七年级数学上册有理数乘法(2)教案
- 格式:doc
- 大小:137.00 KB
- 文档页数:4
有理数的乘法(第二课时) 教案[教学目标]知识目标:有理数乘法运算能力目标:能确定几个不是0的有理数乘积运算的符号,进行有理数运算;运用乘法的分配律进行有理数的乘法计算; 情感态度和价值观:体会用计算器给有理数运算带来的方便[教学重点与难点]重点: 有理数乘法运算有理数的乘法运算 你还记得有理数的乘法法则吗?(同号得正,异号得负,并把绝对值相乘)[知识讲解]活动一: 从有理数的乘法法则可以看出,有理数的乘法关键是符号的确定,那么三个以上的有理数相乘积的符号怎么确定呢?下面我们就来研究这个问题. 确定下列积的符号,你能从中发现什么?①()5432⨯⨯⨯- ②()()5432⨯⨯-⨯-③()()()()5432-⨯-⨯-⨯- ④()()()50432-⨯⨯⨯-⨯-学生归纳结论:结论1:有一个因数为0,则积为0;结论2:几个不等于0的数相乘,积的符号由负因数的个数决定:当负因数的个数为奇数时,积为负;当负因数的个数为偶数时,积为正. 巩固练习:判断下列积的符号(口答)①()()1432-⨯⨯⨯- ②()()()6532-⨯-⨯⨯-③()()()222-⨯-⨯- ④()()()()3333-⨯-⨯-⨯-活动二:例3 计算:41)54(6)5()2();41()59(65)3()1(⨯-⨯⨯--⨯-⨯⨯- 几个数相乘,如果其中有因数0,积等于0 课堂练习计算:(1)(-85)×(-25)×(-4);(2)(-87)×15×(-171); (3)(151109-)×30;(4)2524×7. (5)-9×(-11)-12×(-8);课后作业教科书第38页 习题1.4第7题(1)(2)(3)课后选作题1.计算:).8(161571)6(;04.0311843)5(;36187436597)4(;534.265)3();1.0()24.8()10)(2();8(25.12014)1(-⨯⎪⎭⎫ ⎝⎛--⨯-⨯⎪⎭⎫ ⎝⎛-+-⨯⨯--⨯-⨯--⨯⨯⎪⎭⎫ ⎝⎛- 2.2003减去它的21,再减去余下的31,再减去余下的41,依次类推,一直到减去余下的20031,求最后剩下的数。
2024新人教版七年级上册数学教案——《有理数的乘法》一、教学目标1.理解有理数的乘法法则,掌握有理数乘法的运算规律。
2.能够熟练运用有理数乘法法则进行计算。
3.培养学生的逻辑思维能力和解决问题的能力。
二、教学重难点1.教学重点:有理数乘法法则的理解和运用。
2.教学难点:符号法则的应用。
三、教学过程1.导入新课师:同学们,我们之前学习了有理数的加法和减法,那么大家思考一下,有理数的乘法应该怎么进行呢?生1:我觉得可以参考加法的规则,但是乘法可能会有一些不同。
生2:我觉得乘法可能和符号有关,正数乘以正数,负数乘以负数,可能会有不同的结果。
师:很好,大家提到了符号,这正是我们要学习的重点。
那么今天我们就来学习有理数的乘法。
2.学习有理数乘法法则师:我们来看一下有理数乘法的法则。
当两个有理数相乘时,它们的积的符号由这两个有理数的符号决定。
(1)正数乘以正数,积为正数。
(2)负数乘以负数,积为正数。
(3)正数乘以负数,积为负数。
(4)0乘以任何数,积为0。
师:请大家注意,这里的“符号”指的是正负号,而不是数字本身。
3.练习有理数乘法(1)3×4(2)(-2)×(-3)(3)(-5)×2(4)0×7师:大家完成后,可以相互检查一下答案。
我来选取一位同学来讲解一下自己的解题过程。
生3:我完成了题目,第一题是3×4,因为都是正数,所以积也是正数,答案是12。
师:很好,你的理解很正确。
其他同学的呢?生4:我做了第二题,(-2)×(-3)。
因为两个负数相乘,所以积是正数,答案是6。
师:很好,大家都掌握了有理数乘法的法则。
我们再来做一些更复杂的题目。
4.解决实际问题(1)小华向东走了3米,然后又向西走了4米,求小华现在离起点的距离。
(2)小王从地面开始,每上升1米,他的高度增加1米;每下降1米,他的高度减少2米。
如果小王上升了3米,然后下降了4米,求小王现在的高度。
有理数的乘法教案(精选多篇)第一篇:有理数的乘法1教案1.4.1有理数的乘法一、教学内容人教版七年级数学〔上〕第一章第四节《有理数的乘除法》,见课本p28.二、学情分析^p在此之前,本班学生已有探究有理数加法法那么的经历,多数学生能在老师指导下探究问题。
由于学生已理解利用数轴表示加法运算过程,我们仍用数轴表示乘法运算过程。
三、教学目的1、知识与技能目的掌握有理数乘法法那么,能利用乘法法那么正确进展有理数乘法运算。
2、才能与过程目的经历探究、归纳有理数乘法法那么的过程,开展学生观察、归纳、猜测、验证等才能。
3、情感与态度目的通过学生自己探究出法那么,让学生获得成功的喜悦。
四、教学重点、难点重点:运用有理数乘法法那么正确进展计算。
难点:有理数乘法法那么的探究过程,符号法那么及对法那么的理解。
五、教学手段制作幻灯片,采用多媒体的现代课堂教学手段.六、教学方法注意创设问题情景,选择“情景---探究---发现”的教学形式,通过直观教学,借助多媒体吸引学生的注意力,激发学习兴趣。
在整个学习过程中,以“自主参与,勇于探究,合作交流”的探究式学法为主,从而到达进步学习才能的目的。
七、教学过程1、创设问题情景,激发学生的求知欲望,导入新课。
前面我们学习了有理数的加减法,接下来就应该学习有理数的乘除法.同学们先看下面的问题〔出示蜗牛爬的动画幻灯片〕老师:这涉及有理数乘法运算法那么,正是我们今天需要讨论的问题.2、学生探究、归纳法那么学生分为四个小组活动,进展乘法法那么的探究。
〔1〕老师出示蜗牛在数轴上运动的问题,让学生理解。
蜗牛如今的位置在点o,规定向右的方向为正,向左的方向为负;如今时间后为正,如今时间前为负.a.+ 2 ×〔+3〕+2看作向右运动的速度,×〔+3〕看作运动3分钟后。
结果:3分钟后的位置+2 ×〔+3〕=b. -2 ×〔+3〕-2看作向左运动的速度,×(+3)看作运动3分钟后。
有理数的乘方(第二课时) 教学设计一、内容和内容解析1.内容本节课是人教版《义务教育教科书•数学》七年级上册(以下统称“教材”)第一章“有理数”1.5.1 有理数的乘方(第二课时),内容包括:有理数加、减、乘、除、乘方混合运算.2.内容解析有理数的混合运算是在学生学习并掌握了有理数的加、减、乘、除、乘方运算的基础上提出的,它涵盖了有理数一章的主要内容,是对前面所学的运算的小结.教材在前面学习有理数加、减、乘、除法运算时,就已经适时介绍过加减法混合、乘除法混合和加减乘除混合运算的内容在此加入乘方与前面四种运算的混合,构成了三级混合运算(加减法是第一级运算;乘除法是第二级运算;乘方以及以后将学习的开方是第三级运算)以期进一步培养学生的运算能力进行有理数的混合运算的关键是熟练地掌握有理数的加、减、乘、除、乘方的运算法则、运算律和运算顺序.基于以上分析,确定本节课的教学重点为:有理数的混合运算顺序、运算法则和运算律的应用.二、目标和目标解析1.目标(1)知道有理数加、减、乘、除、乘方混合运算的运算顺序.(2)会进行有理数的混合运算.(运算能力)2.目标解析在有理数的加、减、乘、除和乘方混合运算中,加减法叫做第一级运算;乘除法叫做第二级运算;乘方和开方(以后再学)叫做第三级运算.一个式子里如果含有几级运算,应先算高级运算,再算低一级运算,即先乘方,再乘除,后加减;同一级运算按从左到右的顺序进行;如果有括号,先算小括号,再算中括号,最后算大括号里的运算;如果有绝对值,就先算绝对值.进行有理数的混合运算,首先要看清算式的层次如括号、运算层级等,确定运算顺序,再根据各种运算法则,先确定每一种运算结果的符号,再计算其结果的绝对值.能够使用加法与乘法运算律的,应使用运算律来提高运算的速度与准确率.三、教学问题诊断分析在第1课时中学生已经学习了乘方的概念,理解了乘方的意义,会进行简单的乘方运算,但对乘方运算结果的变化规律缺乏整体性的认识.由于七年级的学生模仿能力比较强,能够在教师的引导下,通过计算、观察、分析、交流、纳等数学活动,总结发现理数的加、减、乘、除和乘方混合运算规律.基于以上学情分析,确定本节课的教学难点为:应用有理数的混合运算解决规律探究和实际应用问题.四、教学过程设计(一)复习回顾乘方的定义这种求n 个相同因数的积的运算叫做乘方,乘方的结果叫做幂.组成要素一个数可以看作这个数本身的一次方,例如8就是81,指数1通常省略不写.乘方的符号法则:(1)正数的任何次幂是______;(2)负数的偶次幂是_____;负数的奇次幂是_____;(3)0的任何次幂等于____;(4)1的任何次幂等于____;(5)-1的偶次幂等于____;-1的奇次幂是_____.(二)自学导航问题:我们学习了有理数的哪些运算?加法,减法,乘法,除法,乘方.一个运算中,含有有理数的加、减、乘、除、乘方等多种运算,称为有理数的混合运算.思考:有理数的混合运算顺序是什么?思考下列问题:(1)2÷(2×3)与2÷2×3有什么不同?(2)2÷(12-2)与2÷12-2有什么不同? (3)6÷(-3)2与6÷(-32)有什么不同?思考:下面的算式含有哪几种运算?先算什么,后算什么?【运算顺序】1.先乘方,再乘除,最后加减;2.同级运算,从左到右进行;3.如有括号,先做括号内的运算,按小括号、中括号、大括号依次进行.(三)考点解析例1.计算:(1)(-1)3-32÷(-4)×13; (2)(-3)2×(1-3)-(3-32); (3)(-4)×[(-3)2+2]-(-3)3÷(-2). 解:(1)原式=-1+32×14×13=-1+18=-78(2)原式=×(-2)-(3-9)=-18-(-6)=-18+6=-12;(3)原式=(-4)×(9+2)-(-27)÷(-2)=(-4)×11-13.5=-44-13.5=-57.5.【迁移应用】计算:(1)-14-(-12)÷3×|-2|; (2)-23÷49×(-23)2; (3)9+5×(-3)-(-2)2÷4; (4)(-4)3-22-|-12|×(-8)2; (5)-32+[1-(-1)3]×2÷12; (6)-53+[(-4)2-(1-62)×3]. 解:(1)原式=-1-(-12)×13×2=-1+13=-23;(2)原式=-8÷49×49=-8×94×49=-8;(3)原式=9+(-15)-4÷4=9-15-1=-7;(4)原式=-64-4-12×64=-64-4-32=-100; (5)原式=-9+(1+1)×2×2=-9+2×2×2=-9+8=-1 ;(6)原式=-125+[16-(1-36)×3]=-125+16+105=-4.例2.计算:(1)-43÷916×(-34)2-(1-32)×2; (2)-14-(2-112)×13×[5+(-2)3];(3)-24÷[1-(-3)2]+(23-35)×(-15); (4)-32-|(-5)3|×(-25)2-18+|-(-3)2|. 解:(1)原式=-64×169×+8×2=-64+16=-48; (2)原式=-1-12×13×(5-8)=-1-12×13×(-3)=-1+12=-12;(3)原式=-16+(1-9)+(-23×15+35×15) =-16÷(-8)+(-10+9)=2-1=1;(4)原式=-9-125×425-18÷9=-9-20-2=-31.【迁移应用】计算:(1)-(-2)2+22-(-1)9×(13-12)+16-8; (2)112×[3×(-23)2-1]-14÷(-4)2;(3)(58-23)×24+14÷(-12)3+|-22|; (4)|-57|×(45-13)÷(-23)2-(12)2; (5)-23÷[214×(-113)2]×(-0.25)2; (6)|-1+89|÷(59-34+112)-32×(-34)3.解:(1)原式=-4+4+1×(-16)-8=-8;(2)原式=32×(3×49-1)-14÷16=32×13-164=3164; (3)原式=58×24-23×24+14×(-8)+22=15-16-2+22=19; (4)原式=57×715÷49-14=13×94-14=12; (5)原式=-8÷(94×169)×116=-8×14×116=-18;(6)原式=19÷(−19)-32×(-2764)=-1+272=1212. 例3.观察下面三行数:-2, 4, -8, 16, -32, 64,…;①0, 6, -6, 18, -30, 66,…; ①-1, 2, -4, 8, -16, 32,…. ①(1)第①行数按什么规律排列?分析:观察①,发现各数均为2的倍数.联系数的乘方,从符号和绝对值两方面考虑,可发现排列的规律.解:(1)第①行数是-2,(-2)2,(-2)3,(-2)4,…(2)第①①行数与第①行数分别有什么关系?(2)第①行数是第①行相应的数加2,即-2+2,(-2)2+2,(-2)3+2,(-2)4+2,…第①行数是第①行相应的数除以2,即-2÷2,(-2)2÷2,(-2)3÷2,(-2)4÷2,…(3)取每行数的第10个数,计算这三个数的和.(3)每行数中的第10个数的和是(-2)10+[(-2)10+2]+(-2)10×0.5=1024+(1024+2)+1024×0.5=1024+024+512=2562.【迁移应用】(1)计算:①2-1=___;①22-2-1=___; ①23-22-2-1=___; ①24-23-22-2-1 =___; ①25-24-23-22-2-1=___.(2)根据上面的计算结果猜想:22020-22019-22018-…-22-2-1的值为____;2n-2n-l-2n-2-.….-22-2-1的值为____.(3)根据上面猜想的结论,求213-212-211-210-29-28-27-26的值.解:由猜想的结论得:213-212-211-210-29-28-27-26-25-24-23-22-2-1=1所以,213-212-211-210-29-28-27-26=1+1+2+22+23+24+25=1+2+4+8+16+32=64例4.小王在电脑上设计了一个有理数的运算程序:输入数a,按“*”键,再输入数b,得到运算:a*b=a2-b2-[2(a3-1)-1÷b]÷(a-b).(1)求(-2)*12;解:(1)(-2)*12=(-2)2-(12)2-{2×[(-2)3-1]-1÷12}÷(-2-12)=-174.(2)小王在运算a*b=a2-b2-[2(a3-1)-1÷b]÷(a-b)中出现无法操作的情况,可能是因为除数或分母中有0的存在.1÷b中如果b=0,那么无意义,无法操作;或者a-b作为除数,如果a-b=0,即a=b,那么无意义,也无法操作.所以有两种可能:输入了b=0或输入了b=a,才使得程序无法操作.【迁移应用】1.如图是计算机程序的计算流程图,若开始输入x=-2,则最后输出的结果是_______.2.如图是一个数值运算程序,当输出的值为-5时,输入的x的值为_______.五、教学反思。
有理数的乘法数学教案(优秀9篇)七年级数学有理数的乘法教案及教学设计篇一一、教材分析有理数的乘法是继有理数的加减法之后的又一种基本运算。
它既是有理数运算的深入,又是进一步学习有理数的除法、乘方的基础。
对后续知识的学习也是至关重要的。
二、学情分析对于初一学生来说,他们虽已通过学习有理数的加减法具备了初步探究问题的能力,对符号问题也有了一定的认识,但是对知识的主动迁移能力还比较弱,因此,只要引导学生确定了“积”的符号,实质上就是小学算术中数的乘法运算了,突破了有理数乘法的符号法则这个难点,则对于有理数乘法的运算学生就不难掌握了。
三、教学目标(核心素养立意)1.使学生理解有理数乘法的意义,掌握有理数乘法法则,并能准确地进行有理数的乘法运算。
2.初步培养学生发现问题、分析问题、和解决问题的能力。
3.通过教学,渗透化归、分类讨论等数学思想方法,激发学生学习数学、应用数学的兴趣,(4)传授知识的同时,注意培养学生良好的学习习惯和勇于探索的精神。
四、教学重、难点重点:有理数的乘法法则。
难点:有理数乘法的符号法则五、教学策略我在本节课的教学中采用诱思探究式教学法,并应用多媒体现代教学手段,以学生为主体,通过引导启发、自主探究、点拨归纳完成教学任务,实现教学目标。
六、教学过程(设计为七个环节)(一)复习导入创设情境我首先出示几个相同负数和的计算题,利用乘法的意义很自然地引出负数与正数相乘的新内容,以形成知识的迁移。
进而引入本节课题,以问题引领来激发学生求知欲。
(二)师生互动探究新知要求学生自主学习课本内容,完成课文中的填空。
我给与学生充足的时间和空间。
通过自主学习,小组合作,教师点拨引导学生从有理数分为正数、零、负数三类的角度,区分出有理数乘法的情况有五种:(正×正、正×0、正×负、负×0、负×负)引导学生根据以上实例的运算结果,从积的符号和绝对值两方面准确地归纳出有理数的乘法的符号法则和有理数乘法的运算法则。
七年级数学有理数的乘法教案及教学设计(精选6篇)(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如工作资料、求职资料、报告大全、方案大全、合同协议、条据文书、教学资料、教案设计、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!In addition, this shop provides you with various types of classic model essays, such as work materials, job search materials, report encyclopedia, scheme encyclopedia, contract agreements, documents, teaching materials, teaching plan design, composition encyclopedia, other model essays, etc. if you want to understand different model essay formats and writing methods, please pay attention!七年级数学有理数的乘法教案及教学设计(精选6篇)作为一位杰出的老师,有必要进行细致的教案准备工作,教案有利于教学水平的提高,有助于教研活动的开展。
七年级数学上册《有理数的乘法2》课堂教学实录 新人教版1.4.4 有理数的乘法(2)(一)创设情境,导入新课[师]我们来看看课前延伸的第1,2,3题,分别类似于我们小学里学过的那些运算律?[生]第1题运用的是乘法交换律,第2题运用的是乘法结合律,第3题运用的是乘法的分配律.[师]前面所探索的加法交换律、结合律对任意有理数仍然适合,在引入了负数这个新的成员之后,乘法运算律是否还会成立呢?〖评析〗创设情境,回忆小学里的乘法交换律和结合律、分配律,让学生感受引入了负数后运算律是否成立,非常简洁明了,激发学生的求知欲.(二)合作交流,解读探究[师]现在,我们再来看这几道题.(1));6(5-⨯ 5)6(⨯- ;(2)[])5()4(3-⨯-⨯ ;[])5()4(3-⨯-⨯ ;(3)[])7(35-+⨯;)7(535-⨯+⨯.[生]讨论与活动.(以同桌两人一组进行讨论,并把它们运算的结果及发现的内容写在黑板上与全班同学分享)[师]很好,刚才几组同学都表现得非常好,当然下面的很多同学也都做得不错.从你们所运算的结果,我们共同发现了有理数也满足了乘法运算律.[生]微笑点头.[师] 1.有理数的乘法交换律:两个数相乘,交换因数的位置,积相等.即ba ab =.(a ,b ,c 为任意有理数)2.有理数的乘法结合律:三个数相乘,先把前两个数相乘,或者先把后两个数相乘,积相等.即()()bc a c ab =.(a ,b ,c 为任意有理数)3.有理数的乘法分配律:一个数与两个数的和相乘,等于把这个数分别与这两个数相乘,再把积相加.即a (b +c )=ab +ac (a ,b ,c 为任意有理数)(注意“逆向”问题);也可以这样表示:)(c b a ac ab +=+,你们觉得要注意什么呢?[生1] 在运用乘法分配律进行计算时,应注意符号.[生2]可以进行变形从而简化运算.[师]总结你们的发言,具体的注意事项有:(1)这里的“和”不再是小学中说的“和”的概念,而是指“代数和”.(2)运用乘法运算律进行计算时,注意符号.(3)几个数直接相乘,有时计算量较大,要适当运用乘法交换律、结合律.(4)有理数乘法运算时,有时可以反向运用分配律,逆用乘法分配律.[生]知道了.[师]下面我们一起来看几道例题.例1 计算:(1))());((598.4252322130-⨯+-⨯. [生]第(1)题直接运用乘法分配律进行计算.第(2)题直接计算,但注意符号为负.[师]动动脑筋,第(2)题有更简单的方法吗?[生]迫不及待的说,我知道,把4.98变形为(5-0.02),再用乘法的分配律进行计算,这是小学里学过的简便计算.[师]太好了.(1)直接运用乘法分配律,注意符号;(2)中这两个数直接相乘,计算量较大,若稍加变形,把4.98变形为(5-0.02)再利用乘法分配律,计算量就少多了;解:(1)原式=7122015523032302130=+-=⨯+⨯-⨯(2)原式=(5-0.02)⨯(-5)=5 ⨯(-5)+0.02 ⨯(-5)=-25+0.1=-24.9. 〖评析〗这部分的内容比较简单,老师要通过实例帮助学生理解和消化,让学生从感性的层面体验适当变形后用分配律,能够简化计算.也可以让学生自己举例加以理解.[师]我们再来看这道例题, 例2 312133211331 13⨯-+-⨯-+⨯-)()()()( 请你们观察后寻找解题方法.[师]请生1,生2到黑板上来板演解题过程,其余同学在自己的本子上做.[生1]解:法一:原式=133393653104365391313391365313-=-=+-=+--=-+-)( .13113]321322[13]32131231[13]31232131[13]2[-=⨯-=-⨯-=-++⨯-=+-+⨯-=)()()()()()()()(解:法二:原式生 [师]这两位学生用了不同解法.法(一):直接做题,先乘除,后加减;法(二)用简便方法,很显然第(2)种方法简单.你们能帮我总结一下吗?[生]在进行有理数乘法运算时,可以反向运用分配律,逆用乘法分配律[师]在学习了上面这些内容后,让我们接受更大的挑战吧.例3 计算: 4.3657.13.2328.62.3514.3⨯--⨯+⨯-)([师]这是一题较繁的计算题,能不能直接进行简便计算?[生]不能.[师]那怎么解决呢?直接进行计算?[生]我仔细观察后发现3.14,6.28,1.57之间加倍关系,所以可以逆用乘法分配律进行计算.31410014.32.188.8114.32.186.462.3514.32.1814.36.4614.32.3514.34.362114.33.23214.32.3514.3-=⨯-=+⨯-=++⨯-=⨯--⨯+⨯-=⨯⨯--⨯⨯+⨯-=)()()()(解:原式[师]他回答得太好了!让我们为他的精彩回答鼓掌.[生]鼓掌.〖评析〗本问题主要考察学生乘法分配律的灵活运用,同时考察学生发现规律的能力,因为问题较为复杂,在解决的过程中教师应适当的点拨和启发,使学生能够顺利完成讨论.(三)应用迁移,巩固提高计算:(1))71(535-⨯⨯ ; (2)()())25(45-⨯-⨯-;(3))711(1587-⨯⨯⎪⎭⎫ ⎝⎛-;(4)30151109⨯⎪⎭⎫ ⎝⎛-; (5)711615×(-8) ; (6)5.2)56.2(5.3)56.2(456.2⨯-+⨯-+⨯- [师] 请6名同学板演,并由他们讲解每步的根据和目的,以及书写的规范化.[师]纵观这道题的解答过程,你能总结得到什么?小组同学可作交流.〖评析〗当堂训练,当堂反馈的这一环节的实施不但使学生对所学的新知识得到及时巩固和提升,同时又使得还存在模糊认识的学生得到进一步澄清,这就让学生在学习新知识的第一时间得到最清晰的认识,这正是高效的价值所在.(四)总结反思,拓展升华[师]通过本节课的学习,你懂得了那些知识?[生1]本节课我们学习了有理数乘法的运算律,并能正确运用乘法运算律进行简化计算.[生2] 在计算中,有时将算式进行适当变形,有时用逆向分配律,运用技巧解决复杂计算问题.[生3]在运用有理数乘法运算律时,要注意审题,从而达到简便而准确.[师]好,今天就到这儿,请大家记好今天的作业,谢谢!【课后提升】请大家记好今天的作业:课后提升【基础平台】1.计算:(1)(-4201)×1.25×(-8); (2)(-10) ×(-8.24) ×(-0.1); (3)-65×2.4×53; (4)(97-65 +43 -187)×36;(5)-43×(8-131-0.04); (6)711615×(-8) . 2.计算:34.075)13(317234.03213⨯--⨯+⨯-⨯-. 3.已知,032=-++y x 求xy y x 435212+--的值. 4.若a ,b 互为相反数,c ,d 互为倒数,m 的绝对值是1,求m cd b a 2009)(-+的值.5.判断下列方程的解是正数、负数、还是0.(1)4x =-16; (2)-3x =18; (3)-9x =-36;(4)-5x =0.6.(1)当a >0时,a 与2a 哪个大?(2)当a <0时,a 与2a 哪个大?。
1.4.1有理数的乘法(第二课时)教学设计一、内容和内容解析1.内容本节课是人教版《义务教育教科书•数学》七年级上册(以下统称“教材”)第一章“有理数”1.4.1有理数的乘法(第二课时),内容包括:有理数乘法的运算律、利用运算律简化乘法运算.2.内容解析本节课内容主要是乘法的运算律及其简单应用.运算律主要用于简化运算,在整个代数内容的学习中,运算律都占有重要地位.例如,整式加减法,就是根据加法交换律与加法结合律把同类项结合在一起,而同类项合并的根据及时分配律.为将来后学的学习打好基础.基于以上分析,确定本节课的教学重点为:探索有理数的乘法运算律并熟练运用运算律进行计算.二、目标和目标解析1.目标(1)掌握有理数乘法的运算律,并利用运算律简化乘法运算. (运算能力)(2)掌握乘法的分配律,并能灵活地运用. (运算能力)2.目标解析有理数乘法的运算律包括交换律、结合律和分配律恰当地运用有理数乘法的运算律,可以使乘法运算变得简洁.有理数乘法的三条运算律,通常需要综合和同时使用,还可以从正、反两个方向应用,进而可以使有理数乘法运算更快捷、更准确特别是乘法的分配律,要通过一定量题目的训练,让学生体会运用乘法运算律的必要性.三、教学问题诊断分析在前面两个有理数乘法的学习中,已经知道有理数的乘法运算分两个步骤:一、确定符号;二、把绝对值相乘,和有理数加法类似先确定符号再计算绝对值,和小学学过的乘法只算数不一样,但学生符号感意识淡薄,确定符号能力有待提高在具体的问题情境中,对于如何确定符号,学生会感到困难.运算律小学也学过,但在有理数中运用也是难点,也有个符号问题.基于以上学情分析,确定本节课的教学难点为:掌握有理数乘法的运算律,并利用运算律简化乘法运算.四、教学过程设计(一)复习回顾一、有理数乘法法则1.两数相乘,同号得正,异号得负,并把绝对值相乘.2.任何数同0相乘,都得0.思考:(1)若a <0,b >0,则ab 0 ;(2)若a <0,b <0,则ab 0 ;(3)若ab >0,则a 、b 应满足什么条件?(4)若ab <0,则a 、b 应满足什么条件?二、多个有理数相乘的运算规律1.几个非零的数相乘:几个不是0的数相乘,当负因数的个数是_____时,积是正数;当负因数的个数是_____时,积是负数.2.几个数相乘,其中含有0:几个数相乘,如果其中有因数为0,那么积等于0.(二)自学导航观察归纳4×(5)=____,(5)×4=____; 6×(2)=____,(2)×6=____;即4×(5)=(5)×4; 6×(2)=(2)×6.[2×(3)]×(5)=__________=____,2×[(3)×(5)]=_______=____.即[2×(3)]×(5)=2×[(3)×(5)]思考:上面每组运算分别体现了什么运算律?【归纳】一般地,有理数乘法中,两个数相乘,交换因数的位置,积相等.乘法交换律:ab=ba三个数相乘,先把前两个数相乘,或者先把后两个数相乘,积相等.乘法结合律:(ab)c=a(bc)注意:用字母表示乘数时,“×”号可以写成“·”或省略, 如a ×b 可以写成a ·b 或ab.(三)考点解析例1.计算:(1)(4)×23×(0.25)×(32); (2)24×(-96)×0.75×(-148).分析:根据算式中数的特征以及运算律的作用,选择合适的乘法运算律简化计算.解:(1)原式=(4×14)×(23×32)=1;(2)原式=(24×34)×(96×148) =18×2=36.【迁移应用】1.在(0.125)×(2)×(8)×5=[(0.125)×(8)]×[(2)×5]中,运用了( )A.分配律B.乘法交换律C.乘法结合律D.乘法交换律和乘法结合律2.计算:(1)(4)×(23)×(25); (2)1.5×0.5×(100)×23; (3)(3)×(115)×(13)×(2011).解:(1)原式=(4×25×23)=2300;(2)原式=(32×23)×(0.5×100)=1×50=50; (3)原式=(3×13)×(115×2011)=1×4=4.(四)自学导航观察归纳5×[3+(7)]=___________=_____,5×3+5×(7)=__________=_____;即5×[3+(7)]=5×3+5×(7);[2+(4)]×(3)=__________=___,2×(3)+(4)×(3)=________=___.即[2+(4)]×(3)=2×(3)+(4)×(3).思考:上面每组运算体现了什么运算律?【归纳】乘法分配律:一般地,有理数乘法中,一个数同两个数的和相乘,等于把这个数分别同这两个数相乘,再把积相加. 字母表达:a(b+c)= ab+ac(五)考点解析例2.利用乘法的运算律进行计算:(112+1456)×(36)解:原式=(112)×(36)+14×(36)56×(36) =39(30)=24.【迁移应用】1.计算(1256+512724)×24的结果是( )A.2B.3C.4D.52.利用乘法的运算律进行计算:34×(81130.04). 解:原式=34×8(-34)×43(-34)×0.04=6(1)(0.03)=6+1+0.03=4.97.例3.计算:(1)(4)×(8)×(316)(6)+6×23; (2)34×(32)3×13.解:(1)原式=32×316+6+4=6+6+4=4;(2)原式=3(6)1=3+61=2.例4.计算:5×313+2×313+(6)×313.解:原式=[5+2+(6)]×313=9×103=30.【迁移应用】计算:(1)99×1845+99×(15)99×835; (2)13×230.34×27+13×(13)57×0.34. 解:(1)原式=99×(184515835)=99×10=990;(2)原式=(23+13)×(13)+(27+57)×(0.34)=13+(0.34)=13.34.例5.计算:(991516)×32.解法1:解:原式=[(99)+(1516)]×32=3168+(30)=3198.解法2:解:原式=[(100)+116]×32=3200+2=3198.【迁移应用】计算:(1)999×(15); (2)(12557)×(15); (3)492425×(5).解:(1)原式=(10001)×(15)=15000+15=14985;(2)原式=(125+57)×15=25+17=2517;(3)原式=(50125)×5=(25015) =24945. 例6.计算:11×3+13×5+15×7+…+12021×2023.解:原式=12×(113)+12×(1315)+12×(1517)+…+12×(1202112023)=12×(113+1315+1517+…+1202112023) =12×(112023)=12×20222023=10112023【迁移应用】计算:11×4+14×7+17×10+…+161×64. 解:原式=13×(114)+13×(1417)+13×(17110)+…+13×(161164)=13×(114+1417+17110+ (161164)=13×(1164)=13×6364=2164例7.有30筐白菜,以每筐25kg 为标准,超过或不足的千克数分别用正、负数表示:求这30筐白菜的总质量.解:25×30+4×(0.8)+6×(+0.6)+3×(0.5)+4×(+0.4)+4×(+0.5)+4×(0.3)+5×(+0.3)=750+(3.2)+3.6+(1.5)+1.6+2+(1.2)+1.5=752.8(kg).答:这30筐白菜的总质量是752.8kg.【迁移应用】某服装店以每件35元的价格购进了30件连衣裙,针对不同的顾客,30件连衣裙的售价不完全相同.若以50元为标准售价,将超过的钱数记为正数,不足的钱数记为负数,记录结果如下:该服装店售完这30件连衣裙后,赚了多少钱?解:(5035)×30+7×(+3)+6×(+2)+3×(+1)+5×0+4×(1)+5×(2)=450+21+12+3+0410=472(元).答:该服装店售完这30件连衣裙后,赚了472元钱.(六)小结梳理五、教学反思。
教学过程
一、创设问题师:上节课,我们共同研究了有理数的乘法运算,总结了有理数乘法的解题步骤。
下面那位
同学愿意陈述一下。
生:1、先判断(试题类型是同号相乘还是异号相乘)2、再确定(符号)3、最后把绝对值
相乘.
师:说的很好,同学们掌声鼓励。
师:同学们根据这个步骤,完成下面下面的游戏,并比较每组试题的结果。
1、(-7)×8与8×(-7); (-
3
5)×(-
10
9)与(-
10
9)×(-
3
5).
2、[(-4)×(-6)]×5与(-4)×[(-6)×5]. [
2
1×(-
3
7)]×(-4)与
2
1×[(-
3
7)×(-4) ].
3、(-2)×[(-3)+(-
2
3)]与(-2)×(-3)+(-2)×(-
2
3).
4、5×[(-7)+(-
5
4)]与5×(-7)+5×(-
5
4)].
(目的和效果):通过练习的引入让学生巩固有理数乘法法则,从而引起对学习本节知识的重视.通过对问题的解决学生能初步达到目标,但标识不够准确,为下一步给出运算律奠定基础)
二、分组合作 探究新课: 师:好,试题做完了吗?
1. 进一步应用乘法法则进行有理数的乘法运算;
2. 能自主探究理解乘法交换律、结合律、分配律在有理数运算中的应用;
3.
培养学生观察、归纳、概括及运算能力.
有理数乘法
生:做完了。
师:大家比较你做的每组试题的结果,你会发现什么结果? 生:每组结果都一样。
师:由上面计算结果,可以说明有理数乘法也同样有交换律,结合律和分配律,大家来思考,
这三组试题分别属于乘法的哪个运算律? 生:第一组属于乘法的交换律,第二组属于乘法的结合律,第三组属于乘法对加法的分配律。
师:请各位同学尝试用字母表示乘法的交换律、结合律以及乘法对加法的分配律(三生到
黑板前板演)。
(讲评同学的板演)
(目的和效果):通过上述提问,再一次落实概念,为新知运用打下基础. 三、新知运用
师:下面同学们根据乘法运算律来尝试完成例3 例3.计算: (1)、(-
6
5+
8
3)×(-24); (2)、(-7)×(-
3
4)×
14
5
解:(1)原式=(-
6
5)×(-24)+
8
3×(-24)
=20+(-9)
=11 (2)原式=(-7)×
14
5×(-
3
4)
=(-
2
5)×(-
3
4)
=
3
10
(第一题鼓励学生用两种方法来解决,通过两种方法的对照,来验证和体会有理数乘法分配律的实用性。
)
师:同学们根据刚才的练习讨论在利用分配律时应注意的问题。
生(七嘴八舌):别漏负号!乘法步骤!运算顺序!…… 师:好!哪位同学来总结一下? 生:1、要带着符号乘;2、不要漏乘。
师:说的很好,同学们掌声鼓励。
(目的和效果):通过例题训练让学生真正理解运算律、掌握各自特点、落实知识,但仍有个别学生在符号上出错,需要强调落实. 由学生总结在利用分配律时应注意的问题利于学生巩固提高. 四、知识拓展
师:本节课我们的成果是探究出有理数的乘法运算律并进行了应用.可见,运算律的运用十分灵活,各种运算律常常是混合应用的.这就要求我们要有较好的掌握运算律进行计算的能力,要寻找最佳解题途径,不断总结经验,使自己的能力得到提高.
师:下面同学们尝试完成下列试题.
补充例题:某校体育器材室共有60个篮球。
一天课外活动,有3个班级分别计划借篮球总数的
2
1、3
1、
4
1。
请你算一算,这60个篮球够借吗?如果够了,还多几个篮球?如果不够,
还缺几个?
(教师提示后由学生板演,对出错情况给以纠正) (目的和效果):利用应用题来加强学生对乘法分配律的理解,但学生综合应用知识的能力还不够强,部分学生有出错情况. 五、课堂小结
本节课你的收获有什么?还有什么没有得到解决的问题愿意摆出来与大家共享吗? 学生主动起立回答.
收获有:1.学会运用乘法的三种运算律.
2.在利用乘法分配律时应注意的问题.
六、课堂达标测试(A 组同学全部做,B 组同学做到第五题前3题)
1. 运用分配律计算 (-3)×(-4+2-3),下面有四种不同的结果,其中正确的是( )
A .(-3)×4-3×2-3×3
B .(-3)×(-4)-3×2-3×3
C .(-3)×(-4)+3×2-3×3
D .(-3)×(-4)-3×2+3×3 2. 在运用分配律计算 3. 96×(-99)时,下列变形较合理的是( )
A .(3+0.96)×(-99)
B .(4-0.O4)×(-99)
C .3.96×(-100+1)
D .3.96×(-90-9)
3. 对于算式 2007×(-8)+(-2007)×(-18),逆用分配律写成积的形式是( )
A .2007×(-8-18)
B .-2007×(-8-18)
C .2007×(-8+18)
D .-2007×(-8+18) 4. 计算5313
716⨯最简便的方法是( )
A .53(13)716
+⨯
B .23(14)7
16
-
⨯
C .53(103
)7
16
+⨯
D .23(162
)7
16
-⨯
5. ①(-4)×8×(-2.5)×O. 1×(-0.125)×1O ;
②3711
(1)1
--⨯③(-5.25 )×(-4.73 )-4.73 ×(-19.75)-25×48127
(-5.27).
④-7.25×7.26+7.25×(-2.74) ⑤(-6)×[(-0.5)-1.3] ⑥71
199(36)
⨯-;
72
七、作业
课堂作业:
A类:P54 习题2.11 T1 B类:P54 习题2.11T2 T3
八、板书设计
八、教学反思
1、本节课的设计中,教师是以组织者,引导者的身份出现在每一个环节,在这个过程中培养了学生观察、归纳、验证的能力。
并通过用自己的语言描述运算律,培养了学生的语言表达能力,用符号的语言描述运算律,发展了学生的符号感。
在学习活动中,学生获得了成功的体验,增强了自信。
2、在小组讨论时,我留给学生充分的独立思考的时间,并对小组讨论给予适当的指导,包括知识的启发引导、学生交流合作中注意的问题及对困难学生的帮助等,使小组合作学习更具实效性.
3、要关注学生对有理数运算法则和运算律的理解水平,对法则和运算的学习评价,不应单纯考查记忆和具体计算,而应对运算的评价重点放在学生对算理的理解上,考察学生能否根据实际问题的特点选择合理简便的算法,。