-α-π-π-α.解:原式=-tan α·cos α-cos απ+α-π+α=tan α·cos α·cos α-cos α·sin α=sin αcos α·cos α-sin α=-1.考点二 同角三角函数的基本关系(题点多变型考点——全面发掘)[必备知识]同角三角函数的基本关系式(1)平方关系:sin 2α+cos 2α=1(α∈R ).(2)商数关系:tan α=sin αcos α⎝ ⎛⎭⎪⎫α≠k π+π2,k ∈Z . [一题多变][典型母题]已知α是三角形的内角,且sin α+cos α=15.(1)求tan α的值;(2)把1cos 2α-sin 2α用tan α表示出来,并求其值. [解] (1)法一:联立方程⎩⎪⎨⎪⎧sin α+cos α=15, ①sin 2 α+cos 2 α=1, ②由①得 cos α=15-sin α,将其代入②,整理得 25sin 2α-5sin α-12=0. ∵α是三角形内角, ∴⎩⎪⎨⎪⎧sin α=45,cos α=-35,∴tan α=-43.法二:∵sin α+cos α=15,∴(sin α+cos α)2=⎝ ⎛⎭⎪⎫152,即1+2sin αcos α=125,∴2sin αcos α=-2425,∴(sin α-cos α)2=1-2sin αcos α=1+2425=4925.∵sin αcos α=-1225<0且0<α<π,∴sin α>0, cos α<0, sin α-cos α >0. ∴sin α-cos α=75.由⎩⎨⎧sin α+cos α=15,α-cos α=75,得⎩⎨⎧sin α=45,α=-35,∴tan α=-43.(2)1cos 2α-sin 2α=sin 2α+cos 2αcos 2α-sin 2α =sin 2α+cos 2αcos 2αcos 2α-sin 2αcos 2α=tan 2α+11-tan 2α. ∵tan α=-43,∴1cos 2α-sin 2α=tan 2α+11-tan 2α=⎝ ⎛⎭⎪⎫-432+11-⎝ ⎛⎭⎪⎫-432=-257. [题点发散1] 若本例中的条件和结论互换:已知α是三角形的内角,且tan α=-13,求 sin α+cos α的值.解:法一:由tan α=-13,得sin α= -13cos α,将其代入 sin 2α+cos 2α=1,得109cos 2α=1,∴cos 2α=910,易知cos α<0, ∴cos α=-31010, sin α=1010,故 sin α+cos α=-105. 法二:∵α是三角形的内角且tan α=-13,∴α为第二象限角, ∴sin α=1010, cos α=-31010, ∴sin α+cos α=-105. [题点发散2] 保持本例条件不变, 求:(1)sin α-4cos α5sin α+2cos α;(2)sin 2α+2sin αcos α的值. 解:由例题可知: tan α=-43.(1)sin α-4cos α5sin α+2cos α=tan α-45tan α+2 =-43-45×⎝ ⎛⎭⎪⎫-43+2=87.(2)sin 2α+2sin αcos α=sin 2α+2sin αcos αsin 2α+cos 2α=tan 2α+2tan α1+tan 2α=169-831+169=-825. [题点发散3] 若本例条件变为:sin α+3cos α3cos α-sin α=5, 求tan α的值.解:由sin α+3cos α3cos α-sin α=5, 得tan α+33-tan α=5,即tan α=2.[类题通法]1.利用sin 2α+cos 2α=1可以实现角α的正弦、余弦的互化,利用sin αcos α=tan α可以实现角α的弦切互化.2.应用公式时注意方程思想的应用:对于sin α+cos α,sin αcos α,sin α-cos α这三个式子,利用(sin α±cos α)2=1±2sin αcos α,可以知一求二.3.注意公式逆用及变形应用:1=sin 2α+cos 2α,sin 2α=1-cos 2α,cos 2α=1-sin 2α.对应B 本课时跟踪检测十八一、选择题1.已知sin(θ+π)<0,cos(θ-π)>0,则下列不等关系中必定成立的是( ) A .sin θ<0,cos θ>0 B .sin θ>0,cos θ<0 C .sin θ>0,cos θ>0D .sin θ<0,cos θ<0解析:选B ∵sin(θ+π)<0,∴-sin θ<0,sin θ>0. ∵cos(θ-π)>0,∴-cos θ>0,cos θ<0.2.(2015·成都外国语学校月考)已知tan(α-π)=34,且α∈⎝ ⎛⎭⎪⎫π2,3π2,则sin ⎝⎛⎭⎪⎫α+π2=( )A.45 B .-45C.35D .-35解析:选B tan(α-π)=34⇒tan α=34.又因为α∈⎝ ⎛⎭⎪⎫π2,3π2,所以α为第三象限的角,所以sin ⎝ ⎛⎭⎪⎫α+π2=cos α=-45. 3.已知f (α)=π-απ-α-π-αα,则f ⎝ ⎛⎭⎪⎫-31π3的值为( ) A.12 B .-13C .-12D.13解析:选C ∵f (α)=sin α·cos α-cos α tan α=-cos α,∴f ⎝ ⎛⎭⎪⎫-31π3=-cos ⎝ ⎛⎭⎪⎫-31π3=-cos ⎝⎛⎭⎪⎫10π+π3 =-cos π3=-12.4.(2015·福建泉州期末)若tan α=2,则2sin 2α+1sin 2α的值为( )A.53 B .-134C.135D.134解析:选D 法一:(切化弦的思想):因为tan α=2, 所以 sin α=2cos α, cos α=12sin α.又因为sin 2α+cos 2α=1, 所以解得 sin 2α=45.所以2sin 2α+1sin2α=2sin 2α+12sin α cos α=2sin 2α+1sin 2α=2×45+145=134.故选D. 法二:(弦化切的思想):因为2sin 2α+1sin 2α=3sin 2α+cos 2α2sin α cos α=3tan 2α+12tan α=3×22+12×2=134.故选D.5.(2015·湖北黄州联考)若A ,B 是锐角△ABC 的两个内角,则点P (cos B -sin A ,sinB -cos A )在( )A .第一象限B .第二象限C .第三象限D .第四象限解析:选B ∵△ABC 是锐角三角形,则A +B >π2,∴A >π2-B >0,B >π2-A >0,∴sin A >sin ⎝⎛⎭⎪⎫π2-B =cos B ,sin B >sin ⎝ ⎛⎭⎪⎫π2-A =cos A ,∴cos B -sin A <0, sin B -cos A >0, ∴点P 在第二象限,选B.6.已知函数f (x )=a sin(πx +α)+b cos(πx +β),且f (4)=3,则f (2 015)的值为( )A .-1B .1C .3D .-3解析:选D ∵f (4)=a sin(4π+α)+b cos(4π+β) =a sin α+b cos β=3,∴f (2 015)=a sin(2 015π+α)+b cos(2 015π+β) =a sin(π+α)+b cos(π+β) =-a sin α-b cos β =-(a sin α+b cos β)=-3. 即f (2 015)=-3. 二、填空题7.已知α∈⎝ ⎛⎭⎪⎫π2,π,sin α=45,则tan α=________.解析:∵α∈⎝ ⎛⎭⎪⎫π2,π,∴cos α =-1-sin 2α=-35,∴tan α= sin αcos α=-43.答案:-438.化简:sin ⎝ ⎛⎭⎪⎫π2+α·cos ⎝ ⎛⎭⎪⎫π2-απ+α+π-α⎝ ⎛⎭⎪⎫π2+απ+α=________.解析:原式=cos α·sin α-cos α+sin α-sin α-sin α=-sin α+sin α=0. 答案:09.(2015·绍兴二模)若f (cos x )=cos 2x, 则f (sin 15°)=________. 解析:f (sin 15°)=f (cos 75°)=cos 150°=cos(180°-30°)=-cos 30°=-32. 答案:-3210.(2015·新疆阿勒泰二模)已知α为第二象限角, 则cos α1+tan 2α+sin α1+1tan 2α=________. 解析:原式=cos α sin 2α+cos 2αcos 2α+sin α sin 2α+cos 2αsin 2α=cos α1|cos α|+ sin α1|sin α|,因为α是第二象限角,所以sin α>0, cos α<0,所以cos α1|cos α|+sin α1|sin α|=-1+1=0,即原式等于0.答案:0 三、解答题11.求值:sin(-1 200°)·cos 1 290°+cos(-1 020°)·sin(-1 050°)+tan 945°. 解:原式=-sin 1 200°·cos 1 290°+cos 1 020°·(-sin 1 050°)+tan 945° =-sin 120°·cos 210°+cos 300°·(-sin 330°)+tan 225° =(-sin 60°)·(-cos 30°)+cos 60°·sin 30°+tan 45° =32×32+12×12+1=2. 12.已知sin(3π+α)=2sin ⎝ ⎛⎭⎪⎫3π2+α,求下列各式的值:(1)sin α-4cos α5sin α+2cos α; (2)sin 2α+sin 2α.解:由已知得sin α=2cos α.(1)原式=2cos α-4cos α5×2cos α+2cos α=-16.(2)原式=sin 2α+2sin αcos αsin 2α+cos 2α =sin 2α+sin 2αsin 2α+14sin 2α=85.第三节三角函数的图象与性质对应学生用书P47基础盘查 正弦函数、余弦函数、正切函数的图象和性质 (一)循纲忆知1.能画出y =sin x, y =cos x, y =tan x 的图象,了解三角函数的周期性. 2.理解正弦函数、余弦函数在[0,2π]上的性质(如单调性、最大值和最小值,图象与x轴的交点等),理解正切函数在区间⎝ ⎛⎭⎪⎫-π2,π2内的单调性. (二)小题查验 1.判断正误(1)函数y =sin x 的图象介于直线y =1与y =-1之间( ) (2)将余弦曲线向右平移π2个单位就得到正弦曲线( )(3)函数y =sin ⎝⎛⎭⎪⎫2x +3π2是奇函数( ) (4)函数y =sin x 的对称轴方程为x =2k π+π2(k ∈Z )( )(5)正切函数在整个定义域内是增函数( ) 答案:(1)√ (2)√ (3)× (4)× (5)×2.(人教A 版教材习题改编)函数y =4sin x ,x ∈[-π,π]的单调性是( ) A .在[-π,0]上是增函数,在[0,π]上是减函数B .在⎣⎢⎡⎦⎥⎤-π2,π2上是增函数,在⎣⎢⎡⎦⎥⎤-π,-π2和⎣⎢⎡⎦⎥⎤π2,π上都是减函数C .在[0,π]上是增函数,在[]-π,0上是减函数D .在⎣⎢⎡⎦⎥⎤π2,π和⎣⎢⎡⎦⎥⎤-π,-π2上是增函数,在⎣⎢⎡⎦⎥⎤-π2,π2上是减函数 答案:B3.(2015·皖南八校模拟)函数f (x )=cos 2x +2sin x 的最大值与最小值的和是( ) A .-2 B .0 C .-32D .-12解析:选C f (x )=1-2sin 2x +2sin x =-2⎝ ⎛⎭⎪⎫sin x -122+32,所以函数f (x )的最大值是32,最小值是-3,所以最大值与最小值的和是-32,故选C. 4.(人教A 版教材习题改编)函数y =-tan ⎝⎛⎭⎪⎫x +π6+2的定义域为____________________.答案:⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x ≠k π+π3,k ∈Z对应学生用书P48考点一 三角函数的定义域与值域(基础送分型考点——自主练透)[必备知识]正弦、余弦函数的定义域为R ,正切函数的定义域为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x ≠k π+π2,k ∈Z;正弦、余弦函数的值域为[-1,1],正切函数的值域为R .[题组练透]1.函数y =2sin x -1的定义域为( ) A.⎣⎢⎡⎦⎥⎤π6,5π6B.⎣⎢⎡⎦⎥⎤2k π+π6,2k π+5π6(k ∈Z ) C.⎝⎛⎭⎪⎫2k π+π6,2k π+5π6(k ∈Z ) D.⎣⎢⎡⎦⎥⎤k π+π6,k π+5π6(k ∈Z ) 解析:选B 由2sin x -1≥0, 得sin x ≥12,所以2k π+π6≤x ≤2k π+5π6(k ∈Z ).2.函数f (x )=3sin ⎝ ⎛⎭⎪⎫2x -π6在区间⎣⎢⎡⎦⎥⎤0,π2上的值域为( ) A.⎣⎢⎡⎦⎥⎤-32,32B.⎣⎢⎡⎦⎥⎤-32,3C.⎣⎢⎡⎦⎥⎤-332,332D.⎣⎢⎡⎦⎥⎤-332,3 解析:选B 当x ∈⎣⎢⎡⎦⎥⎤0,π2时,2x -π6∈⎣⎢⎡⎦⎥⎤-π6,5π6,sin ⎝ ⎛⎭⎪⎫2x -π6∈⎣⎢⎡⎦⎥⎤-12,1,故3sin ⎝⎛⎭⎪⎫2x -π6∈⎣⎢⎡⎦⎥⎤-32,3,即此时函数f (x )的值域是⎣⎢⎡⎦⎥⎤-32,3.3.函数y =lg(sin 2x )+9-x 2的定义域为________.解析:由⎩⎪⎨⎪⎧sin 2x >0,9-x 2≥0,得⎩⎪⎨⎪⎧k π<x <k π+π2,k ∈Z ,-3≤x ≤3.∴-3≤x <-π2或0<x <π2.∴函数y =lg(sin 2x )+9-x 2的定义域为⎣⎢⎡⎭⎪⎫-3,π2∪⎝ ⎛⎭⎪⎫0,π2.答案:⎣⎢⎡⎭⎪⎫-3,π2∪⎝ ⎛⎭⎪⎫0,π24.求函数y =cos 2x +sin x ⎝ ⎛⎭⎪⎫|x |≤π4的最大值与最小值.解:令t =sin x ,∵|x |≤π4,∴t ∈⎣⎢⎡⎦⎥⎤-22,22. ∴y =-t 2+t +1=-⎝ ⎛⎭⎪⎫t -122+54,∴当t =12时,y max =54,当t =-22时,y min =1-22.∴函数y =cos 2x +sin x ⎝⎛⎭⎪⎫||x ≤π4的最大值为54,最小值为1-22.[类题通法]1.三角函数定义域的求法求三角函数定义域实际上是构造简单的三角不等式(组),常借助三角函数线或三角函数图象来求解.2.三角函数值域的不同求法(1)利用sin x 和cos x 的值域直接求;(2)把所给的三角函数式变换成y =A sin(ωx +φ)的形式求值域; (3)把sin x 或cos x 看作一个整体,转换成二次函数求值域; (4)利用sin x ±cos x 和sin x cos x 的关系转换成二次函数求值域.考点二 三角函数的单调性(重点保分型考点——师生共研)[必备知识]正弦函数的单调递增区间是⎣⎢⎡⎦⎥⎤-π2+2k π,π2+2k π(k ∈Z ),单调递减区间是⎣⎢⎡⎦⎥⎤π2+2k π,3π2+2k π(k ∈Z );余弦函数的单调递增区间是[-π+2k π,2k π](k ∈Z ),单调递减区间是[2k π,2k π+π](k ∈Z );正切函数的单调递增区间是⎝ ⎛⎭⎪⎫-π2+k π,π2+k π(k∈Z ).[典题例析]写出下列函数的单调区间: (1)y =sin ⎝ ⎛⎭⎪⎫-2x +π3;(2)y =|tan x |.解:(1)y =sin ⎝ ⎛⎭⎪⎫-2x +π3=-sin ⎝ ⎛⎭⎪⎫2x -π3,它的递增区间是y =sin ⎝ ⎛⎭⎪⎫2x -π3的递减区间,它的递减区间是y =sin ⎝ ⎛⎭⎪⎫2x -π3的递增区间. 由2k π-π2≤2x -π3≤2k π+π2,k ∈Z ,得k π-π12≤x ≤k π+5π12,k ∈Z .由2k π+π2≤2x -π3≤2k π+3π2,k ∈Z ,得k π+5π12≤x ≤k π+11π12,k ∈Z .故所给函数的递减区间为⎣⎢⎡⎦⎥⎤k π-π12,k π+5π12,k ∈Z ;递增区间为⎣⎢⎡⎦⎥⎤k π+5π12,k π+11π12,k ∈Z .(2)观察图象(图略)可知,y =|tan x |的递增区间是⎣⎢⎡⎭⎪⎫k π,k π+π2,k ∈Z ,递减区间是⎝ ⎛⎦⎥⎤k π-π2,k π,k ∈Z . [类题通法]三角函数的单调区间的求法 (1)代换法:所谓代换法,就是将比较复杂的三角函数整理后的整体当作一个角u (或t ),利用基本三角函数的单调性来求所要求的三角函数的单调区间.(2)图象法:函数的单调性表现在图象上是:从左到右,图象上升趋势的区间为单调递增区间,图象下降趋势的区间为单调递减区间,画出三角函数的图象,结合图象易求它的单调区间.[提醒] 求解三角函数的单调区间时,若x 的系数为负应先化为正,同时切莫漏掉考虑函数自身的定义域.[演练冲关]1.已知ω>0,函数f (x )=sin ⎝ ⎛⎭⎪⎫ωx +π4在⎝ ⎛⎭⎪⎫π2,π上单调递减,则ω的取值范围是( )A.⎣⎢⎡⎦⎥⎤12,54B.⎣⎢⎡⎦⎥⎤12,34 C.⎝ ⎛⎦⎥⎤0,12 D .(0,2)解析:选A 由π2<x <π,ω>0得,ωπ2+π4<ωx +π4<ωπ+π4,又y =sin x 在⎝ ⎛⎭⎪⎫π2,3π2上递减,所以⎩⎨⎧ωπ2+π4≥π2,ωπ+π4≤3π2,解得12≤ω≤54,故选A.2.函数y =cos ⎝ ⎛⎭⎪⎫2x +π6的单调递增区间为__________________________________.解析:函数y =cos x 的单调递增区间为[2k π-π,2k π],k ∈Z .由2k π-π≤2x +π6≤2k π,k ∈Z ,得k π-7π12≤x ≤k π-π12,k ∈Z .答案:⎣⎢⎡⎦⎥⎤k π-7π12,k π-π12(k ∈Z ) 考点三 三角函数的奇偶性、周期性及对称性(常考常新型考点——多角探明)[必备知识]1.正弦、正切函数是奇函数,余弦函数是偶函数.2.正弦、余弦函数的最小正周期为T =2π,函数y =A sin(ωx +φ)+b 或y =A cos(ωx +φ)+b 的周期是T =2π|ω|;正切函数的最小正周期为T =π,函数y =A tan(ωx +φ)+b的周期是T =π|ω|.3.正弦函数y =sin x 的对称轴是x =k π+π2,k ∈Z ,对称中心为(k π,0),k ∈Z .余弦函数y =cos x 的对称轴是x =k π,k ∈Z ,对称中心为⎝ ⎛⎭⎪⎫π2+k π,0,k ∈Z ,即弦函数的对称轴是过函数的最高点或最低点且垂直于x 轴的直线,对称中心是图象与x 轴的交点,即函数的零点;正切函数没有对称轴,其对称中心为⎝⎛⎭⎪⎫k π2,0,k ∈Z . [多角探明]正、余弦函数的图象既是中心对称图形,又是轴对称图形.正切函数的图象只是中心对称图形,应把三角函数的对称性与奇偶性结合,体会二者的统一.归纳起来常见的命题角度有:(1)三角函数的周期;(2)求三角函数的对称轴或对称中心; (3)三角函数对称性的应用. 角度一:三角函数的周期1.函数y =-2cos 2⎝ ⎛⎭⎪⎫π4+x +1是( )A .最小正周期为π的奇函数B .最小正周期为π的偶函数C .最小正周期为π2的奇函数D .最小正周期为π2的非奇非偶函数解析:选A 因为y =-cos ⎝ ⎛⎭⎪⎫π2+2x =sin 2x ,所以是最小正周期为π的奇函数. 2.(2015·长沙一模)若函数f (x )=2tan ⎝ ⎛⎭⎪⎫kx +π3的最小正周期T 满足1<T <2,则自然数k 的值为________.解析:由题意知,1<πk<2,即k <π<2k .又k ∈N ,所以k =2或k =3.答案:2或3角度二:求三角函数的对称轴或对称中心 3.(2015·揭阳一模)当x =π4时,函数f (x )=sin(x +φ)取得最小值,则函数y =f ⎝⎛⎭⎪⎫3π4-x ( )A .是奇函数且图象关于点⎝ ⎛⎭⎪⎫π2,0对称B .是偶函数且图象关于点(π,0)对称C .是奇函数且图象关于直线x =π2对称D .是偶函数且图象关于直线x =π对称解析:选C ∵当x =π4时,函数f (x )取得最小值,∴sin ⎝ ⎛⎭⎪⎫π4+φ=-1,∴φ=2k π-3π4(k ∈Z ). ∴f (x )=sin ⎝ ⎛⎭⎪⎫x +2k π-3π4=sin ⎝ ⎛⎭⎪⎫x -3π4.∴y =f ⎝ ⎛⎭⎪⎫3π4-x =sin(-x )=-sin x .∴y =f ⎝⎛⎭⎪⎫3π4-x 是奇函数,且图象关于直线x =π2对称.角度三:三角函数对称性的应用4.(2015·辽宁五校联考)设偶函数f (x )=A sin(ωx +φ)(A >0,ω>0,0<φ<π)的部分图象如图所示,△KLM 为等腰直角三角形,∠KML =90°,KL =1,则f ⎝ ⎛⎭⎪⎫16的值为( )A .-34B .-14C .-12D.34解析:选D 由题意知,点M 到x 轴的距离是12,根据题意可设f (x )=12cos ωx ,又由题图知12·2πω=1,所以ω=π,所以f (x )=12cos πx ,故f ⎝ ⎛⎭⎪⎫16=12cos π6=34.5.函数y =cos(3x +φ)的图象关于原点成中心对称图形,则φ=________. 解析:由题意,得y =cos(3x +φ)是奇函数,故φ=k π+π2(k ∈Z ).答案:k π+π2(k ∈Z )[类题通法]函数f (x )=A sin(ωx +φ)的奇偶性、周期性和对称性(1)若f (x )=A sin(ωx +φ)为偶函数,则当x =0时,f (x )取得最大或最小值;若f (x )=A sin(ωx +φ)为奇函数,则当x =0时,f (x )=0.(2)对于函数y =A sin(ωx +φ),其对称轴一定经过图象的最高点或最低点,对称中心一定是函数的零点,因此在判断直线x =x 0或点(x 0,0)是否是函数的对称轴或对称中心时,可通过检验f (x 0)的值进行判断.对应A 本课时跟踪检测十九一、选择题 1.函数y =cos x -32的定义域为( ) A.⎣⎢⎡⎦⎥⎤-π6,π6 B.⎣⎢⎡⎦⎥⎤k π-π6,k π+π6(k ∈Z ) C.⎣⎢⎡⎦⎥⎤2k π-π6,2k π+π6(k ∈Z ) D .R解析:选C ∵cos x -32≥0,得cos x ≥32,∴2k π-π6≤x ≤2k π+π6,k ∈Z . 2.(2015·石家庄一模)函数f (x )=tan ⎝ ⎛⎭⎪⎫2x -π3的单调递增区间是( )A.⎣⎢⎡⎦⎥⎤k π2-π12,k π2+5π12(k ∈Z )B.⎝⎛⎭⎪⎫k π2-π12,k π2+5π12(k ∈Z ) C.⎝⎛⎭⎪⎫k π+π6,k π+2π3(k ∈Z )D.⎣⎢⎡⎦⎥⎤k π-π12,k π+5π12(k ∈Z ) 解析:选B 由k π-π2<2x -π3<k π+π2(k ∈Z )得,k π2-π12<x <k π2+5π12(k ∈Z ),所以函数f (x )=tan ⎝ ⎛⎭⎪⎫2x -π3的单调递增区间为⎝ ⎛⎭⎪⎫k π2-π12,k π2+5π12(k ∈Z ),故选B. 3.给定性质:①最小正周期为π;②图象关于直线x =π3对称,则下列四个函数中,同时具有性质①②的是( )A .y =sin ⎝ ⎛⎭⎪⎫x 2+π6 B .y =sin ⎝ ⎛⎭⎪⎫2x -π6C .y =sin ⎝⎛⎭⎪⎫2x +π6 D .y =sin|x |解析:选B 注意到函数y =sin ⎝⎛⎭⎪⎫2x -π6的最小正周期T =2π2=π,当x =π3时,y =sin ⎝⎛⎭⎪⎫2×π3-π6=1,因此该函数同时具有性质①②.4.(2015·沈阳质检)已知曲线f (x )=sin 2x +3cos 2x 关于点(x 0,0)成中心对称,若x 0∈⎣⎢⎡⎦⎥⎤0,π2,则x 0=( ) A.π12 B.π6 C.π3D.5π12解析:选C 由题意可知f (x )=2sin ⎝ ⎛⎭⎪⎫2x +π3,其对称中心为(x 0,0),故2x 0+π3=k π(k ∈Z ),∴x 0=-π6+k π2(k ∈Z ),又x 0∈⎣⎢⎡⎦⎥⎤0,π2,∴k =1,x 0=π3,故选C. 5.若函数f (x )=sin(ωx +φ)⎝ ⎛⎭⎪⎫ω>0,且|φ|<π2在区间⎣⎢⎡⎦⎥⎤π6,2π3上是单调减函数,且函数值从1减少到-1,则f ⎝ ⎛⎭⎪⎫π4=( )A.12B.22C.32D .1解析:选C 由题意得函数f (x )的周期T =2⎝⎛⎭⎪⎫2π3-π6=π,所以ω=2,此时f (x )=sin(2x +φ),将点⎝ ⎛⎭⎪⎫π6,1代入上式得sin ⎝ ⎛⎭⎪⎫π3+φ=1⎝ ⎛⎭⎪⎫|φ|<π2,所以φ=π6,所以f (x )=sin ⎝ ⎛⎭⎪⎫2x +π6,于是f ⎝ ⎛⎭⎪⎫π4=sin ⎝ ⎛⎭⎪⎫π2+π6=cos π6=32.6.(2015·豫北六校联考)若函数f (x )=cos(2x +φ)的图象关于点⎝ ⎛⎭⎪⎫4π3,0成中心对称,且-π2<φ<π2,则函数y =f ⎝⎛⎭⎪⎫x +π3为( )A .奇函数且在⎝ ⎛⎭⎪⎫0,π4上单调递增B .偶函数且在⎝ ⎛⎭⎪⎫0,π2上单调递增C .偶函数且在⎝ ⎛⎭⎪⎫0,π2上单调递减D .奇函数且在⎝⎛⎭⎪⎫0,π4上单调递减 解析:选D 因为函数f (x )=cos(2x +φ)的图象关于点⎝ ⎛⎭⎪⎫4π3,0成中心对称,则8π3+φ=k π+π2,k ∈Z .即φ=k π-13π6,k ∈Z ,又-π2<φ<π2,则φ=-π6,则y =f ⎝ ⎛⎭⎪⎫x +π3=cos ⎣⎢⎡⎦⎥⎤2⎝ ⎛⎭⎪⎫x +π3-π6=cos ⎝ ⎛⎭⎪⎫2x +π2=-sin 2x ,所以该函数为奇函数且在⎝ ⎛⎭⎪⎫0,π4上单调递减,故选D.二、填空题 7.函数y =cos ⎝⎛⎭⎪⎫π4-2x 的单调减区间为______________.解析:由y =cos ⎝ ⎛⎭⎪⎫π4-2x =cos ⎝ ⎛⎭⎪⎫2x -π4得2k π≤2x -π4≤2k π+π(k ∈Z ),解得k π+π8≤x ≤k π+5π8(k ∈Z ).所以函数的单调减区间为⎣⎢⎡⎦⎥⎤k π+π8,k π+5π8(k ∈Z ).答案:⎣⎢⎡⎦⎥⎤k π+π8,k π+5π8(k ∈Z )8.函数y =tan ⎝ ⎛⎭⎪⎫2x +π4的图象与x 轴交点的坐标是________解析:由2x +π4=k π(k ∈Z )得,x =k π2-π8(k ∈Z ).∴函数y =tan ⎝ ⎛⎭⎪⎫2x +π4的图象与x 轴交点的坐标是⎝ ⎛⎭⎪⎫k π2-π8,0,k ∈Z . 答案:⎝⎛⎭⎪⎫k π2-π8,0,k ∈Z 9.已知函数f (x )=2sin(ωx +φ),对于任意x 都有f ⎝ ⎛⎭⎪⎫π6+x=f ⎝ ⎛⎭⎪⎫π6-x ,则f ⎝ ⎛⎭⎪⎫π6的值为________.解析:∵f ⎝ ⎛⎭⎪⎫π6+x =f ⎝ ⎛⎭⎪⎫π6-x ,∴x =π6是函数f (x )=2sin(ωx +φ)的一条对称轴.∴f ⎝ ⎛⎭⎪⎫π6=±2. 答案:2或-210.函数y =2sin ⎝ ⎛⎭⎪⎫2x +π3-1,x ∈⎣⎢⎡⎦⎥⎤0,π3的值域为________,并且取最大值时x 的值为________.解析:∵0≤x ≤π3,∴π3≤2x +π3≤π,∴0≤sin ⎝⎛⎭⎪⎫2x +π3≤1, ∴-1≤2sin ⎝ ⎛⎭⎪⎫2x +π3-1≤1,即值域为[-1,1]; 且当sin ⎝ ⎛⎭⎪⎫2x +π3=1,即x =π12时,y 取最大值. 答案:[-1,1] π12三、解答题11.已知函数f (x )=sin(ωx +φ)⎝ ⎛⎭⎪⎫0<φ<2π3的最小正周期为π.(1)求当f (x )为偶函数时φ的值;(2)若f (x )的图象过点⎝ ⎛⎭⎪⎫π6,32,求f (x )的单调递增区间.解:∵由f (x )的最小正周期为π,则T =2πω=π,∴ω=2.∴f (x )=sin(2x +φ).(1)当f (x )为偶函数时,f (-x )=f (x ).∴sin(2x +φ)=sin(-2x +φ), 展开整理得sin 2x cos φ=0, 由已知上式对∀x ∈R 都成立, ∴cos φ=0,∵0<φ<2π3,∴φ=π2.(2)f (x )的图象过点⎝ ⎛⎭⎪⎫π6,32时,sin ⎝ ⎛⎭⎪⎫2×π6+φ=32,即sin ⎝⎛⎭⎪⎫π3+φ=32.又∵0<φ<2π3,∴π3<π3+φ<π.∴π3+φ=2π3,φ=π3. ∴f (x )=sin ⎝⎛⎭⎪⎫2x +π3.令2k π-π2≤2x +π3≤2k π+π2,k ∈Z ,得k π-5π12≤x ≤k π+π12,k ∈Z .∴f (x )的单调递增区间为⎣⎢⎡⎦⎥⎤k π-5π12,k π+π12,k ∈Z .12.设函数f (x )=sin ⎝⎛⎭⎪⎫πx 3-π6-2cos 2πx 6. (1)求y =f (x )的最小正周期及单调递增区间;(2)若函数y =g (x )与y =f (x )的图象关于直线x =2对称,当x ∈[0,1]时,求函数y =g (x )的最大值.解:(1)由题意知f (x )=32sin πx 3-32cos πx 3-1=3·sin ⎝ ⎛⎭⎪⎫πx 3-π3-1,所以y =f (x )的最小正周期T =2ππ3=6.由2k π-π2≤πx 3-π3≤2k π+π2,k ∈Z ,得6k -12≤x ≤6k +52,k ∈Z ,所以y =f (x )的单调递增区间为⎣⎢⎡⎦⎥⎤6k -12,6k +52,k ∈Z .(2)因为函数y =g (x )与y =f (x )的图象关于直线x =2对称,所以当x ∈[0,1]时,y =g (x )的最大值即为x ∈[3,4]时,y =f (x )的最大值,当x ∈[3,4]时,π3x -π3∈⎣⎢⎡⎦⎥⎤2π3,π,sin ⎝ ⎛⎭⎪⎫π3x -π3∈⎣⎢⎡⎦⎥⎤0,32,f (x )∈⎣⎢⎡⎦⎥⎤-1,12, 即当x ∈[0,1]时,函数y =g (x )的最大值为12.第四节函数y =A sin(ωx +φ)的图象及三角函数模型的简单应用对应学生用书P50基础盘查一 y =A sin(ωx +φ)的有关概念 (一)循纲忆知了解函数y =A sin(ωx +φ)的物理意义,能画出函数y =A sin(ωx +φ)的图象,了解参数A ,ω,φ对函数图象变化的影响.(二)小题查验(人教A 版教材习题改编)函数y =23sin ⎝ ⎛⎭⎪⎫12x -π4的振幅为________,周期为________,初相为________.答案:23 4π -π4基础盘查二 “五点法”作函数y =A sin(ωx +φ)(A >0,ω>0)的图象的步骤 (一)循纲忆知熟练运用“五点法”作函数y =A sin(ωx +φ)的图象. (二)小题查验(人教A 版教材例题改编)用“五点法”作函数y =2sin ⎝ ⎛⎭⎪⎫13x -π6的图象,试写出相应的五个点坐标.答案:⎝⎛⎭⎪⎫π2,0,(2π,2),⎝ ⎛⎭⎪⎫7π2,0,(5π,-2),⎝ ⎛⎭⎪⎫13π2,0基础盘查三 y =sin x 变换到y =A sin(ωx +φ)(A >0,ω>0)的图象的步骤 (一)循纲忆知了解三角函数是描述周期变化现象的重要函数模型,会用三角函数解决一些简单的实际问题,并能进行图象变换.(二)小题查验1.判断正误(1)将函数y=sin ωx的图象向右平移φ(φ>0)个单位长度,得到函数y=sin(ωx-φ)的图象( )(2)要得到函数y =sin ωx (ω>0)的图象,只需将函数y =sin x 上所有点的横坐标变为原来的ω倍( )(3)将函数y =sin x 图象上各点的纵坐标变为原来的A (A >0)倍,便得到函数y =A sin x 的图象( )(4)函数f (x )=sin 2x 的最小正周期和最小值分别为π,0( )(5)函数y =A cos(ωx +φ)的最小正周期为T ,那么函数图象的两个相邻对称中心之间的距离为T2( ) 答案:(1)× (2)× (3)√ (4)√ (5)√2.(人教A 版教材例题改编)如图是某简谐运动的图象,则这个简谐运动的函数表达式为________________.答案:y =2sin 5π2x ,x ∈[0,+∞)对应学生用书P50考点一 求函数y =Aωx +φ的解析式(基础送分型考点——自主练透)[必备知识]1.y =A sin(ωx +φ)的有关概念y =A sin(ωx +φ)+b ,求出需要确定的系数A ,ω,φ,b ,得到三角函数的解析式.[题组练透]1.已知函数f (x )=sin(ωx +φ)⎝ ⎛⎭⎪⎫ω>0,||φ<π2的部分图象如图所示,则y =f ⎝⎛⎭⎪⎫x +π6取得最小值时x 的集合为( )A.⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x =k π-π6,k ∈ZB.⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪ x =k π-π3,k ∈ZC.⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x =2k π-π6,k ∈ZD.⎩⎨⎧⎭⎬⎫x |x =2k π-π3,k ∈Z解析:选B 根据所给图象,周期T =4×⎝⎛⎭⎪⎫7π12-π3=π,故π=2πω,∴ω=2,因此f (x )=sin(2x +φ),另外图象经过⎝⎛⎭⎪⎫7π12,0,代入有2×7π12+φ=k π(k ∈Z ),再由|φ|<π2,得φ=-π6,∴f ⎝ ⎛⎭⎪⎫x +π6=sin ⎝⎛⎭⎪⎫2x +π6,当2x +π6=-π2+2k π(k ∈Z ),即x =-π3+k π(k ∈Z )时,y =f ⎝⎛⎭⎪⎫x +π6取得最小值.2.(2015·东北三校联考)已知函数y =A sin(ωx +φ)+b (A >0,ω>0)的最大值为4,最小值为0,最小正周期为π2,直线x =π3是其图象的一条对称轴,则下面各式中符合条件的解析式为( )A .y =4sin ⎝ ⎛⎭⎪⎫4x +π6B .y =2sin ⎝ ⎛⎭⎪⎫2x +π3+2C .y =2sin ⎝⎛⎭⎪⎫4x +π3+2 D .y =2sin ⎝⎛⎭⎪⎫4x +π6+2 解析:选D 由函数y =A sin(ωx +φ)+b 的最大值为4,最小值为0,可知b =2,A =2.由函数的最小正周期为π2,可知2πω=π2,得ω=4.由直线x =π3是其图象的一条对称轴,可知4×π3+φ=k π+π2,k ∈Z ,从而φ=k π-5π6,k ∈Z ,故满足题意的是y =2sin ⎝ ⎛⎭⎪⎫4x +π6+2.[类题通法]确定y =A sin(ωx +φ)+b (A >0,ω>0)的步骤和方法 (1)求A ,b :确定函数的最大值M 和最小值m ,则A =M -m2,b =M +m2;(2)求ω:确定函数的周期T ,则可得ω=2πT;(3)求φ:常用的方法有:①代入法:把图象上的一个已知点代入(此时A ,ω,b 已知)或代入图象与直线y =b 的交点求解(此时要注意交点在上升区间上还是在下降区间上).②五点法:确定φ值时,往往以寻找“五点法”中的某一个点为突破口.具体如下:。
第13课 函数的单调性与最值 1.)(x f 为),(+∞-∞上的减函数,R a ∈,则( )A .)2()(a f a f <B .)()(2a f a f <C .2(1)()f a f a +<D .2()()f a a f a +<【答案】C 【解析】∵ 22131()024a a a -+=-+>,∴ 21a a +>, 又∵)(x f 为R 上的减函数,∴ 2(1)()f a f a +<.2.下列四个函数在(,0)-∞上为增函数的是( ) A .①② B .②③ C .③④ D .①④【答案】C【解析】当(,0)x ∈-∞时,x x =-, ①y x x ==-在(,0)-∞上为减函数; ②1x y x==-在(,0)-∞上既不是增函数,也不是减函数; ③2x y x x=-=在(,0)-∞上是增函数; ④1x y x x x=+=-在(,0)-∞上也是增函数. 3.已知函数(),y f x x A =∈,若对任意,a b A ∈,当a b <时,都有()()f a f b <,则方程()0f x =的根( )A .有且只有一个B .可能有两个C .至多有一个D .有两个以上【答案】C【解析】由题意知()f x 在A 上是增函数.若()y f x =与x 轴有交点,则有且只有一个交点, 故方程()0f x =至多有一个根.4.(2019海淀一模)已知函数2,1,()1,1,x ax x f x ax x ⎧-+≤=⎨->⎩ 若1212,,x x x x ∃∈≠R ,使得12()()f x f x =成立,则实数a 的取值范围是( )A .2a <B . 2a >C . 22a -<<D . 2a >或2a <-【答案】A【解析】22(),1,()241,1,a a x x f x ax x ⎧--+≤⎪=⎨⎪->⎩, 若1212,,x x x x ∃∈≠R ,使得12()()f x f x =成立,则21,214a a a ⎧≤⎪⎪⎨⎪-<⎪⎩,或1,211a a a ⎧>⎪⎨⎪-<-+⎩,解得2a <. 5.讨论函数11()()22ax f x a x +=≠+在(2,)-+∞上的单调性. 【解析】设12(2,),(2,)x x ∈-+∞∈-+∞,且12x x <,则∵ 12(2,),(2,)x x ∈-+∞∈-+∞,且12x x <∴ 当120a ->,即12a <时,12()()f x f x >,()f x 为减函数当120a -<,即12a >时,12()()f x f x <,()f x 为增函数.6.设()f x 是定义在(0,)+∞上的函数,满足条件:③在(0,)+∞上是增函数.如果(2)(3)2f f x +-≤,求x 的取值范围.【解析】∵()()()f xy f x f y =+,令2x y ==,得(4)(2)(2)2(2)f f f f =+=.又(2)1f =,∴(4)2f =.如果(2)(3)2f f x +-≤,∴(2)(3)2f f x +-≤可化为(26)(4)f x f -≤. ∵()f x 在(0,)+∞上递增,∴260264x x ->⎧⎨-≤⎩,解得35x <≤, 故x 的取值范围为(3,5].。
课时追踪检测(五)函数的单一性与最值一抓基础,多练小题做到眼疾手快1.已知函数 y = f(x) 的图象如下图,那么该函数的单一减区间是 ________.分析:由函数的图象易知,函数 f(x) 的单一减区间是 [ - 3,- 1]和 [1,2] .答案: [- 3,- 1]和 [1,2]2.函数 f(x) =|x - 2|x 的单一减区间是 ________.x 2- 2x ,x ≥2, 分析:因为f(x) = |x - 2|x =- x 2+ 2x , x<2.联合图象可知函数的单一减区间是 [1,2] .答案: [1,2]3. (2016 学·军中学检测 )已知函数 f(x) = |x + a|在 (- ∞,- 1)上是单一函数,则 a 的取值范围是 ________.分析:因为函数 f(x) 在 (-∞,- a)上是单一函数,所以- a ≥-1,解得 a ≤1.答案: (- ∞, 1]114.函数 f(x) =x - 1在区间 [a , b]上的最大值是 1,最小值是 3,则 a + b = ________. 分析:易知 f(x) 在 [a , b]上为减函数,= 1,1 =1,a = 2,∴a - 11,即1∴= 1, b = 4.3=b - 1 3∴ a + b = 6.答案: 65.已知函数f(x) = x 2 - 2ax - 3 在区间 [1,2] 上拥有单一性,则实数a 的取值范围为________________ .分析:函数 f(x) = x 2- 2ax - 3 的图象张口向上, 对称轴为直线 x =a ,画出草图如下图.由图象可知,函数在 (- ∞,a]和[a ,+∞ )上都拥有单一性,所以要使函数 f(x) 在区间 [1,2] 上拥有单一性,只要 a ≤1或 a ≥2,进而 a ∈ (-∞, 1]∪[2 ,+ ∞).答案: (- ∞, 1]∪ [2,+ ∞)二保高考,全练题型做到高考达标1.函数f(x) =x - a x 在 [1,4] 上单一递加,则实数a 的最大值为________.分析:令x = t ,所以t ∈ [1,2] ,即f(t) = t 2-at ,由f(x) 在[1,4] 上递加,知 f(t) 在 [1,2] 上递a增,所以 2≤1,即 a ≤2,所以 a 的最大值为 2.答案: 22.已知函数 f(x) = x 2-2x - 3,则该函数的单一增区间为________.分析:设 t = x 2- 2x -3,由 t ≥0,即 x 2- 2x - 3≥0,解得 x ≤- 1 或 x ≥3.所以函数的定义域为 (- ∞,- 1]∪[3 ,+ ∞).因为函数 t = x 2- 2x -3 的图象的对称轴为 x = 1,所以函数 t 在(-∞,- 1]上单一递减,在 [3,+ ∞)上单一递加.所以函数 f(x) 的单一增区间为 [3,+ ∞).答案: [3,+ ∞)- x + 3a , x<0,3.已知函数 f(x) =a x , x ≥0(a>0 且 a ≠ 1)是 R 上的减函数,则 a 的取值范围是________ .1分析:由 f(x) 在 R 上是减函数,得 0<a<1,且- 0+3a ≥a,由此得 a ∈ 3,1 .答案: 1, 134.定义新运算⊕:当a ≥b 时, a ⊕ b = a ;当 a<b 时, a ⊕ b = b 2,则函数 f(x) =(1⊕ x)x -(2⊕ x), x ∈ [ - 2,2] 的最大值等于 ________.分析:由已知适当- 2≤x ≤1时, f(x) =x - 2,当 1<x ≤2时, f(x) = x 3- 2.∵ f(x) = x - 2,f(x) = x 3- 2 在定义域内都为增函数. ∴ f(x) 的最大值为 f(2) = 23- 2= 6.答案: 6-+ 4a , x<1,5.(2016 ·通调研南 )已知 f(x) =是 ( -∞,+ ∞)上的减函数, 那log a x , x ≥1么 a 的取值范围是 ________.分析:当 x = 1 时, log a 1= 0,若 f(x) 为 R 上的减函数,则 (3a -1)x + 4a>0 在 x<1 时恒成立,令 g(x) = (3a - 1)x +4a ,则必有3a- 1<0 ,3a- 1<0,1≤a<1.即?,3a- 1+4a≥073此时, log a x 是减函数,切合题意.11答案:7,36.函数 y= x- x(x ≥ 0)的最大值为 ________.21 2111分析:令t=x,则 t ≥0,所以 y= t- t =- t-2+4,联合图象知,当t=2,即 x=4 1时, y max=4.1答案:47.已知函数 f(x) 为 (0,+∞)上的增函数,若f(a2- a)>f(a +3),则实数 a 的取值范围为________ .a2- a>0,分析:由已知可得a+ 3>0,a2- a>a+3,解得- 3<a<- 1 或 a>3.所以实数 a 的取值范围为(-3,- 1)∪ (3,+∞).答案: (- 3,- 1)∪ (3,+∞)1, x>0,8.设函数 f(x) =0, x=0,g(x) = x2f(x - 1),则函数 g(x) 的递减区间是 ________.- 1,x<0 ,2x , x>1 ,-x2, x<1.函数图象如下图,其递减区间是[0,1) .答案: [0,1)119. (2016 苏·州调研 )已知函数 f(x) =-(a>0, x>0),a x(1)求证: f(x) 在 (0,+∞)上是增函数;(2)若 f(x) 在1, 2上的值域是1, 2,求 a 的值.22解: (1)证明:任取x1>x2 >0,则 f(x 1)- f(x 2)=1-1-1+1=x1-x2,a x1 a x2 x1x2∵x1>x 2>0 ,∴ x 1- x 2>0, x 1x 2>0,∴ f(x 1)- f(x 2)>0,即 f(x 1)>f(x 2),∴ f(x) 在 (0,+ ∞)上是增函数.1(2)由 (1)可知 f(x) 在 2, 2上为增函数,∴ f12 = 1a - 2= 12, f(2) = 1a -12= 2,2解得 a = 5.x10.已知 f(x) =x - a (x ≠ .a)(1)若 a =- 2,试证明 f(x) 在 (- ∞,- 2) 内单一递加;(2)若 a>0 且 f(x) 在 (1,+ ∞)上单一递减,求 a 的取值范围.解: (1)证明:任设 x 1<x 2 <- 2,x 1 - x 2=1- x2.则 f(x 1)- f(x 2)=x 2+ 2 1+2+x 1+ 2∵ (x 1+ 2)(x 2+ 2)>0 , x 1-x 2<0, ∴ f(x 1)<f(x 2),∴ f(x) 在 (- ∞,- 2)上单一递加.(2)任设 1<x 1<x 2,则x 1x 22- x1f(x 1) -f(x 2)= x 1- a - x 2- a=1-2-.∵ a>0, x 2- x 1>0,∴要使 f(x 1)- f(x 2)>0 ,只要 (x 1- a)(x 2- a)>0 在 (1,+ ∞)上恒建立,∴ a ≤1.综上所述, a 的取值范围是 (0,1] .三登台阶,自主选做志在冲刺名校e x - k , x ≤0,k 的取值范围是1.已知函数 f(x) =是 R 上的增函数,则实数-+ k , x>0________ .e 0- k ≤k, 解得1分析:由题意得1- k>0,2≤ k<1.答案:1, 122. (2016 ·州中学期中泰 )已知函数 y = log 1 (x 2- ax + a)在区间 (- ∞, 2]上是增函数,2则实数 a 的取值范围是 ________.分析:设 y=log 1 t, t= x2-ax+ a.2因为 y= log 1 t 在 (0,+∞)上是单一减函数,2要想知足题意,则 t= x2- ax+a 在 (-∞,2 ] 上为单一减函数,且 t min>0 ,a≥2,故需22 2-2a+ a>0,解得 2 2≤a<2+ 2 2.答案: [22,2 2+2)3.已知定义在区间 (0,+∞)上的函数 f(x) 知足 f x1= f(x 1)- f(x 2),且当 x>1 时,f(x)<0.x2(1)求 f(1)的值;(2)证明: f(x) 为单一递减函数;(3)若 f(3)=- 1,求 f(x) 在 [2,9] 上的最小值.解: (1)令 x1=x2>0,代入得 f(1) = f(x 1)- f(x 1)= 0,故 f(1) = 0.(2)证明:任取x1, x2∈ (0,+∞),且 x1>x 2,x1则x2>1,因为当x>1 时, f(x)<0 ,x1所以 f x2<0,即 f(x 1)- f(x 2)<0 ,所以 f(x 1)<f(x 2),所以函数 f(x) 在区间 (0,+∞)上是单一递减函数.(3)∵ f(x) 在(0 ,+∞)上是单一递减函数.∴ f(x) 在 [2,9] 上的最小值为f(9) .由 f x1=f(x 1)- f(x 2)得,x2f9= f(9) - f(3) ,3而 f(3) =- 1,所以 f(9) =- 2.∴ f(x) 在 [2,9] 上的最小值为-2.。
第三节函数的单调性与最值[知识能否忆起]一、函数的单调性 1.单调函数的定义 自左向右看图象逐渐上升自左向右看图象逐渐下降2.单调区间的定义若函数y =f (x )在区间D 上是增函数或减函数,则称函数y =f (x )在这一区间上具有(严格的)单调性,区间D 叫做y =f (x )的单调区间.二、函数的最值 [小题能否全取]1.(2012·陕西高考)下列函数中,既是奇函数又是增函数的为( ) A .y =x +1 B .y =-x 3 C .y =1xD .y =x |x |解析:选D 由函数的奇偶性排除A ,由函数的单调性排除B 、C ,由y =x |x |的图象可知此函数为增函数,又该函数为奇函数,故选D.2.函数y =(2k +1)x +b 在(-∞,+∞)上是减函数,则( ) A .k >12B .k <12C .k >-12D .k <-12解析:选D 函数y =(2k +1)x +b 是减函数, 则2k +1<0,即k <-12.3.(教材习题改编)函数f (x )=11-x (1-x )的最大值是( )A.45B.54C.34D.43解析:选D ∵1-x (1-x )=x 2-x +1=⎝⎛⎭⎫x -122+34≥34,∴0<11-x (1-x )≤43. 4.(教材习题改编)f (x )=x 2-2x (x ∈[-2,4])的单调增区间为________;f (x )max =________. 解析:函数f (x )的对称轴x =1,单调增区间为[1,4],f (x )max =f (-2)=f (4)=8. 答案:[1,4] 85.已知函数f (x )为R 上的减函数,若m <n ,则f (m )______f (n );若f ⎝⎛⎭⎫⎪⎪⎪⎪1x <f (1),则实数x 的取值范围是______.解析:由题意知f (m )>f (n );⎪⎪⎪⎪1x >1,即|x |<1,且x ≠0.故-1<x <1且x ≠0. 答案:> (-1,0)∪(0,1)1.函数的单调性是局部性质从定义上看,函数的单调性是指函数在定义域的某个子区间上的性质,是局部的特征.在某个区间上单调,在整个定义域上不一定单调.2.函数的单调区间的求法函数的单调区间是函数定义域的子区间,所以求解函数的单调区间,必须先求出函数的定义域.对于基本初等函数的单调区间可以直接利用已知结论求解,如二次函数、对数函数、指数函数等;如果是复合函数,应根据复合函数的单调性的判断方法,首先判断两个简单函数的单调性,再根据“同则增,异则减”的法则求解函数的单调区间.《三维设计》2014届高考数学一轮复习教学案+复习技法[注意] 单调区间只能用区间表示,不能用集合或不等式表示;如有多个单调区间应分别写,不能用并集符号“∪”联结,也不能用“或”联结.典题导入[例1] 证明函数f (x )=2x -1x在(-∞,0)上是增函数.[自主解答] 设x 1,x 2是区间(-∞,0)上的任意两个自变量的值,且x 1<x 2. 则f (x 1)=2x 1-1x 1,f (x 2)=2x 2-1x 2,f (x 1)-f (x 2)=⎝⎛⎭⎫2x 1-1x 1-⎝⎛⎭⎫2x 2-1x 2 =2(x 1-x 2)+⎝⎛⎭⎫1x 2-1x 1=(x 1-x 2)⎝⎛⎭⎫2+1x 1x 2由于x 1<x 2<0,所以x 1-x 2<0,2+1x 1x 2>0,因此f (x 1)-f (x 2)<0, 即f (x 1)<f (x 2),故f (x )在(-∞,0)上是增函数.由题悟法对于给出具体解析式的函数,证明其在某区间上的单调性有两种方法: (1)结合定义(基本步骤为取值、作差或作商、变形、判断)证明;(2)可导函数则可以利用导数证明.对于抽象函数单调性的证明,一般采用定义法进行.以题试法1.判断函数g (x )=-2x x -1在 (1,+∞)上的单调性.解:任取x 1,x 2∈(1,+∞),且x 1<x 2,则g (x 1)-g (x 2)=-2x 1x 1-1--2x 2x 2-1=2(x 1-x 2)(x 1-1)(x 2-1),由于1<x 1<x 2,所以x 1-x 2<0,(x 1-1)(x 2-1)>0, 因此g (x 1)-g (x 2)<0,即g (x 1)<g (x 2). 故g (x )在(1,+∞)上是增函数.典题导入[例2] (2012·长沙模拟)设函数y =f (x )在(-∞,+∞)内有定义.对于给定的正数k ,定义函数f k (x )=⎩⎪⎨⎪⎧f (x ),f (x )≤k ,k ,f (x )>k ,取函数f (x )=2-|x |.当k =12时,函数f k (x )的单调递增区间为( )A .(-∞,0)B .(0,+∞)C .(-∞,-1)D .(1,+∞)[自主解答] 由f (x )>12,得-1<x <1.由f (x )≤12,得x ≤-1或x ≥1.所以f 12(x )=⎩⎪⎨⎪⎧2-x ,x ≥1,12,-1<x <1,2x,x ≤-1.故f12(x )的单调递增区间为(-∞,-1).[答案] C若本例中f (x )=2-|x |变为f (x )=log 2|x |,其他条件不变,则f k (x )的单调增区间为________.解析:函数f (x )=log 2|x |,k =12时,函数fk (x )的图象如图所示,由图示可得函数f k (x )的单调递增区间为(0, 2 ].《三维设计》2014届高考数学一轮复习教学案+复习技法答案:(0, 2 ]由题悟法求函数的单调区间的常用方法(1)利用已知函数的单调性,即转化为已知函数的和、差或复合函数,求单调区间. (2)定义法:先求定义域,再利用单调性定义.(3)图象法:如果f (x )是以图象形式给出的,或者f (x )的图象易作出,可由图象的直观性写出它的单调区间.(4)导数法:利用导数的正负确定函数的单调区间.以题试法2.函数f (x )=|x -2|x 的单调减区间是( ) A .[1,2] B .[-1,0] C .[0,2]D .[2,+∞)解析:选A 由于f (x )=|x -2|x =⎩⎪⎨⎪⎧x 2-2x ,x ≥2,-x 2+2x ,x <2.结合图象可知函数的单调减区间是[1,2].典题导入[例3] (1)若f (x )为R 上的增函数,则满足f (2-m )<f (m 2)的实数m 的取值范围是________.(2)(2012·安徽高考)若函数f (x )=|2x +a |的单调递增区间是[3,+∞),则a =________. [自主解答] (1)∵f (x )在R 上为增函数,∴2-m <m 2. ∴m 2+m -2>0.∴m >1或m <-2.(2)由f (x )=⎩⎨⎧-2x -a ,x <-a2,2x +a ,x ≥-a2,可得函数f (x )的单调递增区间为⎣⎡⎭⎫-a2,+∞,故3=-a2,解得a =-6. [答案] (1)(-∞,-2)∪(1,+∞) (2)-6由题悟法单调性的应用主要涉及利用单调性求最值,进行大小比较,解抽象函数不等式,解题时要注意:一是函数定义域的限制;二是函数单调性的判定;三是等价转化思想与数形结合思想的运用.以题试法3.(1)(2013·孝感调研)函数f (x )=1x -1在[2,3]上的最小值为________,最大值为________. (2)已知函数f (x )=1a -1x (a >0,x >0),若f (x )在⎣⎡⎦⎤12,2上的值域为⎣⎡⎦⎤12,2,则a =__________. 解析:(1)∵f ′(x )=-1(x -1)2<0,∴f (x )在[2,3]上为减函数,∴f (x )min =f (3)=13-1=12,f (x )max =12-1=1.(2)由反比例函数的性质知函数f (x )=1a -1x (a >0,x >0)在⎣⎡⎦⎤12,2上单调递增, 所以⎩⎪⎨⎪⎧f ⎝⎛⎭⎫12=12,f (2)=2,即⎩⎨⎧1a -2=12,1a -12=2,解得a =25.答案:(1)12 1 (2)251.(2012·广东高考)下列函数中,在区间(0,+∞)上为增函数的是( ) A .y =ln(x +2) B .y =-x +1 C .y =⎝⎛⎭⎫12xD .y =x +1x解析:选A 选项A 的函数y =ln(x +2)的增区间为(-2,+∞),所以在(0,+∞)上一定是增函数.2.若函数f (x )=4x 2-mx +5在[-2,+∞)上递增,在(-∞,-2]上递减,则f (1)=( ) A .-7 B .1 C .17D .25解析:选D 依题意,知函数图象的对称轴为x =--m 8=m 8=-2,即 m =-16,从而f (x )=4x 2+16x +5,f (1)=4+16+5=25.3.(2013·佛山月考)若函数y =ax 与y =-bx在(0,+∞)上都是减函数,则y =ax 2+bx《三维设计》2014届高考数学一轮复习教学案+复习技法在(0,+∞)上是( )A .增函数B .减函数C .先增后减D .先减后增解析:选B ∵y =ax 与y =-bx 在(0,+∞)上都是减函数,∴a <0,b <0,∴y =ax 2+bx的对称轴方程x =-b2a<0,∴y =ax 2+bx 在(0,+∞)上为减函数.4.“函数f (x )在[a ,b ]上为单调函数”是“函数f (x )在[a ,b ]上有最大值和最小值”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件解析:选A 若函数f (x )在[a ,b ]上为单调递增(减)函数,则在[a ,b ]上一定存在最小(大)值f (a ),最大(小)值f (b ).所以充分性满足;反之,不一定成立,如二次函数f (x )=x 2-2x +3在[0,2]存在最大值和最小值,但该函数在[0,2]不具有单调性,所以必要性不满足,即“函数f (x )在[a ,b ]上单调”是“函数f (x )在[a ,b ]上有最大值和最小值”的充分不必要条件.5.(2012·青岛模拟)已知奇函数f (x )对任意的正实数x 1,x 2(x 1≠x 2),恒有(x 1-x 2)(f (x 1)-f (x 2))>0,则一定正确的是( )A .f (4)>f (-6)B .f (-4)<f (-6)C .f (-4)>f (-6)D .f (4)<f (-6)解析:选C 由(x 1-x 2)(f (x 1)-f (x 2))>0知f (x )在(0,+∞)上递增,所以f (4)<f (6)⇔f (-4)>f (-6).6.定义在R 上的函数f (x )满足f (x +y )=f (x )+f (y ),当x <0时,f (x )>0,则函数f (x )在[a ,b ]上有( )A .最小值f (a )B .最大值f (b )C .最小值f (b )D .最大值f ⎝⎛⎭⎫a +b 2解析:选C ∵f (x )是定义在R 上的函数,且 f (x +y )=f (x )+f (y ),∴f (0)=0,令y =-x ,则有f (x )+f (-x )=f (0)=0.∴f (-x )=-f (x ).∴f (x )是R 上的奇函数.设x 1<x 2,则x 1-x 2<0,∴f (x 1)-f (x 2)=f (x 1)+f (-x 2)=f (x 1-x 2)>0.∴f (x )在R 上是减函数.∴f (x )在[a ,b ]有最小值f (b ).7.函数y =-(x -3)|x |的递增区间是________. 解析:y =-(x -3)|x |=⎩⎪⎨⎪⎧-x 2+3x ,x >0,x 2-3x ,x ≤0.作出该函数的图象,观察图象知递增区间为⎣⎡⎦⎤0,32. 答案:⎣⎡⎦⎤0,32 8.(2012·台州模拟)若函数y =|2x -1|,在(-∞,m ]上单调递减,则m 的取值范围是________.解析:画出图象易知y =|2x -1|的递减区间是(-∞,0], 依题意应有m ≤0. 答案:(-∞,0]9.若f (x )=ax +1x +2在区间(-2,+∞)上是增函数,则a 的取值范围是________.解析:设x 1>x 2>-2,则f (x 1)>f (x 2), 而f (x 1)-f (x 2)=ax 1+1x 1+2-ax 2+1x 2+2=2ax 1+x 2-2ax 2-x 1(x 1+2)(x 2+2)=(x 1-x 2)(2a -1)(x 1+2)(x 2+2)>0,则2a -1>0. 得a >12.答案:⎝⎛⎭⎫12,+∞10.求下列函数的单调区间: (1)y =-x 2+2|x |+1;(2)y =a 1-2x -x 2(a >0且a ≠1).解:(1)由于y =⎩⎪⎨⎪⎧-x 2+2x +1,x ≥0,-x 2-2x +1,x <0,《三维设计》2014届高考数学一轮复习教学案+复习技法即y =⎩⎪⎨⎪⎧-(x -1)2+2,x ≥0,-(x +1)2+2,x <0.画出函数图象如图所示,单调递增区间为(-∞,-1]和[0,1],单调递减区间为[-1,0]和[1,+∞).(2)令g (x )=1-2x -x 2=-(x +1)2+2,所以g (x )在(-∞,-1)上单调递增,在(-1,+∞)上单调递减.当a >1时,函数y =a 1-2x -x 2的增区间是(-∞,-1),减区间是(-1,+∞); 当0<a <1时,函数y =a 1-2x -x 2的增区间是(-1,+∞),减区间是(-∞,-1). 11.已知f (x )=xx -a(x ≠a ). (1)若a =-2,试证f (x )在(-∞,-2)内单调递增; (2)若a >0且f (x )在(1,+∞)内单调递减,求a 的取值范围. 解:(1)证明:设x 1<x 2<-2, 则f (x 1)-f (x 2)=x 1x 1+2-x 2x 2+2 =2(x 1-x 2)(x 1+2)(x 2+2).∵(x 1+2)(x 2+2)>0,x 1-x 2<0, ∴f (x 1)<f (x 2),∴f (x )在(-∞,-2)内单调递增. (2)设1<x 1<x 2,则 f (x 1)-f (x 2)=x 1x 1-a -x 2x 2-a=a (x 2-x 1)(x 1-a )(x 2-a ).∵a >0,x 2-x 1>0, ∴要使f (x 1)-f (x 2)>0, 只需(x 1-a )(x 2-a )>0恒成立,∴a ≤1.综上所述,a 的取值范围为(0,1].12.(2011·上海高考)已知函数f (x )=a ·2x +b ·3x ,其中常数a ,b 满足ab ≠0. (1)若ab >0,判断函数f (x )的单调性; (2)若ab <0,求f (x +1)>f (x )时x 的取值范围.解:(1)当a >0,b >0时,任意x 1,x 2∈R ,x 1<x 2,则f (x 1)-f (x 2)=a (2x 1-2x 2)+b (3x 1-3x 2). ∵2x 1<2x 2,a >0⇒a (2x 1-2x 2)<0, 3x 1<3x 2,b >0⇒b (3x 1-3x 2)<0,∴f (x 1)-f (x 2)<0,函数f (x )在R 上是增函数. 同理,当a <0,b <0时,函数f (x )在R 上是减函数. (2)f (x +1)-f (x )=a ·2x +2b ·3x >0, 当a <0,b >0时,⎝⎛⎭⎫32x >-a 2b , 则x >log 1.5⎝⎛⎭⎫-a2b ; 同理,当a >0,b <0时,⎝⎛⎭⎫32x <-a2b , 则x <log 1.5⎝⎛⎭⎫-a2b .1.设函数f (x )定义在实数集上,f (2-x )=f (x ),且当x ≥1时,f (x )=ln x ,则有( ) A .f ⎝⎛⎭⎫13<f (2)<f ⎝⎛⎭⎫12 B .f ⎝⎛⎭⎫12<f (2)<f ⎝⎛⎭⎫13 C .f ⎝⎛⎭⎫12<f ⎝⎛⎭⎫13<f (2)D .f (2)<f ⎝⎛⎭⎫12<f ⎝⎛⎭⎫13解析:选C 由f (2-x )=f (x )可知,f (x )的图象关于直线x =1对称,当x ≥1时,f (x )=ln x ,可知当x ≥1时f (x )为增函数,所以当x <1时f (x )为减函数,因为⎪⎪⎪⎪12-1<⎪⎪⎪⎪13-1<|2-1|,所以f ⎝⎛⎭⎫12<f ⎝⎛⎭⎫13<f (2).2.(2012·黄冈模拟)已知函数y =1-x +x +3的最大值为M ,最小值为m ,则mM 的值为( )《三维设计》2014届高考数学一轮复习教学案+复习技法A.14B.12C.22D.32解析:选C 显然函数的定义域是[-3,1]且y ≥0,故y 2=4+2(1-x )(x +3)=4+2-x 2-2x +3=4+2-(x +1)2+4,根据根式内的二次函数,可得4≤y 2≤8,故2≤y ≤22,即m =2,M =22,所以m M =22. 3.函数f (x )的定义域为(0,+∞),且对一切x >0,y >0都有f ⎝⎛⎭⎫x y =f (x )-f (y ),当x >1时,有f (x )>0.(1)求f (1)的值;(2)判断f (x )的单调性并加以证明;(3)若f (4)=2,求f (x )在[1,16]上的值域.解:(1)∵当x >0,y >0时,f ⎝⎛⎭⎫x y =f (x )-f (y ),∴令x =y >0,则f (1)=f (x )-f (x )=0.(2)设x 1,x 2∈(0,+∞),且x 1<x 2,则f (x 2)-f (x 1)=f ⎝⎛⎭⎫x 2x 1, ∵x 2>x 1>0.∴x 2x 1>1,∴f ⎝⎛⎭⎫x 2x 1>0. ∴f (x 2)>f (x 1),即f (x )在(0,+∞)上是增函数.(3)由(2)知f (x )在[1,16]上是增函数.∴f (x )min =f (1)=0,f (x )max =f (16),∵f (4)=2,由f ⎝⎛⎭⎫x y =f (x )-f (y ),知f ⎝⎛⎭⎫164=f (16)-f (4),∴f (16)=2f (4)=4,∴f (x )在[1,16]上的值域为[0,4].1.求函数f(x)=x2+x-6的单调区间.解:设u=x2+x-6,y=u.由x2+x-6≥0,得x≤-3或x≥2.结合二次函数的图象可知,函数u=x2+x-6在(-∞,-3]上是递减的,在[2,+∞)上是递增的.又∵函数y=u是递增的,∴函数f(x)=x2+x-6在(-∞,-3]上是递减的,在[2,+∞)上是递增的.2.定义在R上的函数f(x)满足:对任意实数m,n,总有f(m+n)=f(m)·f(n),且当x>0时,0<f(x)<1.(1)试求f(0)的值;(2)判断f(x)的单调性并证明你的结论;(3)设A={(x,y)|f(x2)·f(y2)>f(1)},B={(x,y)|f(ax-y+2)=1,a∈R},若A∩B=∅,试确定a的取值范围.解:(1)在f(m+n)=f(m)·f(n)中,令m=1,n=0,得f(1)=f(1)·f(0).因为f(1)≠0,所以f(0)=1.(2)任取x1,x2∈R,且x1<x2.在已知条件f(m+n)=f(m)·f(n)中,若取m+n=x2,m=x1,则已知条件可化为:f(x2)=f(x1)·f(x2-x1).由于x2-x1>0,所以0<f(x2-x1)<1.为比较f(x2),f(x1)的大小,只需考虑f(x1)的正负即可.在f(m+n)=f(m)·f(n)中,令m=x,n=-x,则得f(x)·f(-x)=1.因为当x>0时,0<f(x)<1,所以当x<0时,f(x)=1f(-x)>1>0.又f(0)=1,所以综上可知,对于任意的x1∈R,《三维设计》2014届高考数学一轮复习教学案+复习技法均有f(x1)>0.所以f(x2)-f(x1)=f(x1)[f(x2-x1)-1]<0.所以函数f(x)在R上单调递减.(3)f(x2)·f(y2)>f(1),即x2+y2<1.f(ax-y+2)=1=f(0),即ax-y+2=0.由A∩B=∅,得直线ax-y+2=0与圆面x2+y2<1无公共点,所以2a2+1≥1,解得-1≤a≤1.。