19.1变量与函数
- 格式:ppt
- 大小:1.10 MB
- 文档页数:36
19.1.1《变量与函数》教案设计19.1.1变量与函数第⼀课时教学⽬标:1、知识技能:运⽤丰富的实例,使学⽣在具体情境中领悟函数概念的意义,了解常量与变量的含义,能分清实例中的常量与变量。
2、过程与⽅法:通过动⼿实践与探索,让学⽣参与变量和变量的形成过程,以提⾼分析问题和解决问题的能⼒;让学⽣体会“变化与对应”的数学思想3、情感态度:引导学⽣探索实际问题中的数量关系,培养对学习数学的兴趣和积极参与数学活动的热情,在解决问题的过程中体会数学的应⽤价值,并感受成功的喜悦,建⽴⾃信⼼。
教学重、难点:重点:了解常量和变量之间的关系难点:在复杂问题中常量和变量的识别课时安排:⼀课时教法与学法:教法:教师主导,学⽣主体,使学⽣从具体到抽象,感性到理性的认知。
学法:观察、分析、抽象、概括,注重过程的经历和体验。
教学过程:⼀.课前学习⼀辆汽车以60千⽶/⼩时的速度匀速⾏驶,⾏驶⾥程为s千⽶.⾏驶时间为t⼩时.1、根据题意填写下表:t⼩时 1 2 3 4 5S千⽶2、在以上这个过程中,变化的量是____ ____.不变的量是_____3、试⽤含t的式⼦表⽰s 。
⼆、创设情境,引⼊新课1多媒体展⽰现实⽣活中事物变化的图⽚,让学⽣初步感受事物运动变化中的数量关系。
2教师强调指出:完美⽣活在⼀个运动的世界⾥,⾏星在宇宙中的位置随时间⽽变化;⼈体细胞的个数随年龄⽽变化;⽓温⽓压随海拔⽽变化;........这种⼀个量随另⼀个量的变化⽽变化的现象⼤量存在,我们来回顾⼀下上节课所研究的每个问题中是否各有两个变化?同⼀问题中的变量之间有什么联系?也就是说当其中⼀个变量确定⼀个值时,另⼀个变量是否随之确定⼀个值呢?这将是我们这节研究的内容.3.板书课题:变量与函数。
三.⼩组合作,探索新知(⼀)提出问题,创设情境1、⼩明到商店买练习簿,每本单价2元,购买的总数x(本)与总⾦额y(元)的关系式,可以表⽰为________;2、圆的周长C与半径r的关系式________________;3、n边形的内⾓和S与边数n的关系式______________4、等腰三⾓形的顶⾓为x度,那么底⾓y的度数⽤含x的式⼦表⽰为 ______________.教学⼩结:通过上述活动,我们清楚地认识到,要想寻求事物变化过程的规律,⾸先需确定在这个过程中哪些量是变化的,⽽哪些量⼜是不变的.在⼀个变化过程中,我们称数值发⽣变化的量为变量,那么数值始终不变的量称之为常量.如上述两个过程中,售出票数x、票房收⼊y;重物质量m,?弹簧长度L都是变量.⽽票价10元,弹簧原长10 cm……都是常量.(⼆)上述⼏个问题有共同之处吗?请同学们思考下列问题,分组讨论交流⼀下。