新人教版七年级数学下册第八、九、十章综合复习考试卷
- 格式:doc
- 大小:230.88 KB
- 文档页数:3
人教版七年级数学下册第八章二元一次方程组单元测试题一、选择题。
1.已知下列方程组:(1)3{ 2x y y ==-,(2)32{ 24x y y +=-=,(3)1+3{ 10x y x y =--=,(4)1+3{ 10x y x y=-=,其中属于二元一次方程组的个数为( )A. 1B. 2C. 3D. 4 2.已知方程组54{58x y x y +=+=,则x ﹣y 的值为( )A. 2B. ﹣1C. 12D. ﹣43.用一根绳子环绕一棵大树,若环绕大树3周,绳子还多4尺,若环绕大树4周,绳子又少了3尺,则环绕大树一周需要绳子( )A. 5尺B. 6尺C. 7尺D. 8尺4.甲、乙、丙、丁四人到文具店购买同一种笔记本和计算器,购买的数量及总价分别如下表所示.若其中一人的总价算错了,则此人是( )A.甲B .乙C .丙D .丁5.如果是方程组 的解,那么下列各式中成立的是( )A. a +4c =2B. 4a +c =2C. 4a +c +2=0D. a +4c +2=06.某班共有学生49人.一天,该班某男生因事请假,当天的男生人数恰为女生人数的一半.若设该班男生人数为x ,女生人数为y ,则下列方程组中,能计算出x ,y 的是( )A.⎩⎪⎨⎪⎧x -y =49,y =2(x +1)B.⎩⎪⎨⎪⎧x +y =49,y =2(x +1)C.⎩⎪⎨⎪⎧x -y =49,y =2(x -1)D.⎩⎪⎨⎪⎧x +y =49,y =2(x -1) 7.二元一次方程组的正整数解有( )组解A. 0B. 3C. 4D. 6 8.《九章算术》是中国传统数学的重要著作,方程术是它的最高成就.其中记载:今有人共买物,人出八,盈三;人出七,不足四,问人数、物价各几何?译文:今有人合伙购物,每人出8钱,会多3钱;每人出7钱,又会差4钱,问人数、物价各是多少?设合伙人数为x 人,物价为y 钱,以下列出的方程组正确的是( )A. B. C. D.9.解方程组2{78ax by cx y +=-=时,一学生把c 看错得2{ 2x y =-=,已知方程组的正确解是3{2x y ==-,则a 、b 、c 的值是( )A. a 、b 不能确定,c=-2B. a 、b 、c 不能确定C. a=4,b=7,c=2D. a=4,b=5,c=-210.一个两位数,十位上数字比个位上数字大2,且十位上数字与个位上数字之和为12,则这个两位数为( )A. 46B. 64C. 57D. 75 二、填空题(每小题3分,共15分)1.若2x a +1-3y b -2=10是一个二元一次方程,则a -b =________.2.若方程组⎩⎪⎨⎪⎧2x +y =*,3x -y =3的解为⎩⎨⎧x =2,y =#,则“*”“#”的值分别为________.象限.3.已知等式y =kx +b ,当x =1时,y =2;当x =2时,y =-3.若x =-1,则y =________.4.若m ,n 为实数,且|2m+n ﹣,则(m+n )2018的值为________ .5.若235,{ 323x y x y +=-=-则2(2x +3y)+3(3x -2y)=________.6.对于X 、Y 定义一种新运算“*”:X*Y=aX+bY ,其中a 、b 为常数,等式右边是通常的加法和乘法的运算.已知:3*5=15,4*7=28,那么2*3=__________ . 三、解答题 1.解方程组:(1)(2);2.解关于x 、y 的方程组时,甲正确地解得方程组的解为,乙因为把c抄错了,在计算无误的情况下解得方程组的解为,求a、b、c的值.3.随着“互联网+”时代的到来,一种新型打车方式受到大众欢迎,该打车方式的总费用由里程费和耗时费组成,其中里程费按p元/公里计算,耗时费按q元/分钟计算(总费用不足9元按9元计价).小明、小刚两人用该打车方式出行,按上述计价规则,其打车总费用、(1)求p,q的值;(2)如果小华也用该打车方式,车速55公里/时,行驶了11公里,那么小华的打车总费用为多少?4.已知:用2辆A型车和1辆B型车载满货物一次可运货11吨;用1辆A型车和2辆B型车载满货物一次可运货13吨.根据以上信息, 解答下列问题:(1)1辆A型车和l辆B型车都载满货物一次可分别运货多少吨?(2)某物流公司现有31吨货物,计划同时租用A型车a辆,B型车b辆,一次运完,且恰好每辆车都载满货物请用含有b的式子表示a,并帮该物流公司设计租车方案;(3)在(2)的条件下,若A型车每辆需租金500元/次,B型车每辆需租金600元/次.请选出最省钱的租车方案,并求出最少租车费用.5.某商场计划从一厂家购进若干部新型手机以满足市场需求.已知该厂家生产三种不同型号的手机,出厂价分别是甲种型号手机1800元/部,乙种型号手机600元/部,丙种型号手机1200元/部.商场在经销中,甲种型号手机可赚200元/部,乙种型号手机可赚100元/部,丙种型号手机可赚120元/部.(1)若商场用6万元同时购进两种不同型号的手机共40部,并恰好将钱用完,请你通过计算分析进货方案;(2)在(1)的条件下,求盈利最多的进货方案.参考答案一、选择题。
人教版七年级下册数学第十章数据的收集、整理与描述单元练习卷一、填空题(本大题共10小题,每小题3分,共30分)1.幸福村有188个家庭,对这188个家庭的教育支出情况进行抽样调查,调查的总体为________,个体为__________.2.妈妈炖了一锅鸡汤,先用小勺舀了一点尝尝味道,这是利用了__________调查方式.(选填“普查”或“抽样调查”)3.要让你的家长理解你在一学期中经过努力使自己某一学科的成绩逐步提高,最好将这一学期该科目几次测验的成绩用__________统计图表示出来.4.一组数据最大值与最小值的差为80,若组距为9,则分成的组数为__________.5.在一次关于旅游景点接待游客调查中,随机抽取了200名外地来北京旅游的游客进行调查,并绘制了扇形图,代表第一站去故宫的扇形圆心角是108°,则被调查游客中,第一站选择故宫的人数为_________.6.八年级(2)班检查了全班所有同学的身高、体重、血压、脉搏的情况,收集了有关数据,使用________来表示这些数据是最恰当的.7.一枚骰子,六个面上分别写着数字1,2,3,4,5,6,小明投掷6次,正面朝上的数字出现的结果是:3出现2次,4出现1次,5出现3次,那么5出现的频率是_______. 8.某中学为了解学生上学方式,现随机抽取部分学生进行调查,将结果绘成条形统计图如图,由此可估计该校2000名学生中有__________名学生是乘车上学的.9.刘强同学为了调查全市初中生人数,他对自己所在城区人口和城区初中生人数作了调查:城区人口约3万,初中生人数约1200.全市人口实际约300万,为此他推断全市初中生人数为12万.但市教育局提供的全市初中生人数约8万,与估计数据有很大偏差.请你根据所学的统计知识,找出其中错误的原因__________.10.某校九年级有560名学生参加了市教育局举行的读书活动,现随机调查了70名学生读书的数量,根据所得数据绘制了如图的条形统计图,请估计该校九年级学生在此次读书活动中共读书________本.二、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一个选项是符合题目要求的)11.下面调查统计中,适合做普查的是A.雪花牌电冰箱的市场占有率B.蓓蕾专栏电视节目的收视率C.飞马牌汽车每百公里的耗油量D.今天班主任张老师与几名同学谈话12.为了了解一批电视机的寿命,从中抽取100台电视机进行试验,这个问题的样本是A.这批电视机B.这批电视机的寿命C.抽取的100台电视机的寿命D.10013.某课外兴趣小组为了解所在地区老年人的健康状况,分别作了四种不同的抽样调查.你认为抽样比较合理的是A.在公园调查了1000名老年人的健康状况B.在医院调查了1000名老年人的健康状况C.调查了10名老年邻居的健康状况D.利用派出所的户籍网随机调查了该地区10%的老年人的健康状况14.为了了解某校学生的每日运动量,收集数据正确的是A.调查该校舞蹈队学生每日的运动量B.调查该校书法小组学生每日的运动量C.调查该校田径队学生每日的运动量D.调查该校一定数量的学生每日的运动量15.如图,所提供的信息正确的是A.七年级学生最多B.九年级的男生是女生的两倍C.九年级学生女生比男生多D.八年级比九年级的学生多16.一个容量为80的样本最大值是143,最小值是50,取组距为10,则可以分成A.10组B.9组C.8组D.7组17.为了解中学300名男生的身高情况,随机抽取若干名男生进行身高测量,将所得数据整理后,画出频数分布直方图(如图).估计该校男生的身高在169.5cm~174.5cm之间的人数有A.12 B.48 C.72 D.9618.在全班45人中进行了“你最喜爱的电视节目”的调查活动,喜爱电视剧的人数为18人,喜爱动画片的人数为15人,喜爱体育节目的人数为10人,则下列说法正确的是A.喜爱电视剧的人数的频率是1818+15+10B.喜爱电视剧的人数的频率是18 45C.喜爱动画片的人数的频率是18 18+10D.喜爱体育节目的人数的频率是1815 14545 --19.某同学按照某种规律写了下面一串数字:122,122,122,122,122,……,当写到第93个数字时,1出现的频数是A.33 B.32 C.31 D.3020.某校公布了该校反映各年级学生体育达标情况的两张统计图(如图),该校七、八、九三个年级共有学生800人.甲、乙、丙三个同学看了这两张统计图后,甲说:“七年级的体育达标率最高.”乙说:“八年级共有学生264人.”丙说:“九年级的体育达标率最高.”甲、乙、丙三个同学中,说法正确的是A.甲和乙B.乙和丙C.甲和丙D.甲、乙和丙三、解答题(本大题共8小题,共60分.解答应写出文字说明、证明过程或演算步骤)21.李娟同学为考察学校的用水情况,她在4月份一周内同一时刻连续记录了水表的示数,记录结果如下表:李娟估计学校4月份的用水量是多少吨?22.学校七年级学生做校服,校服分小号、中号、大号、特大号四种,随抽取若干名学生调查身高得如下统计分布表:(1)这次共抽取__________名学生;(2)a=__________,b=__________.23.图①、图②是李晓同学根据所在学校三个年级男女生人数画出的两幅条形图.(1)两个图中哪个能更好地反映学校每个年级学生的总人数?哪个图能更好地比较每个年级男女生的人数?(2)请按该校各年级学生人数在图③中画出扇形统计图.24.图为某校九年级100名中学生的中考数学成绩的频数分布直方图,回答下列问题(每组可含最低值,不含最高值,60分或60分以上为及格).(1)在这100名学生中,人数最多的一组频数是_________,该组的人数是_________.(2)全校考生数学成绩的及格率为_________.(3)全校有_________考生的成绩在80分以上.25.甲、乙两人在某公司做推销员,推销某品牌洗衣机,他们在1~8月份的销售情况如下表所示:(1)在右边给出的坐标系中,绘制甲、乙两人这8个月的月销售量的折线图:(甲用实线;乙用虚线)(2)请根据(1)中的折线图,写出2条关于甲、乙两人在这8个月中的销售状况的信息.26.为了深化改革,某校积极开展校本课程建设,计划成立“文学鉴赏”“科学实验”“音乐舞蹈”和“手工编织”等多个社团,要求每位学生都自主选择且只选择其中一个社团.为此,随机调查了本校各年级部分学生选择社团的意向,并将调查结果绘制成如下统计图表(不完整):某校被调查学生选择社团意向统计表根据统计图表中的信息,解答下列问题:(1)求本次调查的学生总人数及a,b,c的值;(2)将条形统计图补充完整.27.现在的青少年由于沉迷电视、手机、网络游戏等,视力日渐减退,某市为了了解学生的视力变化情况,从全市九年级随机抽取了1500名学生,统计了每个人连续三年视力检查的结果,根据视力在4.9以下的人数变化制成折线统计图,并对视力下降的主要因素进行调查,制成扇形统计图.解答下列问题:(1)图中D所在扇形的圆心角度数为__________;(2)若2019年全市共有30000名九年级学生,请你估计视力在4.9以下的学生约有多少名?(3)根据扇形统计图信息,你觉得中学生应该如何保护视力?28.为了解某县2019年初中毕业生的实验考查成绩等级的分布情况,随机抽取了该县若干名学生的实验考查成绩进行统计分析,并根据抽取的成绩绘制了如下的统计图表:请根据以上统计图表提供的信息,解答下列问题:(1)本次抽查的学生有__________名;(2)表中x,y和m所表示的数分别为:x=__________,y=__________,m=__________;(3)请补全条形统计图;(4)根据抽样调查结果,请你估计2019年该县5400名初中毕业生实验考查成绩为D类的学生人数.参考答案1.【答案】幸福村内188个家庭的教育支出情况;幸福村内每个家庭的教育支出情况 2.【答案】抽样调查 3.【答案】折线 4.【答案】9 5.【答案】60名6.【答案】频数分布直方图 7.【答案】50% 8.【答案】3129.【答案】错误的原因可能是样本在总体中所占比例太小;或样本不具代表性、广泛性、随机性;只要答对其中一项即可. 10.【答案】2040 11.【答案】D 12.【答案】C 13.【答案】D 14.【答案】D 15.【答案】B 16.【答案】A 17.【答案】C 18.【答案】B 19.【答案】C 20.【答案】B 21.【答案】140吨22.【答案】(1)观察统计表知:145155x ≤<小组的频数20,频率0.2,所以学生总数为20÷0.2=100(名);故答案为:100. (2)a =100×0.45=45,b =30÷100=0.3,故答案为:100,45,0.3. 23.【答案】(1)图2能更好地反映学校每个年级学生的总人数.图1能更好地比较学校每个年级男女生的人数.(2)从2中得出七、八年级的总人数都为800人,九年级为300人 ∴总人数=800+800+300=1900,七年级占总人数的比例=800÷1900=42.1%表示七年级的扇形的圆心角=42.1%×360°=151.56°八年级占总人数的比例=800÷1900=42.1%表示八年级的扇形的圆心角=42.1%×360°=151.56°九年级占总人数的比例=300÷1900=15.8%表示九年级的扇形的圆心角=15.8%×360°=56.88°.24.【答案】(1)根据频数分布直方图可知:70~80分的这一组人数最多,该组频数是40,人数是40;(2)全校考生数学成绩的及格率为:10010100%90% 100-⨯=;(3)成绩在80分以上的人数为:25+5=30(人).25.【答案】(1)先描出甲的8个月销售量的各点,再将各点用线段连接起来就是甲的折线统计图,同理,可制的乙的折线统计图;如图所示:(2)根据(1)中的折线图,写出2条关于甲乙两人在这8个月中的销售状况的信息:①甲销量较稳定;②甲最多销售8台/月,乙最多9台/月.其他合理说法也可.26.【答案】(1)本次调查的学生总人数是70÷35%=200(人),b=40÷200=20%,c=10÷200=5%,a=1–(35%+20%+10%+5%)=30%.(2)文学鉴赏的人数:30%×200=60,手工编织的人数:10%×200=20.补全条形统计图如图所示.27.【答案】(1)根据题意得:360°×(1–40%–25%–20%)=54°;故答案为:54°;(2)根据题意得:30000×8001500=16000(名),则估计视力在4.9以下的学生约有16000名;(3)建议中学生应少看电视,少玩游戏,少看手机,才能保护视力.28.【答案】(1)60÷30%=200(名);(2)x=200×50%=1人教版七年级下册数学第十章数据的收集、整理与描述单元练习卷一、填空题(本大题共10小题,每小题3分,共30分)1.幸福村有188个家庭,对这188个家庭的教育支出情况进行抽样调查,调查的总体为________,个体为__________.2.妈妈炖了一锅鸡汤,先用小勺舀了一点尝尝味道,这是利用了__________调查方式.(选填“普查”或“抽样调查”)3.要让你的家长理解你在一学期中经过努力使自己某一学科的成绩逐步提高,最好将这一学期该科目几次测验的成绩用__________统计图表示出来.4.一组数据最大值与最小值的差为80,若组距为9,则分成的组数为__________.5.在一次关于旅游景点接待游客调查中,随机抽取了200名外地来北京旅游的游客进行调查,并绘制了扇形图,代表第一站去故宫的扇形圆心角是108°,则被调查游客中,第一站选择故宫的人数为_________.6.八年级(2)班检查了全班所有同学的身高、体重、血压、脉搏的情况,收集了有关数据,使用________来表示这些数据是最恰当的.7.一枚骰子,六个面上分别写着数字1,2,3,4,5,6,小明投掷6次,正面朝上的数字出现的结果是:3出现2次,4出现1次,5出现3次,那么5出现的频率是_______. 8.某中学为了解学生上学方式,现随机抽取部分学生进行调查,将结果绘成条形统计图如图,由此可估计该校2000名学生中有__________名学生是乘车上学的.9.刘强同学为了调查全市初中生人数,他对自己所在城区人口和城区初中生人数作了调查:城区人口约3万,初中生人数约1200.全市人口实际约300万,为此他推断全市初中生人数为12万.但市教育局提供的全市初中生人数约8万,与估计数据有很大偏差.请你根据所学的统计知识,找出其中错误的原因__________.10.某校九年级有560名学生参加了市教育局举行的读书活动,现随机调查了70名学生读书的数量,根据所得数据绘制了如图的条形统计图,请估计该校九年级学生在此次读书活动中共读书________本.二、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一个选项是符合题目要求的)11.下面调查统计中,适合做普查的是A.雪花牌电冰箱的市场占有率B.蓓蕾专栏电视节目的收视率C.飞马牌汽车每百公里的耗油量D.今天班主任张老师与几名同学谈话12.为了了解一批电视机的寿命,从中抽取100台电视机进行试验,这个问题的样本是A.这批电视机B.这批电视机的寿命C.抽取的100台电视机的寿命D.10013.某课外兴趣小组为了解所在地区老年人的健康状况,分别作了四种不同的抽样调查.你认为抽样比较合理的是A.在公园调查了1000名老年人的健康状况B.在医院调查了1000名老年人的健康状况C.调查了10名老年邻居的健康状况D.利用派出所的户籍网随机调查了该地区10%的老年人的健康状况14.为了了解某校学生的每日运动量,收集数据正确的是A.调查该校舞蹈队学生每日的运动量B.调查该校书法小组学生每日的运动量C.调查该校田径队学生每日的运动量D.调查该校一定数量的学生每日的运动量15.如图,所提供的信息正确的是A.七年级学生最多B.九年级的男生是女生的两倍C.九年级学生女生比男生多D.八年级比九年级的学生多16.一个容量为80的样本最大值是143,最小值是50,取组距为10,则可以分成A.10组B.9组C.8组D.7组17.为了解中学300名男生的身高情况,随机抽取若干名男生进行身高测量,将所得数据整理后,画出频数分布直方图(如图).估计该校男生的身高在169.5cm~174.5cm之间的人数有A.12 B.48 C.72 D.9618.在全班45人中进行了“你最喜爱的电视节目”的调查活动,喜爱电视剧的人数为18人,喜爱动画片的人数为15人,喜爱体育节目的人数为10人,则下列说法正确的是A.喜爱电视剧的人数的频率是1818+15+10B.喜爱电视剧的人数的频率是18 45C.喜爱动画片的人数的频率是18 18+10D.喜爱体育节目的人数的频率是1815 14545 --19.某同学按照某种规律写了下面一串数字:122,122,122,122,122,……,当写到第93个数字时,1出现的频数是A.33 B.32 C.31 D.3020.某校公布了该校反映各年级学生体育达标情况的两张统计图(如图),该校七、八、九三个年级共有学生800人.甲、乙、丙三个同学看了这两张统计图后,甲说:“七年级的体育达标率最高.”乙说:“八年级共有学生264人.”丙说:“九年级的体育达标率最高.”甲、乙、丙三个同学中,说法正确的是A.甲和乙B.乙和丙C.甲和丙D.甲、乙和丙三、解答题(本大题共8小题,共60分.解答应写出文字说明、证明过程或演算步骤)21.李娟同学为考察学校的用水情况,她在4月份一周内同一时刻连续记录了水表的示数,记录结果如下表:李娟估计学校4月份的用水量是多少吨?22.学校七年级学生做校服,校服分小号、中号、大号、特大号四种,随抽取若干名学生调查身高得如下统计分布表:(1)这次共抽取__________名学生;(2)a=__________,b=__________.23.图①、图②是李晓同学根据所在学校三个年级男女生人数画出的两幅条形图.(1)两个图中哪个能更好地反映学校每个年级学生的总人数?哪个图能更好地比较每个年级男女生的人数?(2)请按该校各年级学生人数在图③中画出扇形统计图.24.图为某校九年级100名中学生的中考数学成绩的频数分布直方图,回答下列问题(每组可含最低值,不含最高值,60分或60分以上为及格).(1)在这100名学生中,人数最多的一组频数是_________,该组的人数是_________.(2)全校考生数学成绩的及格率为_________.(3)全校有_________考生的成绩在80分以上.25.甲、乙两人在某公司做推销员,推销某品牌洗衣机,他们在1~8月份的销售情况如下表所示:(1)在右边给出的坐标系中,绘制甲、乙两人这8个月的月销售量的折线图:(甲用实线;乙用虚线)(2)请根据(1)中的折线图,写出2条关于甲、乙两人在这8个月中的销售状况的信息.26.为了深化改革,某校积极开展校本课程建设,计划成立“文学鉴赏”“科学实验”“音乐舞蹈”和“手工编织”等多个社团,要求每位学生都自主选择且只选择其中一个社团.为此,随机调查了本校各年级部分学生选择社团的意向,并将调查结果绘制成如下统计图表(不完整):某校被调查学生选择社团意向统计表根据统计图表中的信息,解答下列问题:(1)求本次调查的学生总人数及a,b,c的值;(2)将条形统计图补充完整.27.现在的青少年由于沉迷电视、手机、网络游戏等,视力日渐减退,某市为了了解学生的视力变化情况,从全市九年级随机抽取了1500名学生,统计了每个人连续三年视力检查的结果,根据视力在4.9以下的人数变化制成折线统计图,并对视力下降的主要因素进行调查,制成扇形统计图.解答下列问题:(1)图中D所在扇形的圆心角度数为__________;(2)若2019年全市共有30000名九年级学生,请你估计视力在4.9以下的学生约有多少名?(3)根据扇形统计图信息,你觉得中学生应该如何保护视力?28.为了解某县2019年初中毕业生的实验考查成绩等级的分布情况,随机抽取了该县若干名学生的实验考查成绩进行统计分析,并根据抽取的成绩绘制了如下的统计图表:请根据以上统计图表提供的信息,解答下列问题:(1)本次抽查的学生有__________名;(2)表中x,y和m所表示的数分别为:x=__________,y=__________,m=__________;(3)请补全条形统计图;(4)根据抽样调查结果,请你估计2019年该县5400名初中毕业生实验考查成绩为D 类的学生人数.参考答案1.【答案】幸福村内188个家庭的教育支出情况;幸福村内每个家庭的教育支出情况2.【答案】抽样调查3.【答案】折线4.【答案】95.【答案】60名6.【答案】频数分布直方图7.【答案】50%8.【答案】3129.【答案】错误的原因可能是样本在总体中所占比例太小;或样本不具代表性、广泛性、随机性;只要答对其中一项即可.10.【答案】204011.【答案】D12.【答案】C13.【答案】D14.【答案】D15.【答案】B16.【答案】A17.【答案】C18.【答案】B19.【答案】C20.【答案】B 21.【答案】140吨22.【答案】(1)观察统计表知:145155x ≤<小组的频数20,频率0.2,所以学生总数为20÷0.2=100(名);故答案为:100. (2)a =100×0.45=45,b =30÷100=0.3,故答案为:100,45,0.3. 23.【答案】(1)图2能更好地反映学校每个年级学生的总人数.图1能更好地比较学校每个年级男女生的人数.(2)从2中得出七、八年级的总人数都为800人,九年级为300人 ∴总人数=800+800+300=1900, 七年级占总人数的比例=800÷1900=42.1% 表示七年级的扇形的圆心角=42.1%×360°=151.56° 八年级占总人数的比例=800÷1900=42.1% 表示八年级的扇形的圆心角=42.1%×360°=151.56° 九年级占总人数的比例=300÷1900=15.8% 表示九年级的扇形的圆心角=15.8%×360°=56.88°.24.【答案】(1)根据频数分布直方图可知:70~80分的这一组人数最多,该组频数是40,人数是40;(2)全校考生数学成绩的及格率为:10010100%90%100-⨯=; (3)成绩在80分以上的人数为:25+5=30(人).25.【答案】(1)先描出甲的8个月销售量的各点,再将各点用线段连接起来就是甲的折线统计图,同理,可制的乙的折线统计图;如图所示:(2)根据(1)中的折线图,写出2条关于甲乙两人在这8个月中的销售状况的信息:①甲销量较稳定;②甲最多销售8台/月,乙最多9台/月.其他合理说法也可.26.【答案】(1)本次调查的学生总人数是70÷35%=200(人),b=40÷200=20%,c=10÷200=5%,a=1–(35%+20%+10%+5%)=30%.(2)文学鉴赏的人数:30%×200=60,手工编织的人数:10%×200=20.补全条形统计图如图所示.27.【答案】(1)根据题意得:360°×(1–40%–25%–20%)=54°;故答案为:54°;(2)根据题意得:30000×8001500=16000(名),则估计视力在4.9以下的学生约有16000名;(3)建议中学生应少看电视,少玩游戏,少看手机,才能保护视力.28.【答案】(1)60÷30%=200(名);(2)x=200×50%=1人教版七年级下册第7章平面直角坐标系水平测试卷第10章数据的收集、整理与描述期末复习测试卷一、选择题(每小题3分,共30分)1.为了了解某校学生对篮球、足球、羽毛球、乒乓球、网球等五类的喜爱,小李采用了抽样调查,在绘制扇形图时,由于时间仓促,还有足球、网球等信息还没有绘制完成,如图所示,根据图中的信息,这批被抽样调查的学生最喜欢足球的人数不可能是()A.100人B.200人C.260人D.400人2.宾馆有100间相同的客房,经过一段时间的经营,发现客房定价与客房的入住率之间有下表所示的关系,按照这个关系,要使客房的收入最高,每间客房的定价应为()3.下列调查中,最适合采用抽样调查(抽查)的是()A.调查“神州十一号飞船”各部分零件情况B.调查旅客随身携带的违禁物品C.调查全国观众对湖南卫视综艺节目“声临其境”的满意情况D.调查某中学九年级某班学生数学暑假作业检测成绩4.下列调查中,调查方式选择不合理的是A.调查我国中小学生观看电影《厉害了,我的国》情况,采用抽样调查的方式B.调查全市居民对“老年餐车进社区”活动的满意程度,采用抽样调查的方式C.调查“神州十一号”运载火箭发射前零部件质量状况,采用全面调查普查的方式D.调查市场上一批LED节能灯的使用寿命,采用全面调查普查的方式5.为了了解某校2000名学生的体重情况,从中抽取了150名学生的体重,就这个问题来说,下面说法正确的是()A.2000名学生的体重是总体B.2000名学生是总体C.每个学生是个体D.150名学生是所抽取的一个样本6.一家鞋店在一段时间内销售了某种女鞋30双,各种尺码的销售量如下表:和最合适...的是()A.20双B.30双C.50双D.80双7.井冈山景区为估计该地区国家保护动物穿山甲的只数,先捕捉20只穿山甲给它们分别作上标志,然后放回,待有标志的穿山甲完全回归山林后,第二次捕捉40只穿山甲,发现其中2只有标志。
第七章平面直角坐标系章节复习检测卷一、选择题(每小题3分,共30分)1.在平面直角坐标系中,点A的坐标是(3a﹣5,a+1).若点A到x轴的距离与到y轴的距离相等,且点A在y轴的右侧,则a的值为()A.1 B.2 C.3 D.1 或32.已知点P(3a,a+2)在x轴上,则P点的坐标是()A.(3,2)B.(6,0)C.(﹣6,0)D.(6,2)3.如果a﹣b<0,且ab<0,那么点(a,b)在()A.第一象限B.第二象限C.第三象限D.第四象限4.已知m为任意实数,则点A(m,m2+1)不在()A.第一、二象限B.第一、三象限C.第二、四象限D.第三、四象限5.点M在第二象限,距离x轴5个单位长度,距离y轴3个单位长度,则M点的坐标为( )A.(5,﹣3) B.(﹣5,3) C.(3,﹣5) D.(﹣3,5)6.在平面直角坐标系中,线段CF是由线段AB平移得到的;点A(-1,4)的对应点为C(4,1);则点B(a,b)的对应点F的坐标为()A .(a+3,b+5)B .(a+5,b+3)C .(a-5,b+3)D .(a+5,b-3)7.象棋在中国有着三千多年的历史,由于用具简单,趣味性强,成为流行极为广泛的益智游戏.如图,是一局象棋残局,已知表示棋子“馬”和“車”的点的坐标分别为(4,3),(﹣2,1),则表示棋子“炮”的点的坐标为( )A .(﹣3,3)B .(3,2)C .(1,3)D .(0,3)8.在平面直角坐标系xOy 中,线段AB 的两个端点坐标分别为A(-1,-1),B(1,2),平移线段AB 得到线段A’B’(点A 与A’对应),已知A’的坐标为(3,-1),则点B’的坐标为( )A .(4,2)B .(5,2)C .(6,2)D .(5,3)9.将点A (-2,-3)向左平移3个单位长度得到点B ,则点B 的坐标是( )A .(1,-3)B .(-2,0)C .(-5,-3)D .(-2,-6)10.点()'2,1A -可以由点()2,1A -通过两次平移得到,正确的移法是( )A .先向左平移4个单位长度,再向上平移2个单位长度B .先向右平移4个单位长度,再向上平移2个单位长度C .先向左平移4个单位长度,再向下平移2个单位长度D .先向右平移4个单位长度,再向下平移2个单位长度二、填空题(每小题3分,共24分)11.已知点M(a+3,4-a)在y轴上,则点M的坐标为.12.如图3,观察中国象棋的棋盘,其中红方“马”的位置可以用一个数对(3,5)来表示,红方“马”走完“马3进4”后到达点B,则表示点B位置的数对是.图313.如图4,把笑脸放在平面直角坐标系中,已知眼睛A的坐标是(-2,3),嘴唇C的坐标是(-1,1),则将此笑脸向右平移3个单位长度后,眼睛B的坐标是.图414.若点B的坐标为(2,1),AB∥y轴,且AB=4,则点A的坐标为.15.在平面直角坐标系中,正方形ABCD的顶点A,B,C的坐标分别为(-1,1),(-1,-1),(1,-1),则顶点D的坐标为________.16.在平面直角坐标系中,点A(1,2a+3)在第一象限,且到x轴的距离与到y轴的距离相等,则a=________.17.已知点A(a,0)和点B(0,5)两点,且直线AB与坐标轴围成的三角形的面积等于10,则a的值是________.18.如图,在平面直角坐标系中,点A1(1,2),A2(2,0),A3(3,-2),A4(4,0)……根据这个规律,探究可得点A2017的坐标是________.第14题图第18题图三、解答题(共66分)19.(7分)如图,已知单位长度为1的方格中有三角形ABC.(1)请画出三角形ABC向上平移3格再向右平移2格所得的三角形A′B′C′;(2)请以点A为坐标原点建立平面直角坐标系(在图中画出),然后写出点B,B′的坐标.20.(7分)如图,长方形ABCD在坐标平面内,点A的坐标是A(2,1),且边AB,CD与x轴平行,边AD,BC与y轴平行,AB=4,AD=2.(1)求B,C,D三点的坐标;(2)怎样平移,才能使A点与原点O重合?21.(8分)若点P(1-a,2a+7)到两坐标轴的距离相等,求6-5a的平方根.22.(10分)如图,有一块不规则的四边形地皮ABCO,各个顶点的坐标分别为A(-2,6),B(-5,4),C(-7,0),O(0,0)(图上一个单位长度表示10米),现在想对这块地皮进行规划,需要确定它的面积.(1)求这个四边形的面积;(2)如果把四边形ABCD的各个顶点的纵坐标保持不变,横坐标加2,所得到的四边形面积是多少?23.(10分)如图,三角形DEF是三角形ABC经过某种变换得到的图形,点A与点D、点B与点E、点C与点F分别是对应点.观察点与点的坐标之间的关系,解答下列问题:(1)分别写出点A与点D、点B与点E、点C与点F的坐标,并说出三角形DEF 是由三角形ABC经过怎样的变换得到的;(2)若点Q(a+3,4-b)是点P(2a,2b-3)通过上述变换得到的,求a-b的值.24.(12分)已知A(0,1),B(2,0),C(4,3).(1)在坐标系中描出各点,画出三角形ABC;(2)求三角形ABC的面积;(3)设点P在坐标轴上,且三角形ABP与三角形ABC的面积相等,求点P的坐标.25.(12分)如图,在平面直角坐标系中,AB∥CD∥x轴,BC∥DE∥y轴,且AB=CD=4cm,OA=5cm,DE=2cm,动点P从点A出发,沿A→B→C路线运动到点C停止;动点Q从点O出发,沿O→E→D路线运动到点D停止.若P,Q两点同时出发,且点P的运动速度为1cm/s,点Q的运动速度为2cm/s.(1)直接写出B,C,D三个点的坐标;(2)当P,Q两点出发112s时,试求三角形PQC的面积;(3)设两点运动的时间为t s,用含t的式子表示运动过程中三角形OPQ的面积S(单位:cm2).参考答案与解析1.C 2.C 3.B 4.D 5.D6.D 7.C 8.B 9.C10.D11. (0,7)12. (4,7)13. (3,3)14. (2,-3)或(2,5)15.(1,1) 16.-1 17.±418.(2017,2)19.解:(1)三角形A′B′C′如图所示.(3分)(2)建立的平面直角坐标系如图所示.(5分)点B的坐标为(1,2),点B′的坐标为(3,5).(7分)20.解:(1)∵A(2,1),AB=4,AD=2,∴BC到y轴的距离为4+2,(1分)CD到x轴的距离2+1=3,(2分)∴点B的坐标为(4+2,1),点C的坐标为(4+2,3),点D的坐标为(2,3).(5分)(2)由图可知,先向下平移1个单位长度,再向左平移2个单位长度(或先向左平移2个单位长度,再向下平移1个单位长度).(7分)21.解:由题意,得1-a=2a+7或1-a+2a+7=0,解得a=-2或-8,(4分)故6-5a=16或46,(6分)∴6-5a的平方根为±4或±46.(8分) 22.解:(1)过B作BF⊥x轴于F,过A作AG⊥x轴于G,如图所示.(2分)∴S四边形ABCO =S三角形BCF+S梯形ABFG+S三角形AGO=⎣⎢⎡⎦⎥⎤12×2×4+12×(4+6)×3+12×2×6×102=2500(平方米).(6分)(2)把四边形ABCO的各个顶点的纵坐标保持不变,横坐标加2,即将这个四边形向右平移2个单位长度,(8分)故所得到的四边形的面积与原四边形的面积相等,为2500平方米.(10分)23.解:(1)A(2,4),D(-1,1),B(1,2),E(-2,-1),C(4,1),F(1,-2).(3分)三角形DEF是由三角形ABC先向左平移3个单位,再向下平移3个单位得到的(或先向下平移3个单位,再向左平移3个单位得到的).(5分)(2)由题意得2a-3=a+3,2b-3-3=4-b,(7分)解得a=6,b=103,(9分)∴a-b=83.(10分)24.解:(1)三角形ABC如图所示.(3分)(2)如图,过点C 向x 轴、y 轴作垂线,垂足为D ,E .(4分)∴S 长方形DOEC =3×4=12,S 三角形BCD =12×2×3=3,S 三角形ACE =12×2×4=4,S 三角形AOB =12×2×1=1.(6分)∴S 三角形ABC =S 长方形DOEC -S 三角形ACE -S 三角形BCD -S 三角形AOB =12-4-3-1=4.(7分)(3)当点P 在x 轴上时,S 三角形ABP =12AO ·BP =4,即12×1×BP =4,解得BP =8.∵点B 的坐标为(2,0).∴点P 的坐标为(10,0)或(-6,0);(9分)当点P 在y 轴上时,S 三角形ABP =12BO ·AP =4,即12×2·AP =4,解得AP =4.∵点A 的坐标为(0,1),∴点P 的坐标为(0,5)或(0,-3).(11分)综上所述,点P 的坐标为(10,0)或(-6,0)或(0,5)或(0,-3).(12分)25.解:(1)B (4,5),C (4,2),D (8,2).(3分)(2)当t =112s 时,点P 运动的路程为112cm ,点Q 运动到点D 处停止,由已知条件可得BC =OA -DE =5-2=3(cm).∵AB +BC =7cm >112cm ,AB =4cm <112cm ,∴当t =112s 时,点P 运动到BC 上,且CP =AB +BC -112=4+3-112=32cm.∴S 三角形CPQ =12CP ·CD =12×32×4=3(cm 2).(6分) (3)①当0≤t <4时,点P 在AB 上,点Q 在OE 上,如图①所示,OA =5cm ,OQ =2t cm ,∴S 三角形OPQ =12OQ ·OA =12·2t ·5=5t (cm 2);(8分)②当4≤t ≤5时,点P 在BC 上,点Q 在ED 上,如图②所示,过P 作PM ∥x 轴交ED 延长线于M ,则OE =8cm ,EM =(9-t )cm ,PM =4cm ,EQ =(2t -8)cm ,MQ =(17-3t )cm ,∴S 三角形OPQ=S 梯形OPME -S 三角形PMQ -S 三角形OEQ =12×(4+8)·(9-t )-12×4·(17-3t )-12×8·(2t -8)=(52-8t )(cm 2);(10分)③当5<t ≤7时,点P 在BC 上,点Q 停在D 点,如图③所示,过P 作PM ∥x 轴交ED 的延长线于M ,则MD =CP =(7-t )cm ,ME =(9-t )cm ,∴S 三角形OPQ =S 梯形OPME -S 三角形PDM -S三角形DOE=12×(4+8)·(9-t )-12×4·(7-t )-12×8×2=(32-4t )(cm 2).综上所述,S =⎩⎨⎧5t (0≤t <4),52-8t (4≤t ≤5),32-4t (5<t ≤7).(12分)第八章《二元一次方程组》章节复习检测一、选择题:(每题3分,共30分) 1.下列方程中,二元一次方程是( ) A .8x xy +=B .112y x =- C .12x x+= D .230x y +-=2.若二元一次方程3x -y =7,2x +3y =1,y =kx -9有公共解,则k 的取值为( ). A .3B .-3C .-4D .43.已知x +4y -3z = 0,且4x -5y + 2z = 0,x :y :z 为 ( ) A .1:2:3;B .1:3:2;C .2:1:3;D .3:1:24.下列方程组中,属于二元一次方程组的是( )A.B.C.D.5.已知是方程组的解,则9﹣3a+3b的值是()A.3 B.C.0 D.66.已知关于x,y的方程组,甲看错a得到的解为,乙看错了b 得到的解为,他们分别把a、b错看成的值为()A.a=5,b=﹣1 B.a=5,b=C.a=﹣l,b= D.a=﹣1,b=﹣1 7.若甲数的比乙数的4倍多1,设甲数为x,乙数为y,列出的二元一次方程应是()A. x﹣4y=1 B.4y﹣=1 C. y﹣4x=1 D.4x﹣y=1 8.某实验中学收到李老师捐赠的足球、篮球、排球共30个,总价值为440元;这三种球的价格分别是:足球每个60元,篮球每个30元,排球每个10元,那么其中篮球有()个.A.2 B.4 C.8 D.129.如图①,在第一个天平上,砝码A的质量等于砝码B加上砝码C的质量;如图②,在第二个天平上,砝码A加上砝码B的质量等于3个砝码C的质量.请你判断:1个砝码A与()个砝码C的质量相等.A.1 B.2 C.3 D.410、小明的妈妈用280元买了甲、乙两种药材.甲种药材每斤20元,乙种药材每斤60斤,且甲种药材比乙种药材多买了2斤.设买了甲种药材x斤,乙种药材y 斤,你认为小明应该列出哪一个方程组求两种药材各买了多少斤?()A. B.C. D.二、填空题: (每题3分,共18分)11.若x m-3-2y n+1=5是二元一次方程,则m=_______,n=______.12.已知有理数,m n满足22404nm n⎛⎫++-=⎪⎝⎭,则33m n的值为___________13.为了适合不同人群的需求,某公司对每日坚果混合装进行改革.甲种每袋装有10克核桃仁,10克巴旦木仁,10克黑加仑;乙种每袋装有20克核桃仁,5克巴旦木仁,5克黑加仑.甲乙两种袋装干果每袋成本价分别为袋中核桃仁、巴旦木仁、黑加仑的成本价之和.已知核桃仁每克成本价0.04元,甲每袋坚果的售价为5.2元,利润率为30%,乙种坚果每袋利润率为20%,若这两种袋装的销售利润率达到24%,则该公司销售甲、乙两种袋装坚果的数最之比是____.14.若m1,m2,…,m2019是从0,1,2,这三个数中取值的一列数,m1+m2+…+m2019=1525,( m1-1)2+(m2-1)2+…+(m2019-1)2=1510,则在m1,m2,…,m2019中,取值为2的个数为___________.15、已知方程组,则y与x之间的关系式为.16、“十一”黄金周,国光超市“女装部”推出“全部服装八折”,男装部推出“全部服装八五折”的优惠活动,某顾客在女装部购买了原价为x 元,男装部购买了原价为y 元的服装各一套,优惠前需付700元,而他实际付款580元,则可列方程组为 .17.已知a 3=b 5=c7,且3a +2b -4c =9,则a +b +c 的值等于________.18.如图是由截面为同一种长方形的墙砖粘贴的部分墙面,其中三块横放的墙砖比一块竖放的墙砖高10cm ,两块横放的墙砖比两块竖放的墙砖低40cm ,则每块墙砖的截面面积是________.三、解答题: (共66分) 19.解方程组:(1)⎩⎨⎧=-=+73825y x y x (2)⎩⎨⎧-=-=+123832y x y x(3)⎪⎩⎪⎨⎧=---=+1213343144y x y x (4)⎪⎪⎩⎪⎪⎨⎧=++-=+--3423174231y x y x20.如图,在3×3的方阵图中,填写了一些数和代数式(其中每个代数式都表示一个数),使得每行的3个数、每列的3个数、斜对角的3个数之和均相等.(1)求x,y的值;(2)在备用图中完成此方阵图.3 4 x﹣2 y a2y﹣x c b备用图3 4﹣221.请你根据王老师所给的内容,完成下列各小题:(1)如果x=-5,2⊙4=-8,求y的值;(2)若1⊙1=8,4⊙=20,求x,y的值.22.已知方程组与的解相同,试求a+b的值.23. 在学校组织的游艺晚会上,掷飞标游艺区游戏规则如下:如图掷到A 区和B 区的得分不同,A区为小圆内部分,B 区为大圆内小圆外的部分(掷中一次记一个点).现统计小华、小芳和小明掷中与得分情况如下:小华:77分小芳:75分小明:? 分(1)求掷中A 区、B 区一次各得多少分?(2)依此方法计算小明的得分为多少分?24. 小王购买了一套经济适用房,他准备将地面铺上地砖,地面结构如图所示.根据图中的数据(单位:m),解答下列问题:(1)用含x,y的式子表示地面总面积;(2)已知客厅面积比卫生间面积多21 m2,且地面总面积是卫生间面积的15倍.若铺1 m2地砖的平均费用为80元,那么铺地砖的总费用为多少元?25、(8分)已知二元一次方程组的解为且m+n=2,求k的值.26、(8分)一个三位数,如果把它的个位数字与百位数字交换位置,那么所得的新数比原数小99,且各位数字之和为14,十位数字是个位数字与百位数字之和.求这个三位数.27、(6分)某商场按定价销售某种商品时,每件可获利60元;按定价的八折销售该商品12件与将定价降低30元销售该商品8件所获利润相等.该商品进价、定价分别是多少?28、(8分)某校准备组织七年级400名学生参加夏令营,已知满员时,用3辆小客车和1辆大客车每次可运送学生105人;用一辆小客车和2辆大客车每次可运送学生110人.(1)1辆小客车和1辆大客车都坐满后一次可送多少名学生?(2)若学校计划租用小客车a辆,大客车b辆,一次送完,且恰好每辆车都坐满;①请你设计出所有的租车方案;②若小客车每辆需租金200元,大客车每辆需租金380元,请选出最省钱的租车方案,并求出最少租金.29(12分)、“重百”、“沃尔玛”两家超市出售同样的保温壶和水杯,保温壶和水杯在两家超市的售价分别一样.已知买1个保温壶和1个水杯要花费60元,买2个保温壶和3个水杯要花费130元.(1)请问:一个保温壶与一个水杯售价各是多少元?(列方程组求解)(2)为了迎接“五一劳动节”,两家超市都在搞促销活动,“重百”超市规定:这两种商品都打九折;“沃尔玛”超市规定:买一个保温壶赠送一个水杯.若某单位想要买4个保温壶和15个水杯,如果只能在一家超市购买,请问选择哪家超市购买更合算?请说明理由.参考答案1、B2、D3、A4、A5、C6、A7、A8、A9、B 10、A 11.4 0 12.1- 13.13∶30 14.50815、答案为:y=﹣6 16、答案为:.17.-15 18.525cm 219.(1)⎩⎨⎧-==12y x ;(2)⎩⎨⎧==21y x ;(3)⎪⎩⎪⎨⎧==4113y x ;(4)⎩⎨⎧-==1016y x20.【解答】解:(1)由题意,得,解得;(2)如图21.22.【解答】解:依题意可有,解得,所以,有,解得,因此a+b=3﹣=.23.解:(1)设掷到A 区和B 区的得分分别为x 、y 分,依题意得:53773575x y x y +=⎧⎨+=⎩ 解得109x y =⎧⎨=⎩ 答:掷中A 区、B 区一次各得10,9分.(2)由(1)可知:4x+4y=76, 答:依此方法计算小明的得分为76分.24、解:(1)地面总面积为:6x+2y+18(m 2).(2)由题意,得6221,6218152.x yx y y-=++=⨯⎧⎨⎩解得4,3.2xy⎧==⎪⎨⎪⎩∴地面总面积为:6x+2y+18=6×4+2×32+18=45(m 2).∴铺地砖的总费用为:45×80=3 600(元).25、解:由题意得②+③得代入①得k=3.26、解:这个三位数的百位数字为x,十位数字为y,个位数字为z.由题意列方程组②-③得y=14-y,即y=7,由①得x-z=1,⑤将y=7代入③得x+z=7,⑥⑤+⑥得2x=8,即x=4,那么z=3.答:这个三位数是473.27、28、解:(1)设每辆小客车能坐a名学生,每辆大客车能坐b名学生根据题意,得解得a+b=20+45=65,答:1辆小客车和1辆大客车都坐满后一次可送65名学生.(2)①由题意得:20m+45n=400,∴n=,∵m、n为非负整数,∴或或,∴租车方案有三种:方案一:小客车20车、大客车0辆,方案二:小客车11辆,大客车4辆,方案三:小客车2辆,大客车8辆;②方案一租金:200×20=4000(元),方案二租金:200×11+380×4=3640(元),方案三租金:200×2+380×8=3280(元),∴方案三租金最少,最少租金为3280元.29、解:(1)设一个保温壶售价为x元,一个水杯售价为y元.由题意,得:.解得:.答:一个保温壶售价为50元,一个水杯售价为10元.(2)选择在“沃尔玛”超市购买更合算.理由:在“重百”超市购买所需费用为:0.9(50×4+15×10)=315(元),在“沃尔玛”超市购买所需费用为:50×4+(15﹣4)×10=310(元),∵310<315,∴选择在“沃尔玛”超市购买更合算.。
人教版七年级下册数学第八章二元一次方程组复习测试题一、选择题1.下列方程中,是二元一次方程的是()A.43xy=1 B. x+y=6 C. 3x+1=2xy D.2.方程■x-2y=x+5是二元一次方程,■是被弄污的x的系数,请你推断■的值属于下列情况中的()A. 不可能是-1B. 不可能是-2C. 不可能是1D. 不可能是23.若5x3m-2n-2y n-m+11=0是二元一次方程,则()A. m=1,n=2B. m=2,n=1C. m=-1,n=2D. m=3,n=44.关于x,y的方程组的解互为相反数,则k的值是()A. 8B. 9C. 10D. 115.若方程组的解x与y的和为3,则a的值为()A. 7B. 4C. 0D. -46.已知方程组的解是()A. B. C. D.7.为了丰富学生课外小组活动,培养学生动手操作能力,王老师让学生把5m长的彩绳截成2m或1m的彩绳,用来做手工编织,在不造成浪费的前提下,你有几种不同的截法()A. 1B. 2C. 3D. 48.某气象台发现:在某段时间里,如果早晨下雨,那么晚上是晴天;如果晚上下雨,那么早晨是晴天,已知这段时间有9天下了雨,并且有6天晚上是晴天,7天早晨是晴天,则这一段时间有()A. 9天B. 11天C. 13天D. 22天9.某班学生参加运土劳动,一部分学生抬土,另一部分学生挑土,已知全班共用箩筐99个,扁担66根,求抬土、挑土的学生各有多少人?如果设抬土的同学x人,挑土的同学y人,则可得方程组()A. B.C. D.10.下列运用等式性质正确的是()A. 如果a=b,那么a+c=b-cB. 如果a=b,那么a b c c=C. 如果a bc c=,那么a=b D. 如果a=3,那么a2=3a211.已知方程组中x,y的互为相反数,则m的值为()A. 2B. -2C. 0D. 4二、填空题1.有下列等式:①由a=b,得5-2a=5-2b;②由a=b,得ac=bc;③由a=b,得;④由,得3a=2b;⑤由a2=b2,得a=b.其中正确的是______.3.小华从家里到学校的路是一段平路和一段下坡路,假设他始终保持平路每分钟走60米,下坡路每分钟走80米,上坡路每分钟走40米,从家里到学校需10分钟,从学校到家里需15分钟.从小华家到学校的下坡路长______ 米.4.二元一次方程4x+y=11的所有自然数解是______ .5.若方程组的解是正数,且x不大于y,则a的取值范围是______ .6.已知,则x与y的关系式为______ .三、计算题1..2.解方程组:.3.已知关于x,y的二元一次方程组的解适合方程x+y=6,求n的值.4.某商场计划从一厂家购进若干部新型手机以满足市场需求.已知该厂家生产三种不同型号的手机,出厂价分别是甲种型号手机1800元/部,乙种型号手机600元/部,丙种型号手机1200元/部.商场在经销中,甲种型号手机可赚200元/部,乙种型号手机可赚100元/部,丙种型号手机可赚120元/部.(1)若商场用6万元同时购进两种不同型号的手机共40部,并恰好将钱用完,请你通过计算分析进货方案;(2)在(1)的条件下,求盈利最多的进货方案.5.观察下列方程组,解答问题:①;②;③;…(1)在以上3个方程组的解中,你发现x与y有什么数量关系?(不必说理)(2)请你构造第④个方程组,使其满足上述方程组的结构特征,并验证(1)中的结论.6.某花店准备购进甲、乙两种花卉,若购进甲种花卉20盆,乙种花卉50盆,需要720元;若购进甲种花卉40盆,乙种花卉30盆,需要880元.(1)求购进甲、乙两种花卉,每盆各需多少元?(2)该花店销售甲种花卉每盆可获利6元,销售乙种花卉每盆可获利1元,现该花店准备拿出800元全部用来购进这两种花卉,设购进甲种花卉x盆,全部销售后获得的利润为W 元,求W与x之间的函数关系式;(3)在(2)的条件下,考虑到顾客需求,要求购进乙种花卉的数量不少于甲种花卉数量的6倍,且不超过甲种花卉数量的8倍,那么该花店共有几种购进方案?在所有的购进方案中,哪种方案获利最大?最大利润是多少元?一、选择题。
人教版七年级数学下第九章不等式与不等式组复习检测试题(有答案)人教版七年级数学下册第九章不等式与不等式组单元测试题复习检测试卷(有答案)一、选择题1.下列式子:①-2<0;②2x+3y<0;③x=3;④x+y中,是不等式的个数有A. 1个B. 2个C. 3个 D . 4个2.若m>n,则下列不等式中一定成立的是()A. m+2<n+3B. 2m<3nC. a-m<a-nD. ma2>na23.数a、b在数轴上的位置如图所示,则下列不等式成立的是()A. a>bB. ab>0C. a+b>0D. a+b<04.若关于x的一元一次不等式组的解集是x<5,则m的取值范围是()A. m≥5B. m>5C. m≤5D. m<55.某商品的标价比成本价高m%,根据市场需要,该商品需降价n%出售,为了不亏本,n应满足()A. n≤mB. n≤C. n≤D. n≤6.某种记事本零售价每本6元,凡一次性购买两本以上给予优惠,优惠方式有两种,第一种:“两本按原价,其余按七折优惠”;第二种:全部按原价的八折优惠,若想在购买相同数量的情况下,要使第一种办法比第二种办法得到的优惠多,最少要购买记事本()A. 5本B. 6本C. 7本D. 8本7.不等式组的解集在数轴上表示正确的是()A. B.C. D.8.不等式组的解集是()A. x>4B. x≤3C. 3≤x<4D. 无解9.如果不等式组只有一个整数解,那么a的范围是()A. 3<a≤4B. 3≤a<4C. 4≤a<5D. 4<a≤510. 现有三种不同的物体:“甲、乙、丙”,用天平称了两次,情况如图所示,那么“甲、乙、丙”这三种物体按质量从大到小的顺序排列为A. 丙甲乙B. 丙乙甲C. 乙甲丙D. 乙丙甲二、填空题1.不等式组:的解集是2.某采石场爆破时,点燃导火线的甲工人要在爆破前转移到400m以外的安全区域甲工人在转移过程中,前40m只能步行,之后骑自行车。
七年级数学人教版(下)二元一次方程组一、选择题1. 已知下列各式:①12+=y x;②2x ﹣3y =5;③xy =2;④x+y =z ﹣1;⑤12123x x +-=,其中为二元一次方程的个数是( ) A.1 B.2C.3D.4 2.如果 {x =−3x =1 是方程ax+(a- 2)y=0的一组解,则a 的值( ) A .1 B .-1 C .2 D .-23. 下列方程组的解为31x y =⎧⎨=⎩的是( ) A.224x y x y -=⎧⎨+=⎩ B.253x y x y -=⎧⎨+=⎩ C.32x y x y +=⎧⎨-=⎩ D.2536x y x y -=⎧⎨+=⎩ 4.由方程组 {2x +x =1,x −4=x 可得出 x 与 x 的关系是 ( )A . 2x −x =5B . 2x +x =5C . 2x +x =−5D . 2x −x =−55.若关于 x ,x 的方程组 {2x +3x =x ,x +2x =−1 的解互为相反数,则 x 的值为 ( ) A . −1 B . 1 C . 2 D . −26.如果3x 7x x x +7 和 5x 2−4x x 2x 是同类项,那么 x +x 的值是( )A .-1B .1C .-2D .27. 一工坊用铁皮制作糖果盒,每张铁皮可制作盒身20个,或制作盒底30个,一个盒身与两个盒底配成一套糖果盒.现有35张铁皮,设用x 张制作盒身,y 张制作盒底,恰好配套制成糖果盒.则下列方程组中符合题意的是( )A. B. C. D.8. 已知关于x,y 的方程组和的解相同,则(a+b)2022的值为( )A.0B.-1C.1D.20219. 中国清代算书《御制数理精蕴》中有这样一题:“马四匹、牛六头,共价四十八两(我国古代货币单位);马三匹、牛五头,共价三十八两.问马、牛各价几何?”设马每匹x 两,牛每头y 两,根据题意可列方程组为( )A.46383548x y x y +=⎧⎨+=⎩B.46483538y x y x +=⎧⎨+=⎩C.46485338x y x y +=⎧⎨+=⎩D.46483538x y x y +=⎧⎨+=⎩10.小明在拼图时,发现 8 个一样大小的长方形,恰好可以拼成一个大的长方形如图(1);小红看见了,说:“我也来试一试.”结果小红七拼八凑,拼成了如图(2)那样的正方形,中间还留下了一个洞,恰好是边长为 3 mm 的小正方形,则每个小长方形的面积为 ( )A . 120 mm 2B . 135 mm 2C . 108 mm 2D . 96 mm 2二、填空题1.将方程 2x - y =1 变形成用含 x 的代数式表示 y ,那么 y = .2. 若关于x,y 的方程2x |n|+3y m ﹣2=0是二元一次方程,则m+n = .3.二元一次方程 4x −x =2 的正整解是 .4.已知 {x =3,x =−2是方程组 {xx +xx =2,xx +xx =−3 的解,则 x +x 的值是 . 5.已知关于x ,y 的方程组 {x +3x =4−x,x −5x =3x, 给出下列结论: ①{x =5,x =−1是方程组的解;②无论 x 取何值,x ,y 的值都不可能互为相反数;③a=1时,方程组的解也是方程 x +x =4−x 的解;④x ,y 都为自然数的解有4对.其中正确的为 .6. 若方程组是关于x,y 的二元一次方程组,则m n = . 7.某市举办中学生足球赛,按比赛规则,每场比赛都要分出胜负,胜1场得3分,负一场扣1分,菁英队在8场比赛中得到12分,若设该队胜的场数为x ,负的场数为y ,则可列方程组为 .8.新年期间,各大超市准备了各种新年礼盒.某超市推出甲、乙、丙三种礼盒,均由 x 、 x 、 x 三种糖果组成.已知每种礼盒的成本分别为盒中 x 、 x 、 x 三种糖果的成本之和,且盒子的成本忽略不计.每盒甲分别装 x 、 x 、 x 三种糖果4斤、2斤、3斤,每盒乙分别装 x 、 x 、 x 三种糖果2斤、4斤、6斤.每盒甲的成本比每盒乙低 15 ,每盒乙的利润率为25%.每盒甲比每盒乙的售价低20%.每盒丙在成本上提高50%标价后打八折销售,每盒丙的获利为每斤 x 成本的3.2倍.当销售甲、乙、丙三种礼盒的数量之比为 3:1:1 时,则销售的总利润率为 .三、计算题1. 解下列方程组:(1)3759y x x y =+⎧⎨+=⎩ (2)2334a b a b +=⎧⎨+=⎩(3) {x +14=x +23,2x −3x =1.(4){2(x−x)3−x+x4=−4①6(x+x)−4(2x−x)=16②.四、解答题1.已知关于x,y的二元一次方程组{2x−x=63x−2x=x的解满足x﹣y=2,求k的值.2. 在解关于x,y的方程组22ax bycx by+=⎧⎨-=-⎩时,一位同学把c看错而得到32xy=-⎧⎨=⎩,而这个方程组的正确的解应是42xy=⎧⎨=-⎩,求a,b,c的值.3.一个两位数,十位上的数字与个位上的数字的和是8.这个两位数加上18,和恰好为这个两位数数字对调后组成的两位数.求原来的两位数.4. A,B两地相距36千米,甲从A地步行到B地,乙从B地步行到A地,两人同时相向出发,4小时后两人相遇.6小时后甲剩余的路程是乙剩余路程的2倍,求甲、乙二人的速度.5.自新冠肺炎疫情以来,农村的蔬菜种植受到更为广泛的关注.王大伯今年承包了25亩地,分别搭建了茄子和西红柿两种蔬菜大棚,共用去了44000元.其中茄子每亩用了1700元,预计收获后可得纯利润2400元;西红柿每亩用了1800元,预计收获后可得纯利润2600元,请你帮助王大伯计算一下,今年秋天一共会获得纯利润多少元?6.某工厂第一季度生产甲、乙两种机器共480台.改进生产技术后,计划第二季度生产这两种机器共554台,其中甲种机器的产量要比第一季度增产10%,乙种机器的产量要比第一季度增产20%.该厂第一季度生产甲、乙两种机器各多少台?7.{x=−1x=1x=2是关于x、y、z的方程|xx+xx+2|+(xx+xx−1)2+|xx+xx−3|=0的一个解.试求a、b、c的值.8. 被历代数学家尊为“算经之首”的《九章算术》是中国古代算法的扛鼎之作.《九章算术》中记载:“今有五省、六燕,集称之衡,雀俱重,燕俱轻,一雀一燕交而处,衡适平.并燕、雀重一斤.问燕,雀一枚各重几何?”译文:“今有5只雀、6只燕,分别聚集而且用衡器称之,聚在一起的雀重,燕轻.将一只雀、一只燕交换位置而放,重量相等.5只雀、6只燕重量为1斤.问雀、燕每只各重多少斤?”(每只雀的重量相同、每只燕的重量相同)。
人教版数学七年级下册单元测试卷: 第8章 二元一次方程组一、选择题(本大题共8小题,每小题4分,共32分。
) 1.表示二元一次方程组的是( )A 、⎩⎨⎧=+=+;5,3x z y xB 、⎩⎨⎧==+;4,52y y xC 、⎩⎨⎧==+;2,3xy y x D 、⎩⎨⎧+=-+=222,11xy x x y x 2.已知2 x b +5y 3a 与-4 x 2a y 2-4b 是同类项,则b a 的值为( ) A .2 B .-2 C .1 D .-13.若关于x 、y 的方程组⎩⎨⎧=-=+k y x ky x 73的解满足方程2x +3y =6,那么k 的值为( )A .-23B .23C .-32D .-234.如图所示,宽为50 cm 的矩形图案由10个全等的小长方形拼成,其中一个小长方形的面积为( ).A .400 cm 2B .500 cm2C .600 cm 2D .4 000 cm 25.方程82=+y x 的正整数解的个数是( )A 、4B 、3C 、2D 、16.已知关于x ,y 的方程组⎩⎪⎨⎪⎧x +2y =m ,x -y =4m的解为3x +2y =14的一个解,那么m 的值为( ).A .1B .-1C .2D .-27.六年前,A 的年龄是B 的年龄的3倍,现在A 的年龄是B 的年龄的2倍,A 现在的年龄是( ).A .12岁B .18岁C .24岁D .30岁8.已知下列方程组:(1)⎩⎨⎧-==23y y x ,(2)⎩⎨⎧=-=+423z y y x ,(3)⎪⎪⎩⎪⎪⎨⎧=-=+0131y x y x ,(4)⎪⎪⎩⎪⎪⎨⎧=-=+0131yx y x , 其中属于二元一次方程组的个数为( ) A .1 B .2 C .3 D .4二、填空题(本大题共8小题,共32分) 9.写出一个解为12x y =-⎧⎨=⎩的二元一次方程组__________. 10.方程mx -2y=x+5是二元一次方程时,则m________. 11.若2x 2a -5b+y a-3b=0是二元一次方程,则a=______,b=______.12.若12a b =⎧⎨=-⎩是关于a ,b 的二元一次方程ax+ay -b=7的一个解,则代数式(x+y )2-1•的值是_________ 13.若2x 5a y b+4与-x 1-2by 2a 是同类项,则b=________.14.已知都是ax+by=7的解,则a=_______,b=______.15.甲队有x 人,乙队有y 人,若从甲队调出10人到乙队,则甲队人数是乙队人数的一半,可列方程为______________. 16.在等式y =kx +b 中,当x =1时,y =1;当x =2时,y =4,则k =__________,b =__________. 三、解答题(本大题共6小题,共36分)17.(1)⎩⎨⎧=+=-5253y x y x (2)⎩⎨⎧=--=523x y x y (3)⎩⎨⎧=+=-152y x y x (4)⎩⎨⎧+==-1302y x y x(5)⎩⎨⎧-=+=-14329m n n m (6)⎩⎨⎧=+-=-q p q p 45133218.若12x y =⎧⎨=⎩是关于x ,y 的二元一次方程3x -y +a=0的一个解,求a 的值.19.小华不小心将墨水溅在同桌小丽的作业本上,结果二元一次方程组31122x yx y+=⎧⎨+=-⎩中第一个方程y的系数和第二个方程x的系数看不到了,现在已知小丽的结果是12xy=⎧⎨=⎩,你能由此求出原来的方程组吗?20.某纸品加工厂为了制作甲、乙两种无盖的长方体小盒,利用边角余料裁出正方形和长方形两种硬纸片,长方形的宽和正方形的边长相等,现将150张正方形硬纸片和300张长方形硬纸片全部用来制作这两种小盒,可以制作甲、乙两种小盒各多少个?人教版数学七年级下册第八章《二元一次方程组》测试题一、选择题(每小题只有一个正确答案)1.下列各方程组中,属于二元一次方程组的是( )A. B. C. D.2.下列各组数中,方程2x-y=3和3x+4y=10的公共解是( )A. B. C. D.3.用代入法解方程组有以下步骤:①由(1),得y=(3);②由(3)代入(1),得7x-2×=3;③整理得3=3;④∴x可取一切有理数,原方程组有无数个解以上解法,造成错误的一步是( )A.① B.② C.③ D.④4.一船顺水航行45千米需要3小时,逆水航行65千米需要5小时,若设船在静水中的速度为x千米/时,水流速度为y千米/时,则x,y的值为( )A. B. C. D.5.|3x-y-4|+|4x+y-3|=0,那么x与y的值分别为( )A. B. C. D.6.从方程组中求x与y的关系是( )A.x+y=-1 B.x+y=1 C. 2x-y=7 D.x+y=97.如果ax+2y=1是关于x,y的二元一次方程,那么a的值应满足( )A.a是有理数 B.a≠0 C.a=0 D.a是正有理数8.已知甲数的60%加乙数的80%等于这两个数的和的72%,若设甲数为x,乙数为y,则下列方程中符合题意的是( )A. 60%x+80%y=x+72%y B. 60%x+80%y=60%x+yC. 60%x+80%y=72%(x+y) D. 60%x+80%y=x+y9.下列各组数中,不是方程2x+y=10的解是( )A. B. C. D.10.如图所示,宽为50 cm的矩形图案由10个全等的小长方形拼成,其中一个小长方形的面积为( ).A.400 cm2B.500 cm2 C.600 cm2D.4 000 cm211.有大小两种货车,2辆大车与3辆小车一次可以运货15.5吨,5辆大车与6辆小车一次可以运货35吨,3辆大车与5辆小车一次可以运货为(单位:吨)( ) A . 25.5 B . 24.5 C . 26.5 D . 27.512.一文具店的装订机的价格比文具盒的价格的3倍少1元,购买2把装订机和6个文具盒共需70元,问装订机与文具盒价格各是多少元?设文具盒的价格为x 元,装订机的价格为y 元,依题意可列方程组为( )A .B .C .D . 二、填空题 13.在括号内填写一个二元一次方程,使其与二元一次方程5x -2y =1组成方程组的解是 你所填写的方程为______________.14.已知方程3x -2y =5的一个解中,y 的值比x 的值大1,则这个方程的这个解是________. 15.已知方程组则x -y =______,x +y =______.16.哥哥与弟弟的年龄和是18岁,弟弟对哥哥说:“当我的年龄是你现在年龄的时候,你就是18岁”.如果现在弟弟的年龄是x 岁,哥哥的年龄是y 岁,所列方程组为______. 17.已知方程2x 2n -1-3y3m -n+1=0是二元一次方程,则m =______,n =______.三、解答题18、用代入消元法解方程组 20.用加减消元法解方程组19、用适当的方法解下列方程组(1)20328x y x y -=⎧⎨+=⎩ (2)23533x yx y -⎧=⎪⎪⎨+⎪=⎪⎩⎩⎨⎧-=-=+54032y x y x 3410,490;x y x y +=⎧⎨+-=⎩20.甲、乙两人共同解方程组⎩⎨⎧-=-=+ ②by x ①y ax 24155,由于甲看错了方程①中的a ,得到方程组的解为⎩⎨⎧-=-=13y x人教版七年级数学下册第八章二元一次方程组复习检测试题一、选择题。
人教版七年级数学下册第八章二元一次方程组单元测试题(有答案)一.选择题1.下列方程中,是二元一次方程的是( )A .3x -2y =4zB .6xy +9=0C.1x +4y =6 D .4x =y -24 2.下列方程组中,是二元一次方程组的是( )A.⎩⎪⎨⎪⎧x +y =42x +3y =7B.⎩⎪⎨⎪⎧2a -3b =115b -4c =6C.⎩⎪⎨⎪⎧x 2=9y =2xD.⎩⎪⎨⎪⎧x +y =8x 2-y =4 3.方程组的解为( ) A .B .C .D .4.夏季来临,某超市试销A 、B 两种型号的风扇,两周内共销售30台,销售收入5300元,A 型风扇每台200元,B 型风扇每台150元,问A 、B 两种型号的风扇分别销售了多少台?若设A 型风扇销售了x 台,B 型风扇销售了y 台,则根据题意列出方程组为( ) A . B . C .D .5.小岩打算购买气球装扮学校“毕业典礼”活动会场,气球的种类有笑脸和爱心两种,两种气球的价格不同,但同一种气球的价格相同.由于会场布置需要,购买时以一束(4个气球)为单位,已知第一、二束气球的价格如图所示,则第三束气球的价格为( )A .19B .18C .16D .156.某文具店一本练习本和一支水笔的单价合计为3元,小妮在该店买了20本练习本和10支水笔,共花了36元.如果设练习本每本为x 元,水笔每支为y 元,那么根据题意,下列方程组中,正确的是( )A.B.C.D.7.《九章算术》中记载:“今有共买羊,人出五,不足四十五;人出七,不足三问人数、羊价各几何?”其大意是:今有人合伙买羊,若每人出5钱,还差45钱;若每人出7钱,还差3钱,问合伙人数、羊价各是多少?设合伙人数为x人,羊价为y线,根据题意,可列方程组为()A.B.C.D.8.某次知识竞赛共有20道题,规定:每答对一道题得+5分,每答错一道题得﹣2分,不答的题得0分,已知圆圆这次竞赛得了60分,设圆圆答对了x道题,答错了y道题,则()A.x﹣y=20 B.x+y=20 C.5x﹣2y=60 D.5x+2y=609.阅读理解:a,b,c,d是实数,我们把符号称为2×2阶行列式,并且规定: =a ×d﹣b×c,例如: =3×(﹣2)﹣2×(﹣1)=﹣6+2=﹣4.二元一次方程组的解可以利用2×2阶行列式表示为:;其中D=,D x=,D y=.问题:对于用上面的方法解二元一次方程组时,下面说法错误的是()A.D==﹣7 B.D x=﹣14C.D y=27 D.方程组的解为10.若二元一次联立方程式的解为x=a,y=b,则a+b之值为何?()A.24 B.0 C.﹣4 D.﹣811.为奖励消防演练活动中表现优异的同学,某校决定用1200元购买篮球和排球,其中篮球每个120元,排球每个90元,在购买资金恰好用尽的情况下,购买方案有()A.4种B.3种C.2种D.1种12.某旅店一共70个房间,大房间每间住8个人,小房间每间住6个人,一共480个学生刚好住满,设大房间有x个,小房间有y个.下列方程正确的是()A. B. C.D.二.填空题1.若关于x、y的二元一次方程3x﹣ay=1有一个解是,则a= .2.六一儿童节,某幼儿园用100元钱给小朋友买了甲、乙两种不同的玩具共30个,单价分别为2元和4元,则该幼儿园购买了甲、乙两种玩具分别为、个.3.对于实数a,b,定义运算“◆”:a◆b=,例如4◆3,因为4>3.所以4◆3==5.若x,y满足方程组,则x◆y=.4.已知x,y满足方程组,则x2﹣4y2的值为.5.我国古代数学著作《九章算术》中有一道阐述“盈不足术”的问题,译文为:“现有几个人共同购买一个物品,每人出8元,则多3元;每人出7元,则差4元.问这个物品的价格是多少元?”该物品的价格是元.6.我国明代数学读本《算法统宗》一书中有这样一道题:一支竿子一条索,索比竿子长一托,对折索子来量竿,却比竿子短一托.如果1托为5尺,那么索长为尺,竿子长为尺.7.若二元一次方程组的解为,则a﹣b= .8.已知是关于x,y的二元一次方程组的一组解,则a+b= .9.小强同学生日的月数减去日数为2,月数的两倍和日数相加为31,则小强同学生日的月数和日数的和为.三.解答题1.解方程组:.2.用消元法解方程组3.《九章算术》是中国古代数学专著,在数学上有其独到的成就,不仅最早提到了分数问题,也首先记录了“盈不足”等问题.如有一道阐述“盈不足”的问题,原文如下:今有共买鸡,人出九,盈十一;人出六,不足十六.问人数、鸡价各几何?译文为:现有若干人合伙出钱买鸡,如果每人出9文钱,就会多11文钱;如果每人出6文钱,又会缺16文钱.问买鸡的人数、鸡的价格各是多少?请解答上述问题.4.某水果店5月份购进甲、乙两种水果共花费1700元,其中甲种水果8元/千克,乙种水果18元/千克.6月份,这两种水果的进价上调为:甲种水果10元千克,乙种水果20元/千克.(1)若该店6月份购进这两种水果的数量与5月份都相同,将多支付货款300元,求该店5月份购进甲、乙两种水果分别是多少千克?(2)若6月份将这两种水果进货总量减少到120千克,且甲种水果不超过乙种水果的3倍,则6月份该店需要支付这两种水果的货款最少应是多少元?5.在端午节来临之际,某商店订购了A型和B型两种粽子,A型粽子28元/千克,B型粽子24元/千克,若B型粽子的数量比A型粽子的2倍少20千克,购进两种粽子共用了2560元,求两种型号粽子各多少千克.6.为提高市民的环保意识,倡导“节能减排,绿色出行”,某市计划在城区投放一批“共享单车”这批单车分为A,B两种不同款型,其中A型车单价400元,B型车单价320元.(1)今年年初,“共享单车”试点投放在某市中心城区正式启动.投放A,B两种款型的单车共100辆,总价值36800元.试问本次试点投放的A型车与B型车各多少辆?(2)试点投放活动得到了广大市民的认可,该市决定将此项公益活动在整个城区全面铺开.按照试点投放中A,B两车型的数量比进行投放,且投资总价值不低于184万元.请问城区10万人口平均每100人至少享有A型车与B型车各多少辆?7.为拓宽学生视野,引导学生主动适应社会,促进书本知识和生活经验的深度融合,我市某中学决定组织部分班级去赤壁开展研学旅行活动,在参加此次活动的师生中,若每位老师带17个学生,还剩12个学生没人带;若每位老师带18个学生,就有一位老师少带4个学生.现有甲、乙两种大客车,它们的载客量和租金如表所示.甲种客车乙种客车载客量/(人/辆)30 42租金/(元/辆)300 400学校计划此次研学旅行活动的租车总费用不超过3100元,为了安全,每辆客车上至少要有2名老师.(1)参加此次研学旅行活动的老师和学生各有多少人?(2)既要保证所有师生都有车坐,又要保证每辆客车上至少要有2名老师,可知租用客车总数为8 辆;(3)你能得出哪几种不同的租车方案?其中哪种租车方案最省钱?请说明理由.参考答案:一、选择题。
2022-2023学年七年级数学下册第十章综合检测卷数据的收集、整理与描述一、选择题(每小题3分,共24分)1.下列调查中,最适合采用全面调查的是()A.了解全国中学生的睡眠时间B.了解某河流的水质情况C.调查全班同学的视力情况D.了解一批灯泡的使用寿命2.如图,整个圆代表七年级全体同学参加数学拓展课的总人数,其中参加“生活数学”拓展课的人数占总人数的35%,则图中表示“生活数学”拓展课人数的扇形是()A.MB.NC.PD.Q3.王老师对本班40名学生的血型作了统计,列出如下的统计表,则本班A型血的人数是()组别A型B型AB型O型百分率40%35%10%15%A.16B.14C.4D.64.为了解某市2020年参加中考的34000名学生的视力情况,抽查了其中1800名学生的视力情况进行统计分析,下面叙述错误的是()A.34000名学生的视力情况是总体B.本次调查是抽样调查C.1800名学生的视力情况是总体的一个样本D.样本容量是340005.某学校在开展“节约每一滴水”的活动中,从八年级的200名同学中任选出10名同学汇报各自家庭一个月的节水情况,将有关数据整理成下表:节水量(单位:吨)0.511.52同学数(人)2341估计这200名同学的家庭一个月节约用水的总量是()A.180吨B.200吨C.240吨D.360吨6.垃圾分类利国利民.某校宣传小组就“空矿泉水瓶应投放到哪种颜色的垃圾收集桶内”进行统计活动,他们随机采访50名学生并作好记录.以下是排乱的统计步骤:①从扇形统计图中分析出本校学生对空矿泉水瓶投放的正确率;②整理采访记录并绘制空矿泉水瓶投放频数分布表;③绘制扇形统计图来表示空矿泉水瓶投放各收集桶所占的百分比.正确统计步骤的顺序应该是()A.②→③→①B.②→①→③C.③→①→②D.③→②→①7.2020年11月1日零时,我国开展第七次全国人口普查.2021年5月11日,国务院新闻办公室公布普查结果,如图是根据我国历次人口普查数据,绘制的我国每10万人中拥有大学文化(指大专及以上)程度人数的折线图.设2020年每10万人中拥有大学文化程度的人数与2010年相比的增长率为x,则下列关于x 的方程正确的是()A.(1+0.9)x=1.55B.0.9(1+x)×10=1.55C.0.9(1+x)=1.55D.0.9(1+x)10=1.558.十一假期期间相关部门对到某景点的游客的出行方式进行了随机抽样调查,整理绘制了两幅统计图(如图,尚不完整),根据图中信息,下列结论错误的是()A.本次抽样调查的样本容量是5000B.扇形统计图中的m为10%C.样本中选择公共交通出行的有2500人D.若十一假期期间到该景点的游客有50万人,则选择自驾方式出行的约有25万人二、填空题(每小题3分,共24分)9.据中国载人航天工程办公室消息,神舟十四号航天员乘组于2022年7月25日10时03分成功开启问天实验舱舱门,顺利进入问天实验舱.这是中国航天员首次在轨进入科学实验舱.在神舟十四号飞船起飞前,科学工作者要对其零件进行检查,检查的方式是.(填“全面调查”或“抽样调查”)10.(2021上海金山二模)为了了解某校初三学生在体育测试中报名球类的情况,随机调查了40名学生的报名情况,得到如下数据.项目排球篮球足球人数101515根据此信息,估计该校480名初三学生报名足球的学生人数为.11.超速行驶是交通事故频发的主要原因之一.交警部门统计某日7:00~9:00经过高速公路某测速点的汽车的速度,得到如图所示的折线图,若该路段汽车限速为110km/h,则超速行驶的汽车有辆.12.(2022广东东莞一模)双减政策背景下,为落实“五育并举”,某学校准备打造学生第二课堂,有四类课程可供选择,分别是A.书画类、B.文艺类、C.社会实践类、D.体育类.现随机抽取了七年级部分学生对报名意向进行调查,并根据调查结果绘制了如下两幅不完整的统计图,若该校七年级共有800名学生,根据上述调查结果估计该校七年级学生选择“社会实践类”的共有名.13.某中学开展以“我最喜欢的职业”为主题的调查活动,根据数据绘制的不完整统计图如图所示,图中工人部分的圆心角为°.14.在某校对若干名青少年进行最喜爱的运动项目的抽样调查中,得到如下统计图.如果最喜爱足球的人数比最喜爱骑自行车的人数多30,那么参加这次调查的总人数是.15.2022年《狙击手》《长津湖之水门桥》《奇迹·笨小孩》等电影火爆上映.某中学抽取部分学生对“你最喜欢的电影”进行问卷调查,收集整理数据后列频数分布表(部分)如下:电影《狙击手》《长津湖之水门桥》《奇迹·笨小孩》其他频数8050百分比40%25%m则表格中m的值为.16.(2020湖北十堰房县期末)某中学七年级甲、乙、丙三个班中,每班的学生人数都为40,某次数学考试的成绩统计如下:(统计表和统计图中,每组分数含最小值,不含最大值)甲班数学成绩频数分布直方图乙班数学成绩各分数段人数扇形统计图丙班数学成绩频数分布表分数50~6060~7070~8080~9090~100频数1415119(人数)根据图、表提供的信息,80~90分这一组人数最多的班是.三、解答题(共52分)17.(8分)(2022广东东莞光明中学一模改编)为了抵制手机诱惑,减少手机影响,七年级各班召开了“放下手机,让我们读书吧!”主题班会,号召全体同学每周读一本好书(从自然科学、文学艺术、社会百科和小说四类书籍中选一本),一周后,七年级(2)班学习委员对全班同学所读书籍进行统计并绘制成如下不完整的统计图表.书籍类型频数百分率自然科学a20%文学艺术2550%社会百科12b小说36%请你根据图表中提供的信息,解答以下问题:(1)该班总人数为;(2)表中a=,b=,将条形图补充完整;(3)七年级共有学生860人,按七年级(2)班统计结果估算,全年级有人阅读的书籍是自然科学类. 18.(8分)(2022广东东莞一模)为了解某市人口年龄结构情况,一机构对该市的人口数据进行随机抽样分析,绘制了如下尚不完整的统计表和统计图.类别A B C D年龄0≤t<1515≤t<6060≤t<65t≥65t(岁)人数4.711.6m2.7(万)根据以上信息解答下列问题:(1)m=,扇形统计图中“C”对应的圆心角度数是;(2)该市现有人口约800万,请根据此次抽查结果,估计该市现有60岁及以上的人数.19.(8分)(2022广东广州花都期末)第24届冬季奥林匹克运动会于2022年2月4日至20日在北京市和河北省张家口市联合举行,这是中国第一次举办冬季奥运会.北京冬季奥运会的成功举办,激发了国人对冰雪运动项目的喜爱.某中学为了解学生对速度滑冰、冰球、单板滑雪、高山滑雪、冰壶的喜爱情况,在全校范围内随机抽取了若干名学生进行问卷调查,数据如下:(1)单板滑雪所在扇形的圆心角度数为,补全条形统计图;(2)该校共有1200名学生,估计该校全体学生中喜爱单板滑雪的学生有多少名.20.(8分)2022年两会召开之前,某校数学实践小组就人们近期关注的五个热点话题:“A.从严治党;B.依法治国;C.国家安全;D.社会保障;E.教育改革”,对某小区居民进行了随机抽样调查,每人只能从中选择一个本人最关注的话题,根据调查结果绘制了如图所示的两幅不完整的统计图.请结合统计图中的信息,解决下列问题:(1)数学实践小组在这次活动中,调查的居民共有人;(2)将条形统计图补充完整;(3)扇形统计图中的a=,话题D所在扇形的圆心角是度;(4)假设这个小区居民共有10000人,请估计该小区居民中最关注的话题是“依法治国”的人数.21.(10分)(2022广东广州大学附中期末)某校为了了解初三年级600名学生的身体健康情况,从该年级随机抽取了若干名学生,将他们按体重(均为整数,单位:kg)分成五组(A:39.5~46.5;B:46.5~53.5;C:53.5~60.5;D:60.5~67.5;E:67.5~74.5),并依据统计数据绘制了如下两幅尚不完整的统计图.解答下列问题:(1)这次抽样调查的样本容量是,并补全频数分布直方图;(2)C组学生所占的百分比为,在扇形统计图中,D组的圆心角是度;(3)请你估计该校初三年级体重超过60.5kg的学生有多少名.22.(10分)2022年2月6日,中国女足以3∶2逆转绝杀韩国队,夺得亚洲杯冠军.某校受中国女足队精神的鼓舞拟成立校足球队,为了解学校学生的身高情况,随机抽取该校男生、女生进行调查.已知抽取的学生中男生和女生的人数相同,利用所得数据绘制如下统计图表:身高情况分组表(单位:cm)组别身高A x<155B155≤x<160C160≤x<165D165≤x<170E x≥170根据图表提供的信息,回答下列问题:(1)求抽取的男生人数;(2)求抽取的女生的身高在E组的人数;(3)已知该校共有男生380人,女生320人,请估计全校身高在160≤x<170范围内的学生总人数.答案1.C根据全面调查得到的调查结果比较准确,但所费人力、物力和时间较多,一般来说,对于具有破坏性的、无法进行全面调查的、全面调查意义或价值不大的调查,应选择抽样调查,对于调查范围比较小、精确度要求高的、事关重大的调查,往往选用全面调查.2.A∵扇形Q的圆心角为120°,∴参加此类课的人数占总人数的120°÷360°×100%≈33%,∵35%>33%,∴表示“生活数学”拓展课人数的扇形的圆心角一定比120°大,∴题图中表示“生活数学”拓展课人数的扇形是M,故选A.3.A本班A型血的人数为40×40%=16.故选A.4.D A.34000名学生的视力情况是总体,故A不符合题意;B.本次调查是抽样调查,故B不符合题意;C.1 800名学生的视力情况是总体的一个样本,故C不符合题意;D.样本容量是1800,故D符合题意.故选D.5.C选出的10名同学的家庭平均月节约用水量为(0.5×2+1×3+1.5×4+2×1)÷10=1.2(吨),故这200名同学的家庭一个月节约用水的总量约为1.2×200=240(吨).6.A统计调查的一般过程:①收集数据;②整理数据;③描述数据;④分析数据.根据统计调查的一般过程判断即可得本题正确统计步骤的顺序是②→③→①,故选A.7.C2020年每10万人中拥有大学文化程度的人数与2010年相比的增长率为x,根据题意得0.9(1+x)=1.55,故选C.(注意:不要误以为x是每年的增长率而错选D)8.D A.本次抽样调查的样本容量是2000÷40%=5000,此选项结论正确;B.扇形统计图中的m为1-(50%+40%)=10%,此选项结论正确;C.样本中选择公共交通出行的有5000×50%=2500(人),此选项结论正确;D.若十一假期期间到该景点的游客有50万人,则选择自驾方式出行的约有50×40%=20(万人),此选项结论错误.故选D.9.答案全面调查解析对神舟十四号飞船的零件进行检查,事关重大,检查方式是全面调查.10.答案180解析估计该校480名初三学生报名足球的学生人数为480×1540=180.11.答案80解析由题图可知,速度超过110km/h的有60+20=80(辆).12.答案128解析本次被抽查的学生共有20÷40%=50(名),800×850=128(名),即估计该校七年级学生选择“社会实践类”的共有128名.13.答案36解析∵被调查的总人数为40÷20%=200,∴题图中工人部分的圆心角为360°×20200=36°,故答案为36.14.答案360解析根据题意,可得(人),即参加这次调查的总人数是360.15.答案10%解析由题表可知被调查的学生总人数为80÷40%=200,∴最喜欢《长津湖之水门桥》的人数所占百分比为50200×100%=25%,则m=1-(40%+25%+25%)=10%.16.答案甲班解析由甲班数学成绩频数分布直方图可知,80~90分这一组人数=40-12-8-5-2=13,由乙班数学成绩各分数段人数扇形统计图可知,80~90分这一组人数=40×(1-10%-5%-35%-20%)=12,由丙班数学成绩频数分布表可知,80~90分这一组人数是11,所以80~90分这一组人数最多的班是甲班.17.解析(1)该班总人数为25÷50%=50.(2)a=50×20%=10,b=12÷50×100%=24%,补全的条形图如图.(3)860×20%=172(人),即全年级大约有172人阅读的书籍是自然科学类.18.解析(1)本次抽样调查,共调查的人数是11.6÷58%=20(万),“C”的人数为20-4.7-11.6-2.7=1(万),∴m=1,扇形统计图中“C”对应的圆心角度数为120×360°=18°.故答案为1;18°.(2)1+2.720×800=148(万).答:该市现有60岁及以上的人数约为148万.19.解析(1)调查的学生有50÷25%=200(人),单板滑雪所在扇形的圆心角度数为360°×80200=144°,高山滑雪的人数为200-50-24-80-16=30,补全条形统计图如下:(2)1200×80200=480(名).答:估计该校全体学生中喜爱单板滑雪的学生有480名.20.解析(1)调查的居民共有60÷30%=200(人),故答案为200.(2)选择C的居民有200×15%=30(人),选择A的居民有200-60-30-20-40=50(人),补全的条形统计图如图所示.(3)a%=50÷200×100%=25%,话题D所在扇形的圆心角是360°×20200=36°,故答案为25;36.(4)10000×30%=3000(人).答:该小区居民中最关注的话题是“依法治国”的人数大约为3000.21.解析(1)4÷8%=50(人),50-4-16-10-8=12(人),故样本容量为50,补全的直方图如下:(2)C组学生所占的百分比为16÷50×100%=32%,D组所对应的圆心角的度数为360°×1050=72°.(3)600×10+850=216(名).答:该校600名初三年级的学生中,体重超过60.5kg的大约有216名.22.解析(1)抽取的男生人数为4+12+10+8+6=40.(2)40×(1-17.5%-37.5%-25%-15%)=2(人),∴抽取的女生的身高在E组的人数为2.(3)10+840×380+320×(25%+15%)=299(人),∴估计全校身高在160≤x<170范围内的学生总人数为299.。
人教版七年级数学下册第十章数据的收集、整理与描述综合复习与测试题(含答案)某校冬季会把课间操改为跑步,但是发现部分学生没有穿运动鞋的习惯,为保证学生的安全,学校准备购买一批运动鞋供学生借用,现从各年级随机抽取了部分学生的鞋号,绘制出如下两幅不完整的统计图,请根据相关信息,解答下列问题.(I)本次接受随机抽样调查的学生人数为_____;(Ⅱ)在条形统计图中,请把空缺部分补充完整;(Ⅲ)求本次调查获取的样本数据的众数与中位数.【答案】(Ⅰ)40;(Ⅱ)见解析;(Ⅲ)见解析.【解析】【分析】(Ⅰ)用38号人数除以其所占百分比可得总人数;(Ⅱ)根据各鞋号人数之和等于总认识求得37号的人数即可补全图形;(Ⅲ)找出出现次数最多的即为众数,将数据按照从小到大顺序排列,求出中位数即可.【详解】(Ⅰ)本次接受随机抽样调查的学生人数为4÷10%=40,故答案为:40;(Ⅱ)37号的人数为40﹣(6+12+10+4)=8人,补全图形如下:(Ⅲ)∵在这组样本数据中,35出现了12次,出现次数最多,∴这组样本数据的众数为35;∵将这组样本数据从小到大得顺序排列,其中处于中间的两个数都为36,∴中位数为=36.【点睛】此题考查了条形统计图,扇形统计图,以及用样本估计总体,弄清题意是解本题的关键.82.为了了解某市课改实验区学生对新教材的喜欢程度,课改调研组从该市实验区60000名学生中随机抽查了360名学生进行了问卷调查,并绘制出了如图所示的频数分布直方图.(1)根据直方图中的数据制作扇形统计图(要求在图中注明各部分的百分比).(2)根据该调查结果,估计该市实验区约有多少名学生喜欢新教材?【答案】(1)见解析;(2)21000人.【解析】【分析】根据条形统计图得出三种人数和所占的比例,求出对应的扇形的圆心角的度数.画出扇形统计图,再由该市实验区人数乘以学生喜欢的比例求得学生喜欢新教材的人数.【详解】解:(1)从条形统计图中得出喜欢的有126人,一般的有162人,不喜欢的有72人,喜欢的人数占的比例12636035%=÷=,对应的在扇形统计图中的扇形的圆心角36035%126=⨯=一般的人数占的比例16236045%=÷=,对应的在扇形统计图中的扇形的圆心角3605%162=⨯=不喜欢的人数占的比例7236020%=÷=,对应的在扇形统计图中的扇形的圆心角36020%72=⨯=(2)全市喜欢新教材的人数约为:()6000035%45%21000⨯+=(人)【点睛】扇形统计图是用整个圆表示总数用圆内各个扇形的大小表示各部分数量占总数的百分数.通过扇形统计图可以很清楚的表示出各部分数量同总数之间的关系.83.某市青少年健康研究中心随机抽取了本市1000名小学生和若干名中学生,对他们的视力状况进行了调查,并把调查结果绘制成如下统计图.(近视程度分为轻度、中度、高度三种)(1)求这1000名小学生患近视的百分比.(2)求本次抽查的中学生人数.(3)该市有中学生8万人,小学生10万人.分别估计该市的中学生与小学生患“中度近视”的人数.【答案】(1)这1000名小学生患近视的百分比为38%. (2)本次抽查的中学生有1000人. (3)该市中学生患“中度近视”的约有2.08万人,患“中度近视”的约有1.04万人.【解析】【分析】(1)这1000名小学生患近视的百分比=小学生近视的人数÷总人数×100﹪(2)调查中学生总人数=中学生近视的人数÷中学生患近视的百分比(3)用样本估计总体,该市中学生患“中度近视”的人数=8万×1000名中学生患中度近视的百分比;该市小学生患“中度近视”的人数=10万×1000名小学生患中度近视的百分比【详解】解:(1)∵(252+104+24)÷1000=38%,∵这1000名小学生患近视的百分比为38%.(2)∵(263+260+37)÷56%=1000(人),∵本次抽查的中学生有1000人.(3)∵8×2601000=2.08(万人),∵该市中学生患“中度近视”的约有2.08万人.∵10×1041000=1.04(万人),∵该市小学生患“中度近视”的约有1.04万人.84.为了解学生的课余生活情况,某中学在全校范围内随机抽取部分学生进行问卷调查. 问卷中请学生选择最喜欢的课余生活种类(每人只选一类),选项有音乐类、美术类、体育类及其他共四类,调查后将数据绘制成扇形统计图和条形统计图(如图所示).1.请根据所给的扇形图和条形图,填写出扇形图中缺失的数据,并把条形图补充完整;2.如果该学校有500名学生,请你估计该学校中最喜欢体育运动的学生约有多少名?【答案】% 200【解析】(1)根据扇形统计图所给的数据,直接进行相减即可求出体育所占的百分比,再根据抽取体育的人数,即可求出抽取的总人数,再根据其他类所占的比例,即可求出答案.(2)根据学生中最喜欢体育运动的学生所占的百分比,再乘以总数即可求出答案.解:(1)根据题意得:体育所占的百分比是:1-32%-12%-16%=40%,抽取的总人数是:10÷40%=25(人),其他类的人数是:25×32%=8(人).如图所示:(2)根据题意可得:该年级中最喜欢体育运动的学生约有500×40%=200(名).答:该学校中最喜欢体育运动的学生约有200名85.春季流感爆发,某校为了解全体学生患流感情况,随机抽取部分班级对患流感人数的进行调查,发现被抽查各班级患流感人数只有1名、2名、3名、4名、5名、6名这六种情况,并制成如下两幅不完整的统计图:(1)抽查了个班级,并将该条形统计图补充完整;(2)如图1中患流感人数为4名所在扇形的圆心角的度数为;(3)若该校有90个班级,请估计该校此次患流感的人数.【答案】(1)20,2名的班级有2个;(2)72°;(3)360人.【解析】试题分析:(1)根据患流感人数有6名的班级有4个,占20%,可求得抽查的班级数,用求得的班级数再减去其它班级数,即可补全条形统计图;(2)用患流感人数为4名的班级数4个除以抽查的班级数,再乘以360°即可;(3)先求出该校平均每班患流感的人数,再利用样本估计总体的思想,用这个平均数乘以90即可.试题解析:(1)根据患流感人数有6名的班级有4个,占20%,可求得抽查的班级数,抽查的班级个数为4÷20%=20(个),则患流感人数只有2名的班级个数为:20﹣(2+3+4+5+4)=2(个),补图如下:(2)用患流感人数为4名的班级数4个除以抽查的班级数,再乘以360°:×360°=72°,所以患流感人数为4名所在扇形的圆心角的度数为72°;(3)先求出该校平均每班患流感的人数,∵该校平均每班患流感的人数为(1×2+2×2+3×3+4×4+5×5+6×4)÷20=4,∵若该校有90个班级,则此次患流感的人数为:4×90=360(人).考点:1.条形统计图;2.用样本估计总体;3.扇形统计图.86.《中学生体质健康标准》规定学生体质健康等级标准为:90分及以上为优秀;80分~89分为良好;60分~79分为及格;59分及以下为不及格. 某校从九年级学生中随机抽取了10%的学生进行了体质测试,得分情况如下图.(1)在抽取的学生中不及格人数所占的百分比是,它的圆心角度数为度.(2)小明按以下方法计算出抽取的学生平均得分是:()+++÷=. 根据所学的统计知识判断小明的计算是否正确,若不94847250475正确,请计算正确结果.【答案】(1)5%;18 ;(2)不正确,详见解析【解析】【分析】(1)根据各组的百分比之和为1,计算即可.(2)利用加权平均数公式计算即可.【详解】(1)不及格人数所占的百分比=1-25%-20%-50%=5%,它的圆心角=360°×5%=18°,故答案为5%,18.(2)不正确,平均分=94×20%+84×25%+72×50%+50×5%=78.3(分).【点睛】考查条形统计图,扇形统计图,加权平均数等知识,解题的关键是熟练掌握基本知识.87.萧山区垃圾分类掀起“绿色革命”为调查居民对垃圾分类的了解情况,调查小组对某小区进行抽样调查并将调查结果绘制成了统计图(如图).已知调查中“基本了解”的人数占调查人数的60%.(1)计算此次调查人数,并补全统计图;(2)若该小区有住户1000人,请估计该小区对垃圾分类“基本了解”的人数.【答案】(1)此次调查40人,补图见解析;(2)600人.【解析】【分析】(1)根据了解和不了解的所占的百分比和频数求得总人数,然后求得基本了解的频数后补充完整统计图即可;(2)用总人数乘以基本了解所占的百分比即可.【详解】(1)∵基本了解的占60%,∴了解和不了解的共占40%,∵了解和不了解的共有14+2=16人,∴调查的总人数为:16÷40%=40人,∴基本了解的有40﹣14﹣2=24人,统计图为:(2)该小区对垃圾分类“基本了解”的人数为1000×60%=600人.【点睛】本题考查的是条形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据.88.阅读下列材料:改革开放以来,我国建筑业在坚持和完善公有制为主体、多种所有制经济共同发展的基本经济制度的指引下,企业所有制呈现多元化发展,极大激发了市场活力.建国初期,建筑业企业基本是清一色的国营建筑公司,而如今,建筑业企业类型涵盖了国有、集体、股份制、私营等内资企业,以及港澳台商投资企业、外商投资企业等多种所有制形式.根据2018年国家统计局发布的数据显示:2017年,建筑业企业中,国有企业2187个,占全部企业比重仅为2.5%,比1996年减少6922个,占比下降19.5个百分点;年末从业人员183.0万人,占全部企业比重3.3%,比1996年减少672.9万人,占比下降37个百分点.股份制企业32894个,占全部企业比重达到37.3%,比1996年增加31293个,占比提高33.4个百分点;年末从业人员2828万人,占全部企业比重51.1%,比1996年增加2768万人,占比提高48.2个百分点.私营企业49645个,占全部企业比重达到56.4%,比1996年增加49110个,占比提高55.1个百分点;年末从业人员2340万人,占全部企业比重42.3%,比1996年增加2331万人,占比提高41.9个百分点.外商投资企业218个,占全部企业比重达到0.2%,比1996年减少170个,占比下降0.7个百分点;年末从业人员8万人,占全部企业比重0.1%,比1996年减少1万人,占比下降0.3个百分点.根据以上材料回答下列问题:(1)1996年私营企业有______个,占全部企业比重为______.(2)请你选择统计表或统计图,将1996年和2017年国有企业、股份制企业、私营企业、外商投资企业所占全部企业比重表示出来.(3)请你根据以上统计表或统计图,给出一个合理的结论并说明理由.【答案】(1)535;1.3%;(2)见解析;(3)见解析【解析】【分析】(1)根据2017年私营企业49645个,比1996年增加49110个,可求出1996年私营企业的数量;根据2017年私营企业占全部企业比重达到56.4%,比1996年占比提高55.1个百分点可得出结果;(2)根据2017年国有企业、股份制企业、私营企业、外商投资企业所占全部企业比重,以及与1996年对应关系,求出1996年各种企业所占比重,可制成统计表即可;(3)根据占比变化情况,提出合理的结论即可.【详解】解:(1)根据题意得,1996年私营企业为:49645-49110=535(个),1996年私营企业占全部企业比重为:56.4%-55.1%=1.3%;故答案为:535;1.3%;(2)答案不唯一,如利用统计表表示如下:建筑企业中1996年和2017年国有企业、股份制企业、私营企业、外商投资企业所占全部企业比重情况统计表(3)答案不唯一,合理即可,如:改革开放以来,股份制企业、私营企业发展迅速,占比增长很快,而国有企业和外商投资企业则占比下降,发展出现负增长.说明国家积极鼓励和发展股份制企业、私营企业,政策向股份制企业和私营企业倾斜.【点睛】本题考查了用统计图或统计表反映一组数据的发展趋势,并从中得出合理化的意见和建议,达到搜集和整理数据的目的.89.2015年是中国人民抗日战争暨世界反法西斯胜利70周年,9月3日全国各地将举行有关纪念活动.为了解初中学生对二战历史的知晓情况,某初中课外兴趣小组在本校学生中开展了专题调查活动,随机抽取了部分学生进行问卷调查,根据学生答题情况,将结果分为A、B、C、D四类,其中A类表示“非常了解”、B类表示“比较了解”、C类表示“基本了解”、D类表示“不太了解”,调查的数据经整理后形成下列尚未完成的条形统计图(如图①)和扇形统计图(如图①):(1)在这次抽样调查中,一共抽查了名学生;(2)请把图①中的条形统计图补充完整;(3)图①的扇形统计图中D类部分所对应扇形的圆心角的度数为°;(4)如果这所学校共有初中学生1500名,请你估算该校初中学生中对二战历史“非常了解”和“比较了解”的学生共有多少名?【答案】(1)200;(2)详见解析;(3)36;(4)900.【解析】【分析】(1)利用A类的人数除以A类人数所占的百分比即可得这次调查的总人数;(2)用总人数乘C类人数所占的百分比即可求得C类的人数,在条形统计图上画出即可;(3)用D类的人数除以总人数再乘以360°即可得D类部分所对应扇形的圆心角的度数;(4)利用对二战历史“非常了解”和“比较了解”的学生人数除以这次抽查的人数,先计算出对二战历史“非常了解”和“比较了解”的学生所占的比例,再用总人数乘以这个比例即可得校初中学生中对二战历史“非常了解”和“比较了解”的学生的人数.【详解】解:(1)30÷15%=200,故答案为:200;(2)200×30%=60如图所示:(3)20÷200=0.1=10%,360°×10%=36°,故答案为:36;(4)30901500900200+⨯= 答:该校初中学生中对二战历史“非常了解”和“比较了解”的学生估计有900名.【点睛】此题考查了扇形统计图和频数(率)分布表,关键是正确从扇形统计图和表中得到所用的信息.90.为参加学校举办的演讲比赛,每班选拔一名学生参赛.八年级(2)班有甲、乙、丙三名候选人参加班内预赛,对他们的稿件质量成绩和口试成绩(单位:分)分别用两种方式进行了统计,如表和图①:(1)请将表和图①中的空缺部分补充完整;(2)选拔的最后一个程序是由本班的50名同学进行投票,三名候选人的得票情况如图②(没有弃权票,每名学生只能推荐一人),请计算每人的得票数;(3)若每票计1分,班委会将稿件质量、口试、得票三项测试得分按4:3:3的比例确定最后成绩,请计算三名学生的最后成绩,并根据成绩判断谁能当选.【答案】(1)如图所示:(2)甲20票、乙20票、丙10票;(3)甲67分、乙68分、丙64.5分,乙当选.【解析】试题分析:(1)仔细分析统计表及统计图中的数据即可得到结果;(2)根据扇形统计图的特征即可求得结果;(3)分别根据加权平均数的计算方法求得三名学生的最后成绩,再比较即可作出判断.(1)如图所示:(2)由题意得甲票、乙票、丙票;(3)由题意得甲的最后成绩分乙的最后成绩分丙的最后成绩分∵∵乙能当选.考点:统计的应用点评:本题是统计的基础应用题,重要考查学生对统计知识的熟练掌握程度,在中考中比较常见.。
新人教版七年级数学下册第八、九、十章综合复习考试卷
班级: 姓名: 成绩:
一、选择题(每小题3分,共30分)
1、下列方程组是二元一次方程组的是( )
(A )141y x x y ⎧+=⎪⎨⎪-=⎩
(B )43624x y x y +=⎧⎨+=⎩ (C )⎩⎨⎧+==-1312z y y x (D )⎩⎨⎧=+=+4283y x y xy 2、方程组125x y x y -=⎧⎨+=⎩
的解是( ) (A )12x y =-⎧⎨=⎩ (B )21
x y =⎧⎨=-⎩ (C )12x y =⎧⎨=⎩ (D )21x y =⎧⎨=⎩ 3、由62=-y x ,可以得到用x 表示y 的式子是( )
(A )62+=x y (B )62--=x y (C )62-=x y (D )62+-=x y
4、已知35
x y =⎧⎨=-⎩是方程22=+y mx 的一个解,那么m 为( )
(A )4 (B )83
(C )4- (D )1 5、如果x y y x b b a 2427773-+-和是同类项,则y x 、的值是( )
A 、2,3=-=y x
B 、3,2-==y x
C 、3,2=-=y x
D 、2,3-==y x
6、若二元一次方程9,132,73-==+=-kx y y x y x 有公共解,则k 等于( ) A 、3 B 、-3 C 、-4 D 、4
7、若a <b ,c 是实数,则下列各式中一定成立的是( )
A .a -1<b -1
B .a 3 >b 3
C .1-a <1-b
D . ac <bc 8、在数轴上表示不等式2-≥x 的解集,正确的是( )
A B C D
9、某次知识竞赛共有30道选择题,答对一题得10分,答错或不答扣3分.要使总得分不少于70分,则应该至少答对几道题?若设答对x 道题,可列式子为( )
A.103(30)70x x -->
B.103(30)70x x --≤
C.10370x x -≥
D. 103(30)70x x --≥
10、不等式45111
x -<的正整数解的个数为( ) A 、1个 B 、3个 C 、4个 D 、5个
二、填空题(每小题3分,共30分)
1、用不等式表示:a 是正数: ;a 与2的差小于-1: ;a 的2倍与7的差大于3: 。
2、试写出方程42=+y x 一组整数解 .
3、若点)2,1(-m P 在第二象限,则关于未知数x 的不等式m x m ->-1)1(的解集为 .
4、试写出一个解为21x y =⎧⎨=-⎩
的二元一次方程组 (只要求写出一个). 5、一组数据19,22,25,30,28,27,26,21,20,22,24,23,25,29,27,28,27,30,19,20,为了画频率分布直方图,先计算出最大值与最小值的差是 ,如果取组距为2,应分为 组,第一组的起点定为18.5,在26.5~28.5范围内的频数是 ,频率是 .
6、若方程456m n m n x y -+-=是二元一次方程,则____m =,____n =.
7、若23x y -=-,则52____x y -+=.
8、已知三角形的两边为3和4,则第三边a 的取值范围是________.
9、若2(5212)3260x y x y +-++-=,则=+y x 2 .
10、小亮准备用36元钱买笔和练习本,已知每支笔3.5元,每本练习本1.8元.他买了8本练习本,最多还可以买 _________支笔.
三、解答题
1、(每小题5分,共10分)解下列方程组.
(1) ⎩⎨⎧=-=+83732y x y x (2)1323334
m n m n ⎧+=⎪⎪⎨⎪-=⎪⎩
2、(每小题5分,共10分)解下列不等式,并把解集表示在数轴上.
(1)3129()()-<+x x (2)x x +-<+521322
3、(6分)已知方程6mx ny +=的两个解是11x y =⎧⎨=⎩;21x y =⎧⎨=-⎩ ,求n m -2的值.
4、(8分)如图4-1,在8
5、(8分)从古城西安到上海的的航线长km 1200,一架飞机从西安顺飞往上海需要2小时30分,
从上海逆风飞往西安需要3小时20分,求飞机的平均速度与风速.
6、(9分)某地为提倡节约用水,准备实行自来水“阶梯计费”方式,用户用水不超出基本用水量的部分享受基本价格,超出基本用水量的部分实行加价收费,为更好地决策,自来水公司随机抽取部分用户的用水量数据,并绘制了如下不完整的统计图(每组数据包括右端点但不包括左端点),请你根据统计图解决下列问题:
(1)此次调查抽取了多少用户的用水量数据?
(2)补全频数分布直方图,求扇形统计图中“25吨~30吨”部分的圆心角度数;
(3)如果自来水公司将基本用水量定为每户25吨,那么该地20万用户中约有多少用户的用水全部享受基本价格?
7、(9分)康师傅水蜜桃每瓶售价2.5元,现甲、乙两家商场给出优惠政策:甲商场全部9折,
乙商场5瓶以上的部分8折.若你是消费者,选哪家商场购买比较合算?。