与圆有关的角
- 格式:doc
- 大小:303.50 KB
- 文档页数:8
探究与圆有关的角随着新课程改革的不断深入,各地中考命题都发生了很大的变化,尤其对于圆的考查,难度、内容与形式都有很大的改变,并且多数省、市都以计算或者简单探究解答题的形式来考查圆的知识,其中大多涉及到与圆有关的角:圆心角的度数等于它所对的弧的度数.圆周角的度数等于它所对的弧的度数的一半.主要考查同学们的观察、分析、推理及运用知识、发现创新能力。
现就以精选几个与圆有关的角为例进行分析与说明,希望能给同学们带来启示与帮助。
例1:如图,在等腰△ABC 中,AC =BC ,∠C =1000,点P 在△ABC 的外部,并且PC =BC ,求∠APB 的度数。
思路点拨:由题中的条件AC =BC =PC ,联想到圆的定义,画出以点C 为圆心,AC 为半径的圆,使此题得以突破与解决。
例2:.如图,BC 为半圆O 的直径,点F 是弧BC 上一动点(点F 不与B 、C 重合),A 是弧BF 上的中点,设∠FBC=α, ∠ACB=β.⑴当α=50°时,求β的度数。
⑵猜想α与β之间的关系,并给与证明。
思路点拨:解此题的关键是把握圆周角与所对弧的度数之间的关系。
例3:如图,点A 、B 、C 、D 为圆O 的四等分点,动点P 从圆心O 出发,沿O-C-D-O 的路线作匀速运动.设运动时间为t 秒, ∠APB 的度数为y 度,则下列图象中表示y 与t 之间函数关系最恰当的是().例4:如图,AB 是⊙O 的直径,BC 是弦,OD ⊥BC 于E ,交弧BC 于D .(1)请写出四个不同类型的正确结论; (2)若BC =8,ED =2,求⊙O 的半径.(3)连CD ,设∠BDC=α,∠ABC=β,探究α与β之间的关系式,并给给予适当的说明。
思路点拨:根据垂径定理及推论可得出线段相等、角相等=线段平等、三角形全等或相似等结论;同时利用构造勾股定理列出方程求出圆的半径;利用直径所对的圆周角为直角及及圆内接四边形对角互补等进行分析与探究。
知识归纳:圆本章重点1.圆的定义:(1)线段OA绕着它的一个端点O旋转一周,另一个端点A所形成的封闭曲线,叫做圆.(2)圆是到定点的距离等于定长的点的集合.2.判定一个点P是否在⊙O上.设⊙O的半径为R,OP=d,则有d>r点P在⊙O 外;d=r点P在⊙O 上;d<r点P在⊙O 内.3.与圆有关的角(1)圆心角:顶点在圆心的角叫圆心角.圆心角的性质:圆心角的度数等于它所对的弧的度数.(2)圆周角:顶点在圆上,两边都和圆相交的角叫做圆周角.圆周角的性质:①圆周角等于它所对的弧所对的圆心角的一半.②同弧或等弧所对的圆周角相等;在同圆或等圆中,相等的圆周角所对的弧相等.③90°的圆周角所对的弦为直径;半圆或直径所对的圆周角为直角.④如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形.⑤圆内接四边形的对角互补;外角等于它的内对角.(3)弦切角:顶点在圆上,一边和圆相交,另一边和圆相切的角叫弦切角.弦切角的性质:弦切角等于它夹的弧所对的圆周角.弦切角的度数等于它夹的弧的度数的一半.4.圆的性质:(1)旋转不变性:圆是旋转对称图形,绕圆心旋转任一角度都和原来图形重合;圆是中心对称图形,对称中心是圆心.在同圆或等圆中,两个圆心角,两条弧,两条弦,两条弦心距,这四组量中的任意一组相等,那么它所对应的其他各组分别相等.(2)轴对称:圆是轴对称图形,经过圆心的任一直线都是它的对称轴.垂径定理及推论:(1)垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.(2)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧.(3)弦的垂直平分线过圆心,且平分弦对的两条弧.(4)平分一条弦所对的两条弧的直线过圆心,且垂直平分此弦.(5)平行弦夹的弧相等.5.三角形的内心、外心、重心、垂心(1)三角形的内心:是三角形三个角平分线的交点,它是三角形内切圆的圆心,在三角形内部,它到三角形三边的距离相等,通常用“I”表示.(2)三角形的外心:是三角形三边中垂线的交点,它是三角形外接圆的圆心,锐角三角形外心在三角形内部,直角三角形的外心是斜边中点,钝角三角形外心在三角形外部,三角形外心到三角形三个顶点的距离相等,通常用O表示.(3)三角形重心:是三角形三边中线的交点,在三角形内部;它到顶点的距离是到对边中点距离的2倍,通常用G表示.(4)垂心:是三角形三边高线的交点.6.切线的判定、性质:(1)切线的判定:①经过半径的外端并且垂直于这条半径的直线是圆的切线.②到圆心的距离d等于圆的半径的直线是圆的切线.(2)切线的性质:①圆的切线垂直于过切点的半径.②经过圆心作圆的切线的垂线经过切点.③经过切点作切线的垂线经过圆心.(3)切线长:从圆外一点作圆的切线,这一点和切点之间的线段的长度叫做切线长.(4)切线长定理:从圆外一点作圆的两条切线,它们的切线长相等,这一点和圆心的连线平分两条切线的夹角.7.圆内接四边形和外切四边形(1)四个点都在圆上的四边形叫圆的内接四边形,圆内接四边形对角互补,外角等于内对角.(2)各边都和圆相切的四边形叫圆外切四边形,圆外切四边形对边之和相等.8.直线和圆的位置关系:设⊙O 半径为R,点O到直线l的距离为d.(1)直线和圆没有公共点直线和圆相离d>R.(2)直线和⊙O有唯一公共点直线l和⊙O相切d=R.(3)直线l和⊙O 有两个公共点直线l和⊙O 相交d<R.9.两圆的性质:(1)两个圆是一个轴对称图形,对称轴是两圆连心线.(2)相交两圆的连心线垂直平分公共弦,相切两圆的连心线经过切点.10.圆中有关计算:圆的面积公式:,周长C=2πR.圆心角为n°、半径为R的弧长.圆心角为n°,半径为R,弧长为l的扇形的面积.弓形的面积要转化为扇形和三角形的面积和、差来计算.圆柱的侧面图是一个矩形,底面半径为R,母线长为l的圆柱的体积为,侧面积为2πRl,全面积为.圆锥的侧面展开图为扇形,底面半径为R,母线长为l,高为h的圆锥的侧面积为πRl ,全面积为,母线长、圆锥高、底面圆的半径之间有.重点、热点垂径定理及推论;圆心角、弧、弦、弦心距之间的关系定理. 运用圆内接四边形的性质解有关计算和证明题.。
圆一、本章知识框架二、本章重点1.圆的定义:(1)线段OA绕着它的一个端点O旋转一周,另一个端点A所形成的封闭曲线,叫做圆.(2)圆是到定点的距离等于定长的点的集合.2.判定一个点P是否在⊙O上.设⊙O的半径为R,OP=d,则有d>r点P在⊙O 外;d=r点P在⊙O 上;d<r点P在⊙O 内.3.与圆有关的角(1)圆心角:顶点在圆心的角叫圆心角.圆心角的性质:圆心角的度数等于它所对的弧的度数.(2)圆周角:顶点在圆上,两边都和圆相交的角叫做圆周角.圆周角的性质:①圆周角等于它所对的弧所对的圆心角的一半.②同弧或等弧所对的圆周角相等;在同圆或等圆中,相等的圆周角所对的弧相等.③90°的圆周角所对的弦为直径;半圆或直径所对的圆周角为直角.④如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形.⑤圆内接四边形的对角互补;外角等于它的内对角.(3)弦切角:顶点在圆上,一边和圆相交,另一边和圆相切的角叫弦切角.弦切角的性质:弦切角等于它夹的弧所对的圆周角.弦切角的度数等于它夹的弧的度数的一半.4.圆的性质:(1)旋转不变性:圆是旋转对称图形,绕圆心旋转任一角度都和原来图形重合;圆是中心对称图形,对称中心是圆心.在同圆或等圆中,两个圆心角,两条弧,两条弦,两条弦心距,这四组量中的任意一组相等,那么它所对应的其他各组分别相等.(2)轴对称:圆是轴对称图形,经过圆心的任一直线都是它的对称轴.垂径定理及推论:(1)垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.(2)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧.(3)弦的垂直平分线过圆心,且平分弦对的两条弧.(4)平分一条弦所对的两条弧的直线过圆心,且垂直平分此弦.(5)平行弦夹的弧相等.5.三角形的内心、外心、重心、垂心(1)三角形的内心:是三角形三个角平分线的交点,它是三角形内切圆的圆心,在三角形内部,它到三角形三边的距离相等,通常用“I”表示.(2)三角形的外心:是三角形三边中垂线的交点,它是三角形外接圆的圆心,锐角三角形外心在三角形内部,直角三角形的外心是斜边中点,钝角三角形外心在三角形外部,三角形外心到三角形三个顶点的距离相等,通常用O表示.(3)三角形重心:是三角形三边中线的交点,在三角形内部;它到顶点的距离是到对边中点距离的2倍,通常用G表示.(4)垂心:是三角形三边高线的交点.6.切线的判定、性质:(1)切线的判定:①经过半径的外端并且垂直于这条半径的直线是圆的切线.②到圆心的距离d等于圆的半径的直线是圆的切线.(2)切线的性质:①圆的切线垂直于过切点的半径.②经过圆心作圆的切线的垂线经过切点.③经过切点作切线的垂线经过圆心.(3)切线长:从圆外一点作圆的切线,这一点和切点之间的线段的长度叫做切线长.(4)切线长定理:从圆外一点作圆的两条切线,它们的切线长相等,这一点和圆心的连线平分两条切线的夹角.7.圆内接四边形和外切四边形(1)四个点都在圆上的四边形叫圆的内接四边形,圆内接四边形对角互补,外角等于内对角.(2)各边都和圆相切的四边形叫圆外切四边形,圆外切四边形对边之和相等.8.直线和圆的位置关系:设⊙O 半径为R,点O到直线l的距离为d.(1)直线和圆没有公共点直线和圆相离d>R.(2)直线和⊙O有唯一公共点直线l和⊙O相切d=R.(3)直线l和⊙O 有两个公共点直线l和⊙O 相交d<R.9.圆和圆的位置关系:设的半径为R、r(R>r),圆心距.(1)没有公共点,且每一个圆上的所有点在另一个圆的外部外离d>R+r.(2)没有公共点,且的每一个点都在外部内含d<R-r(3)有唯一公共点,除这个点外,每个圆上的点都在另一个圆外部外切d=R+r.(4)有唯一公共点,除这个点外,的每个点都在内部内切d=R-r.(5)有两个公共点相交R-r<d<R+r.10.两圆的性质:(1)两个圆是一个轴对称图形,对称轴是两圆连心线.(2)相交两圆的连心线垂直平分公共弦,相切两圆的连心线经过切点.11.圆中有关计算:圆的面积公式:,周长C=2πR.圆心角为n°、半径为R 的弧长.圆心角为n°,半径为R,弧长为l 的扇形的面积.弓形的面积要转化为扇形和三角形的面积和、差来计算.圆柱的侧面图是一个矩形,底面半径为R,母线长为l 的圆柱的体积为,侧面积为2πRl ,全面积为.圆锥的侧面展开图为扇形,底面半径为R,母线长为l,高为h的圆锥的侧面积为πRl ,全面积为,母线长、圆锥高、底面圆的半径之间有.一、知识点1、与圆有关的角——圆心角、圆周角(1)图中的圆心角;圆周角;(2)如图,已知∠AOB=50度,则∠ACB= 度;(3)在上图中,若AB是圆O的直径,则∠AOB= 度;OA B3、点和圆的位置关系有三种:点在圆,点在圆,点在圆;例:已知圆的半径r等于5厘米,点到圆心的距离为d,(1)当d=2厘米时,有d r,点在圆(2)当d=7厘米时,有d r,点在圆(3)当d=5厘米时,有d r,点在圆4、直线和圆的位置关系有三种:相、相、相.例:已知圆的半径r等于12厘米,圆心到直线l的距离为d,(1)当d=10厘米时,有d r,直线l与圆(2)当d=12厘米时,有d r,直线l与圆(3)当d=15厘米时,有d r,直线l与圆5、圆与圆的位置关系:例:已知⊙O1的半径为6厘米,⊙O2的半径为8厘米,圆心距为 d,则:R+r= , R-r= ;(1)当d=14厘米时,因为d R+r,则⊙O1和⊙O2位置关系是:(2)当d=2厘米时,因为d R-r,则⊙O1和⊙O2位置关系是:(3)当d=15厘米时,因为,则⊙O1和⊙O2位置关系是:(4)当d=7厘米时,因为,则⊙O1和⊙O2位置关系是:(5)当d=1厘米时,因为,则⊙O1和⊙O2位置关系是:6、切线性质:例:(1)如图,PA是⊙O的切线,点A是切点,则∠PAO= 度(2)如图,PA、PB是⊙O的切线,点A、B是切点,则 = ,∠ =∠;7、圆中的有关计算(1)弧长的计算公式:例:若扇形的圆心角为60°,半径为3,则这个扇形的弧长是多少? 解:因为扇形的弧长=()180所以l =()180= (答案保留π)(2)扇形的面积:例6:①若扇形的圆心角为60°,半径为3,则这个扇形的面积为多少? (3)圆锥:例:圆锥的母线长为5cm ,半径为4cm ,则圆锥的侧面积是多少?解:∵圆锥的侧面展开图是 形,展开图的弧长等于 ∴圆锥的侧面积=8、三角形的外接圆的圆心——三角形的外心——三角形的 交点;三角形的内切圆的圆心——三角形的内心——三角形的 交点;基础练习一。
与圆有关的角阅读与思考与圆有关的角主要有圆心角、圆周角、弦切角.特别的,直径所对的圆周角是直角.圆内接四边形提供相等的角、互补的角,在理解与圆有关的角的概念时,要注意角的顶点与圆的位置关系、角的两边与圆的位置关系.角在解题中经常发挥重要的作用,是证明角平分线、两线平行、两线垂直,判定全等三角形、相似三角形的主要条件,而圆的特点又使角的互相转化具备了灵活多变的优越条件,是解题中最活跃的元素.熟悉以下基本图形和以上基本结论.例题与求解【例1】如图,在△ABC中,AB=AC=5,BC=2,以AB为直径的⊙O分别交AC,BC于点D,E,则△CDE的面积为___________.C例1题图例2题图解题思路:作DF⊥BC于F,需求出CE,DF的长.由AB为⊙O的直径作出相关辅助线.【例2】如图,△ABC内接于⊙O,M是中点,AM交BC于点D,若AD=3,DM=1,则MB的长是()A.4 B.2 C.3 D. 3解题思路:图中隐含许多相等的角,利用比例线段计算.【例3】如图1,⊙O中AB是直径,C是⊙O上一点,∠ABC=45°,等腰直角三角形DCE中,∠DCE是直角,点D在线段AC上.(1) 证明:B,C,E三点共线;(2) 若M是线段BE的中点,N是线段AD的中点,证明:MN=2OM;(3) 将△DCE绕点C逆时针旋转α(0°<α<90°)后,记为△D1CE1(如图2).若M1是线段BE1的中点,N1是线段AD1的中点,M1N1=2OM1是否成立?若是,请证明;若不是,说明理由.解题思路:对于(2),充分利用条件中的多个中点,探寻线段之间的数量关系与位置关系.【例4】如图所示,ABCD为⊙O的内接四边形,E是BD上的一点,∠BAE=∠DAC. 求证:(1)△ABE∽△ACD;(2) AB·DC+AD·BC=AC·BD.解题思路:由(1)可类比猜想,为(2)非常规问题的证明铺平道路.【例5】如图1,已知⊙M与x轴交于点A,D,与y轴正半轴交于点B,C是⊙M上一点,且A(-2,0),B(0,4),AB=BC.(1) 求圆心M的坐标;(2) 求四边形ABCD的面积;(3) 如图2,过C点作弦CF交BD于点E,当BC=BE时,求CF的长.解题思路:作出基本辅助线(如连接BM或AC),这是解(1)、(2)的基础;对于(3),由BC=BE,得∠BEC=∠BCE,连接AC,将与圆无关的∠BEC转化为与圆有关角,导出CF平分∠ACD,这是解题的关键.E1图1 图2【例6】如图,AB,AC,AD是⊙O中的三条弦,点E在AD上,且AB=AC=AE.求证:(1) ∠CAD=2∠DBE;(2) AD2-AB2=BD·DC.解题思路:对于(2),AD2-AB2=(AD+AB)(AD-AB)=(AD+AE)(AD-AE)=(AD+AE) ·DE,需证(AD+AE) ·DE=BD·DC,从构造相似三角形入手.。
年 级 初三 学 科 数学 编稿老师 田一鹏 课程标题 圆中有关的角一校 张琦锋二校林卉审核孙永涛一、考点突破1. 掌握和圆有关的角:圆心角、圆周角、圆内角、圆外角、弦切角的定义及其度量。
2. 掌握圆内接四边形的性质定理。
3. 了解弧、弦、圆心角、圆周角之间的关系,并能运用这些关系解决有关问题。
二、重难点提示重点:弧、弦、圆心角、圆周角之间的关系。
难点:圆周角定理的应用和分类讨论的思想在解题中的应用。
一、圆中有关的角⎧⎪⎪⎪⎨⎪⎪⎪⎩圆心角圆周角圆中有关的角圆内角圆外角弦切角1. 圆心角:顶点在圆心的角叫做圆心角。
OCB把整个圆周等分成360份,每一等份弧是1°的弧,圆心角的度数和它所对的弧的度数相等。
在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦的弦心距相等。
在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两弦的弦心距中有一组量相等,那么它们相对应的其余各组量都相等。
2. 圆周角:顶点在圆上,并且两边都和圆相交的角叫做圆周角。
OBCA一条弧所对的圆周角等于它所对的圆心角的一半,同弧或等弧所对的圆周角相等;反之也成立。
直径所对的圆周角是直角。
BCAO3. 圆内角:顶点在圆内(两边自然和圆相交)的角叫圆内角。
P OBA圆内角的度数等于它所对的弧的度数与它的对顶角所对的弧的度数的和的一半。
DPB COA4. 圆外角:顶点在圆外,并且两边都和圆相交(或相切)的角叫圆外角。
DPBCAO圆外角的度数等于它所夹的两弧度数的差(较大弧的度数减去较小弧的度数)的一半。
5. 弦切角:顶点在圆上,一边和圆相交,另一边和圆相切的角叫做弦切角。
弦切角等于它所夹的弧对的圆周角。
推论①弦切角等于它所夹的弧所对的圆心角的一半。
推论②如果两个弦切角所夹的弧相等,那么这两个弦切角也相等。
二、圆的内接四边形如果一个多边形的所有顶点都在同一个圆上,那么这个多边形叫做圆内接多边形,这个圆叫做这个多边形的外接圆。
OA BE FCD课前回顾1、垂径定理的概念及其推论:2、回顾练习:如图:AB 是的直径,CD 是弦,过A 、B 两点作CD 的垂线,垂足分别为E 、F ,若AB=10,AE=3,BF=5,求EC 的长。
知识点一、圆心角1、圆心角的定义:顶点在圆心的角叫做圆心角。
2、圆心角的度数与它所对的弧的度数之间的关系:圆心角的度数等于它所对弧的度数。
3、圆心角定理:在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦也相等。
4、圆心角定理推论:在同圆或等圆中,两个圆心角、两条弦、两条弧、两条弦的弦心距中有一组量相等,其余各组量都相等。
例题讲练例题一、概念理解1.______________的______________叫做圆心角. 2.如图,若长为⊙O 周长的nm,则∠AOB =____________.与圆有关的角——圆心角、圆周角3.在同圆或等圆中,两个圆心角及它们所对的两条弧、两条弦中如果有一组量相等,那么_ _____________________.4.在圆中,圆心与弦的距离(即自圆心作弦的垂线段的长)叫做弦心距,不难证明,在同圆或等圆中,如果两条弦相等,那么它们的弦心距也______.反之,如果两条弦的弦心距相等,那么_____________________.5. 求证:在同圆或等圆中,两条弦相等,那么它们的弦心距也相等。
例题二、基础应用6.已知:如图,A、B、C、D在⊙O上,AB=CD.求证:∠AOC=∠DOB.7.已知:如图,P是∠AOB的角平分线OC上的一点,⊙P与OA相交于E,F点,与OB 相交于G,H点,试确定线段EF与GH之间的大小关系,并证明你的结论.8.如图,AB为⊙O的直径,C,D为⊙O上的两点,且C为的中点,若∠BAD=20°,求∠ACO的度数.例题三:综合应用9.⊙O中,M为的中点,则下列结论正确的是( ).A.AB>2AM B.AB=2AMC.AB<2AM D.AB与2AM的大小不能确定10.如图,⊙O中,AB为直径,弦CD交AB于P,且OP=PC,试猜想与之间的关系,并证明你的猜想.11.如图,⊙O中,直径AB=15cm,有一条长为9cm的动弦CD在上滑动(点C与A,点D与B不重合),CF⊥CD交AB于F,DE⊥CD交AB于E.(1)求证:AE=BF;(2)在动弦CD滑动的过程中,四边形CDEF的面积是否为定值?若是定值,请给出证明并求这个定值;若不是,请说明理由.CAB1、圆周角的定义:顶点在圆上,两条边与圆相交的角叫做圆周角.2、圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等;都等于这条弧所对的圆心角的一半。
九年级 时间2011.12、15编号 26编制人 秦绍杰 审核人 审批人《与圆有关的角》导学提纲班级 姓名 小组 组内评价 老师评价一、学习目标 1、记住圆心角、圆周角定义及定理以及其它与圆有关的角的重要结论,并能灵活运用于计算和证明。
2、学会从表象中抽象出本质规律,提高逻辑思维能力与推理能力。
学会一题多解、一题多变,达到举一反三的目的。
3、极度热情、全力以赴,在小组活动中,积极参与,勇于展示自己。
二、学习过程 (一)知识梳理 (二)基础练习 1、判断: (1) 相等的圆心角所对的弧相等。
( ) (2)等弧所对的圆周角相等。
( ) (3) 圆内接四边形的任何一个外角都等于它的内对角。
( ) (4)在同圆或等圆中, 同一条弦所对的圆周角相等。
( ) 2、如图:⊙O 中,∠AOB=60°,半径OA=5cm, 则弦AB= _____。
3、如图:△ABC 内接于⊙O ,∠C= 30°,AB=5cm, 则⊙O 半径的长为____。
4、四边形ABCD 为⊙O 的内接四边形,点E 在DC 的延长线上,如果∠BOD= 120°,则∠BCE=________。
5. 如图,A,D 是⊙O 上的两个点,BC 是直径, 若∠D=350,则∠OAC 的度数是 。
(三)、拓展提高: 1. 如图,三角形的内切圆与边AB 、BC 、CA 分别相切于D 、E 、F ,直线GH 切圆O 于点N ,分别交AB 、 AC 于点G 、H 、点M 在圆上。
若∠A=50°, ∠BOC=_______∠DMF=________ ∠GOH=____。
感受目标,有的放矢。
自学要求:认真思考,小组内详细梳理。
独立思考完成基础练习;然后全班交流答案找出不足,进行改正。
认真分析,独立完成后,小组交流,注意梳理题目中的知识点和运用的数学思想方法2、如图:AB 为半圆O 的直径,弦AD,BC 相交于点P ,若CD=3, 小组内大胆质,AB=4,求sin ∠APC 的值。