2019高考物理 重点难点例析 专题9 导体切割磁感线的运动
- 格式:doc
- 大小:341.14 KB
- 文档页数:6
导体棒切割磁感线问题分类解析电磁感应中,“导体棒”切割磁感线问题是高考常见命题。
解此类型问题的一般思路是:先解决电学问题,再解决力学问题,即先由法拉第电磁感应定律求感应电动势,然后根据欧姆定律求感应电流,求出安培力,再往后就是按力学问题的处理方法,如进行受力情况分析、运动情况分析及功能关系分析等。
导体棒切割磁感线的运动一般有以下几种情况:匀速运动、在恒力作用下的运动、恒功率运动等,现分别举例分析。
一、导体棒匀速运动导体棒匀速切割磁感线处于平衡状态,安培力和外力等大、反向,给出速度可以求外力的大小,或者给出外力求出速度,也可以求出功、功率、电流强度等,外力的功率和电功率相等。
例1. 如图1所示,在一磁感应强度B=0.5T的匀强磁场中,垂直于磁场方向水平放置着两根相距为h=0.1m的平行金属导轨MN和PQ,导轨电阻忽略不计,在两根导轨的端点N、Q之间连接一阻值R=0.3Ω的电阻。
导轨上跨放着一根长为L=0.2m,每米长电阻r=2.0Ω/m的金属棒ab,金属棒与导轨正交放置,交点为c、d,当金属棒在水平拉力作用于以速度v=4.0m/s 向左做匀速运动时,试求:图1(1)电阻R中的电流强度大小和方向;(2)使金属棒做匀速运动的拉力;(3)金属棒ab两端点间的电势差;(4)回路中的发热功率。
解析:金属棒向左匀速运动时,等效电路如图2所示。
在闭合回路中,金属棒cd部分相当于电源,内阻r cd=hr,电动势E cd=Bhv。
图2(1)根据欧姆定律,R 中的电流强度为I E R r Bhv R hrcd cd =+=+=0.4A ,方向从N 经R 到Q 。
(2)使金属棒匀速运动的外力与安培力是一对平衡力,方向向左,大小为F =F安=BIh=0.02N 。
(3)金属棒ab 两端的电势差等于U ac 、U cd 与U db 三者之和,由于U cd =E cd -Ir cd ,所以U ab =E ab -Ir cd =BLv -Ir cd =0.32V 。
专题09 电磁感应现象及电磁感应规律的应用1.如图1所示,两根足够长的光滑金属导轨水平平行放置,间距为l=1 m,c、d间,d、e间,c、f间分别接着阻值R=10 Ω的电阻。
一阻值R=10 Ω的导体棒ab以速度v =4 m/s匀速向左运动,导体棒与导轨接触良好;导轨所在平面存在磁感应强度大小B=0.5 T、方向竖直向下的匀强磁场。
下列说法中正确的是()图1A.导体棒ab中电流的流向为由b到aB.c、d两端的电压为2 VC.d、e两端的电压为1 VD.f、e两端的电压为1 V【答案】D2.如图,虚线P、Q、R间存在着磁感应强度大小相等,方向相反的匀强磁场,磁场方向均垂直于纸面,磁场宽度均为L.一等腰直角三角形导线框abc,ab边与bc边长度均为L,bc边与虚线边界垂直.现让线框沿bc方向以速度v匀速穿过磁场区域,从c点经过虚线P开始计时,以逆时针方向为导线框中感应电流i的正方向,则下列四个图象中能正确表示i-t图象的是()【答案】A【解析】由右手定则可知导线框从左侧进入磁场时,感应电流方向为逆时针方向,即沿正方向,且逐渐增大,导线框刚好完全进入P、Q之间的瞬间,电流由正向最大值变为零,然后电流方向变为顺时针(即沿负方向)且逐渐增加,当导线框刚好完全进入Q、R之间的瞬间,电流由负向最大值变为零,然后电流方向变为逆时针且逐渐增加,当导线框离开磁场时,电流变为零,故A正确.3.如图4所示是法拉第制作的世界上第一台发电机的模型原理图。
把一个半径为r的铜盘放在磁感应强度大小为B的匀强磁场中,使磁感线水平向右垂直穿过铜盘,铜盘安装在水平的铜轴上,两块铜片C、D分别与转动轴和铜盘的边缘接触,G为灵敏电流表。
现使铜盘按照图示方向以角速度ω匀速转动,则下列说法中正确的是()图4A.C点电势一定高于D点电势B.圆盘中产生的感应电动势大小为12Bωr2C.电流表中的电流方向为由a到bD.若铜盘不转动,使所加磁场磁感应强度均匀增大,在铜盘中可以产生涡旋电流【答案】BD4.如图5所示,一边长为l=2a的正方形区域内分布着方向竖直向下、磁感应强度大小为B的匀强磁场。
物理选考中电磁感应计算题问题归类例析导体在磁场中运动切割磁感线产生电磁感应现象,是历年物理选考的一个热点问题。
因此在高三复习阶段有必要对此类问题进行归类总结,使学生更好的掌握、理解它的内涵。
通过研究各种题目,可以分类为“单杆、双杆、线圈”三类电磁感应的问题,要探讨的问题不外乎以下几种: (1)导体棒的总体动态分析:①受力分析:导体棒切割磁感线时,相当于电源,注意单杆切割和双杆切割的区别,安培力会随速度的变化而改变;仔细分析研究对象的受力情况,写出牛顿第二定律公式分析导体棒的加速度。
②运动过程分析:分析运动过程中速度和加速度的动态变化过程,电磁感应过程中物体的运动大多为加速度减小的变加速直线运动。
最后分析导体棒在稳定状态下的运动情况。
③等效电路分析:谁为等效电源,外电路的串并联、路端电压、电流如何求解等。
(2)能量转化的计算:分析运动过程中各力做功和能量转化的问题:如安培力所做的功、摩擦力做功等,结合研究对象写好动能定理。
明确在电磁感应现象中,通过克服安培力做功,把其他形式的能转化为电能,再通过电流做功,把电能转化为内能和其他形式的能。
(3)各运动量速度v 、位移x 、时间t 的计算:①位移x 的计算一般需要结合电量q :②速度v 和时间t 的计算一般需要结合动量定理:, 上式还可以计算变力的冲量。
③以电荷量作为桥梁,可以直接把上面的物理量位移x 、速度v 、时间t 联系起来。
按照不同的情景模型,现举例分析。
一、“单杆”切割磁感线型1、杆与电阻连接组成回路:此时杆相当于电源,,安培力和速度v 成正比 例1、如图所示,MN 、PQ 是间距为L 的平行金属导轨,置于磁感强度为B 、方向垂直导轨所在平面向里的匀强磁场中,M 、P 间接有一阻值为R 的电阻.一根与导轨接触良好、质量为m,阻值为R /2的金属导线ab 垂直导轨放置(1)若在外力作用下以速度v 向右匀速滑动,试求ab 两点间的电势差。
(2)若无外力作用,以初速度v 向右滑动,试求运动过程中产生的热量、通过ab 电量以及ab 发生的位移x 。
- 1 -高考系列物理导体切割磁感线的运动重点难点1.楞次定律:推广可以具体简化为以下三种情况:①阻碍原磁通的变化;②阻碍导体间的相对运动;③阻碍原电流的变化.2.应用法拉第电磁感应定律时应注意:①一般用E = n ΔΦΔt (或E = nB ΔSΔt )求平均电动势,用E = Bl υ求瞬时电动势,但当Δs 随Δt 均匀变化时,由于电动势恒定,平均电动势和瞬时电动势相等,可用E = n ΔΦΔt 求某一时刻的电动势;②匀强磁场中,B 、l 、υ相互垂直,导体平动切割磁感线时E = Bl υ,绕固定转轴转动时E = 12Bl 2ω.规律方法【例1】如图所示,在磁感应强度大小为B ,方向垂直纸面向里的匀强磁场中,有一个质量为m 、半径为r 、电阻为R 的均匀圆形导线圈,线圈平面跟磁场垂直(位于纸面内),线圈与磁场边缘(图中虚线)相切,切点为A ,现在A 点对线圈施加一个方向与磁场垂直,位于线圈平面内的,并跟磁场边界垂直的拉力F ,将线圈以速度υ匀速拉出磁场.以切点为坐标原点,以F 的方向为正方向建立x 轴,设拉出过程中某时刻线圈上的A 点的坐标为x .(1)写出此时F 的大小与x 的关系式;(2)在F -x 图中定性画出F -x 关系图线,写出最大值F 0的表达式. 【解析】由于线圈沿F 方向作切割磁感线运动,线圈上要产生顺时针方向的感应电流,从而要受到与F 方向反向的安培力F f 作用,由图可知,此时线圈切割磁感线的有效长度l = 2r 2-(r -x )2线圈上感应电动势,感应电流i =ER线圈所受安培力大小为F f = Bil ,方向沿x 负方向 因线圈被匀速拉出,所以F = F f 解上各式得F = 8B 2υr R x -4B 2υRx2(2)当x = r 时,拉力F 最大,最大值为F 0 =4B 2r 2υR图线如图所示.训练题如图(甲)所示,一对平行光滑轨道放置在水平面上,两轨道间距l =0.20m ,电阻R =1.0Ω;有一导体杆静止地放在轨道上,与两轨道垂直,杆及轨道的电阻皆可忽略不计,整个装置处于磁感强度B =0.50T 的匀强磁场中,磁场方向垂直轨道面向下,现用一外力F 沿轨道方向拉杆,使之做匀加速运动,测得力F 与时间t 的关系如图(乙)所示,求杆的质量m 和加速度a .答案:a=10m/s2,m=0.1kg【例2】如图所示,两根相距l 平行放置的光滑导电轨道,与水平面倾角均为α轨道间有电阻R ,处于磁感应强度为B 方向竖直向上的匀强磁场中,一根质量为m 、电阻为R /4的金属杆ab ,由静止开始沿导电轨道下滑.设下滑中ab 杆始终与轨道保持垂直,且接触良好,导电轨道有足够的长度,且电阻不计,求ab 杆沿轨道下滑可达到的最终速度.【解析】当ab 杆沿轨道加速下滑至速度υ时,ab 杆上的电动势为E = BL υcos αab 杆与导电轨道组成的回路中的电流为I =4cos 154E BL R R R υα=+ ab 杆受到的安培力为F = BIl = 224cos 5B l Rυα方向水平向右.当ab 杆的速度增大至某一值υm 时,ab 杆受到的合外力F 合恰减为零,此时ab 杆的加速度a 也减为零,之后ab 杆保持速度υm 沿轨道匀速下滑.速度υm 即是ab 杆沿轨道下滑可达到的最终速度.据共点合力平衡条件,有mg sin α = F cos α即mg sin α = R l B 5cos 42m 2α·cos α,解得:υm = αα222cos 4sin 5l B mgR . 训练题如图所示,具有水平的上界面的匀强磁场,磁感强度为B ,方向水平指向纸内,一个质量为m ,总电阻为R 的闭合矩形线框abcd 在竖直平面内,其ab 边长为L ,bc 边长为h ,磁场宽度大于h ,线框从ab 边距磁场上界面H 高处自由落下,线框下落时,保持ab 边水平且线框平面竖直.已知ab 边进入磁B场以后,cd 边到达上边界之前的某一时刻线框的速度已达到这一阶段的最大值,此时cd 边距上边界为h 1,求:(1)线框ab 边进入磁场时的速度大小;(2)从线框ab 边进入磁场到线框速度达到最大的过程中,线框中产生的热量; 答案:(1)v=(2gh )1/2(2)Q=mg (H+h+h 1)—m 3R 2g 2/2B 4L 4能力训练1.一直升飞机停在南半球某处上空.设该处地磁场的方向竖直向上,磁感应强度为B .直升飞机螺旋桨叶片的长度为l ,螺旋桨转动的频率为f ,顺着地磁场的方向看螺旋桨,螺旋桨按顺时针方向转动.螺旋桨叶片的近轴端为a ,远轴端为b ,如图所示.如果忽略到转轴中心线的距离,用E 表示每个叶片中的感应电动势,则 ( A )A .E = πfl 2B ,且a 点电势低于b 点电势 B .E = 2πfl 2B ,且a 点电势低于b 点电势C .E = πfl 2B ,且a 点电势高于b 点电势D .E = 2πfl 2B ,且a 点电势高于b 点电势2.如图是电磁驱动的原理图,把一个闭合线圈放在蹄形磁铁的两磁极间,蹄形磁铁和闭合线圈都可以绕OO ′轴转动.当转动蹄形磁铁时,线圈将( B )A .不动B .跟随磁铁一起转动C .向与磁铁相反的方向转动D .磁铁的磁极未知,无法判断3.如图所示,C 是一只电容器,先用外力使金属杆ab 贴着水平平行金属导轨在匀强磁场中沿垂直磁场方向运动,到有一定速度时突然撤销外力.不计摩擦,则ab 以后的运动情况可能是 ( C )A .减速运动到停止B .来回往复运动C .匀速运动D .加速运动4.在匀强磁场中放一电阻不计的平行金属导轨,导轨跟大线圈M 相接,如图所示,导轨上放一根导线ab ,磁感线垂直导轨所在的平面,欲使M 所包围的小闭合线圈N 产生顺时针方向的感应电流,则导线的运动可能是 ( CD )A .匀速向右运动B .加速向右运动C .减速向右运动D .加速向左运动 5.如右图所示,光滑的水平平行放置的导轨左端连有电阻R ,导轨上架有一根裸金属棒ab ,整个装置处于垂直轨道平面的匀强- 4 -磁场中,今从静止起用力拉金属棒(保持棒与导轨垂直),若拉力恒定,经时间t 1后ab 的速度为v ,加速度为a 1,最终速度可达2v ;若拉力的功率恒定,经时间t 2后ab 的速度也为v ,加速度为a 2,最终速度也可达2v 。
导体棒切割磁感线问题分类解析电磁感应中,“导体棒”切割磁感线问题是高考常见命题。
解此类型问题的一般思路是:先解决电学问题,再解决力学问题,即先由法拉第电磁感应定律求感应电动势,然后根据欧姆定律求感应电流,求出安培力,再往后就是按力学问题的处理方法,如进行受力情况分析、运动情况分析及功能关系分析等。
导体棒切割磁感线的运动一般有以下几种情况:匀速运动、在恒力作用下的运动、恒功率运动等,现分别举例分析。
一、导体棒匀速运动导体棒匀速切割磁感线处于平衡状态,安培力和外力等大、反向,给出速度可以求外力的大小,或者给出外力求出速度,也可以求出功、功率、电流强度等,外力的功率和电功率相等。
例1. 如图1所示,在一磁感应强度B=0.5T的匀强磁场中,垂直于磁场方向水平放置着两根相距为h=0.1m的平行金属导轨MN和PQ,导轨电阻忽略不计,在两根导轨的端点N、Q之间连接一阻值R=0.3Ω的电阻。
导轨上跨放着一根长为L=0.2m,每米长电阻r=2.0Ω/m的金属棒ab,金属棒与导轨正交放置,交点为c、d,当金属棒在水平拉力作用于以速度v=4.0m/s 向左做匀速运动时,试求:图1(1)电阻R中的电流强度大小和方向;(2)使金属棒做匀速运动的拉力;(3)金属棒ab两端点间的电势差;(4)回路中的发热功率。
解析:金属棒向左匀速运动时,等效电路如图2所示。
在闭合回路中,金属棒cd部分相当于电源,内阻r cd=hr,电动势E cd=Bhv。
图2(1)根据欧姆定律,R 中的电流强度为I E R r Bhv R hrcd cd =+=+=0.4A ,方向从N 经R 到Q 。
(2)使金属棒匀速运动的外力与安培力是一对平衡力,方向向左,大小为F =F安=BIh=0.02N 。
(3)金属棒ab 两端的电势差等于U ac 、U cd 与U db 三者之和,由于U cd =E cd -Ir cd ,所以U ab =E ab -Ir cd =BLv -Ir cd =0.32V 。
(3)相对性:E=Blv中的速度v是相对于磁场的速度,若磁场也运动时,应注意速度间的相对关系。
2. 转动切割当导体在垂直于磁场的平面内,绕一端以角速度ω如图所示。
如图所示,长为l的金属棒ab,绕b端在垂直于匀强磁场的平面内以角速度小为B,ab棒所产生的感应电动势大小可用下面两种方法推出。
方法一:棒上各处速率不同,故不能直接用公式正比,故可用棒的中点的速度作为平均切割速度代入公式计算。
ωlA.磁感应强度的大小为0.5 TB.导线框运动的速度的大小为0.5 m/sC.磁感应强度的方向垂直于纸面向外(1)根据法拉第电磁感应定律(2)已知B=0.2 T,L=A.回路电流I1∶B.产生的热量A .因右边面积减少B .因右边面积减少A.θ=0时,杆产生的感应电动势为B.θ=π3时,杆产生的感应电动势为C.θ=0时,杆受到的安培力大小为A .感应电流方向始终沿顺时针方向不变B .CD 段直导线始终不受安培力A .I =Br 2ωR ,由c C .I =Br 2ω2R ,由cA.C点电势一定高于B.圆盘中产生的感应电动势大小为C.电流表中的电流方向为由D.若铜盘不转动,使所加磁场磁感应强度均匀增大,在铜盘中可以产生涡旋电流A.B2ω2r2RB.C.B2ω2r4D.A.金属棒中电流从BB.金属棒两端电压为C.电容器的M板带负电A.若圆盘转动的角速度恒定,则电流大小恒定B.若从上向下看,圆盘顺时针转动,则电流沿C.若圆盘转动方向不变,角速度大小发生变化,则电流方向可能发生变化A.U a >U c ,金属框中无电流B.U b >U c ,金属框中电流方向沿C.U bc =-12Bl由力的平衡可知由动能定理可得故D,则感应电动势最大值为届江西省红色七校高三第一次联考)A. R1中无电流通过错误;感应电动势为:的电压为:ab克服安培力做的功等于电阻棒经过环心时所受安培力的大小为棒运动过程中产生的感应电流在棒中由A流向Cat,故=,故=正确。
电磁感应现象导体切割磁感线运动姓名:一、知识梳理1、电磁感应现象(1)定义:闭合回路中产生的现象。
产生的电动势叫,产生的电流叫。
(2)产生感应电流的条件:①,②发生变化。
【理解】①电路不闭合时,只有而没有。
②要穿过闭合电路的变化而不是变化。
【思考】①磁场不变能否产生感应电流?②磁场变化能否不产生感应电流?③磁通量的变化可以由哪些变化引起?2、右手定则导体切割磁感线产生的方向用右手定则判定。
【思考】左手定则与右手定则的有什么异同点?3、导体切割磁感线产生的感应电动势的大小(1)切割磁感线运动的导体相当于一个电源,感应电动势由其极指向极。
(2)公式:E= ,式中三个物理量相互。
【思考】“该式也可以理解为导体单位时间内扫过的磁通量”,这句话如何理解?(3)说明:①若导线是曲折的,则L应为。
②若v为一段时间内的平均速度,则感应电动势为,若v为瞬时速度,则感应电动势为,③导体绕导体一端转动切割产生的感应电动势公式为E= ,用B、L、ω表示。
【推导】④线圈转动电动势E= ,(发电机模型,用B、L、S表示)。
【推导】二、 例题精析1、感应电动势方向的判断和大小的计算 【例题1】(多)如图所示为地磁场磁感线的示意图,飞机在我国上空匀速巡航,机翼保持水平,飞行高度不变。
由于地磁场的作用,金属机翼上有电势差,设飞行员左方机翼末端处的电势为φ1,右方机翼末端处的电势为φ2,则( ) A 、 若飞机从西往东飞,φ1>φ2 B 、 若飞机从东往西飞,φ1<φ2 C 、 若飞机从南往北飞,φ1>φ2 D 、 若飞机从北往南飞,φ1<φ22、感应电流的计算 【例题2】粗细均匀的电阻丝围成的正方形线框置于有界匀强磁场中磁场方向垂直于线框平面,其边界与正方形线框的边平行。
现使线框以相同大小的速度沿四个不同方向移出磁场,则在移出的过程中线框的一边ab 两点间的电势差的绝对值最大的是()【例题3】如图所示,在磁感应强度为B=0.5T 的匀强磁场中,垂直于磁场方向水平放置的两平行金属导轨,相距为L=0.1m,导轨电阻不计,在导轨的右端连着一只电阻阻值为R=0.3Ω,导轨上跨放着一根长为0.2m 的金属棒,其每米长的电阻为2Ω,棒与导轨垂直,并以v=4m/s 的速度向左匀速运动,则金属棒两端的电压为多大?【例题4】如图所示,日字形导线框由7根长均为L ,电阻r的导线组成,受拉力作用以速度v匀速通过宽为L,磁感应强度为B 的匀强磁场,线框平面始终与磁场方向垂直,由ab边刚进入磁场开始,求:线框在第一根边进入、第二根边进入和第三根边进入磁场区域的三个不同位置时(1)流过导体ab 的电流(2)导体ab 两端的电压。
切割磁感线运动所谓切割磁感线运动,是指物体在磁场中运动,而该运动一定与磁感线成一定角度,而不与磁感线平行。
闭合电路的一部分导体在磁场中做切割磁感线运动,在导体中就会有电流产生,这种现象叫作电磁感应现象。
产生的电流叫作感应电流。
磁感线像用电场线描述电场一样,为了形象地描述磁场的强弱和方向,可在磁场中画出一系列曲线,使曲线上任一点的切线方向都和该点的磁场方向一致,这些曲线叫做磁感线。
用磁感线可直观地表示磁场中各点的磁场的大小和方向,磁感线密处磁场强,磁感线疏处磁场弱。
物理学上规定:小磁针静止时北极(N极)的指向,为该点的磁场的方向。
磁体之所以对周围的一些物体具有力的作用,是因为磁场的存在,我们为了形象的表示磁场分布,我们用了以下实验方法:在一块条形磁铁上放一块玻璃,玻璃上撒上铁屑,晃动玻璃后会发现,铁屑有规律的排列成连接磁铁两端的曲线,在曲线上摆放小磁针,会发现小磁针的N极指向磁铁S级,小磁针的S极指向磁铁N级,我们把这些小磁针的指向从磁铁N极到S级连接起来,得到的线就称为磁感线。
磁感线实际上是不存在的,只是我们假想出来更形象的描述磁场分布的。
磁感线是闭合的曲线,与电场线区分开来。
电磁感应现象法拉第在实验中发现,用伏打电池给一组线圈通电或断电的瞬间,另一组线圈中有电流产生。
随后法拉第又发现磁铁与闭合线圈相对运动时,线圈中也有电流产生。
经过大量实验研究,法拉第总结出产生感应电流的几种情况:变化的电流,变化的磁场,运动的磁铁,在磁场中运动的导体。
这些实验大致可归纳为两种情况:一是闭合回路保持不动但周围的磁场发生变化;二是闭合回路和磁场间发生了相对运动。
因磁通量变化产生感应电动势的现象,闭合电路的一部分导体在磁场里做切割磁感线的运动时,导体中就会产生电流,这种现象叫电磁感应现象。
闭合线圈面积不变,改变磁场强度,磁通量也会改变,也会发生电磁感应现象。
所以准确的定义如下:因磁通量变化产生感应电动势的现象。
电动势的方向(公式中的负号)由楞次定律提供。
- 1 -专题九 导体切割磁感线的运动重点难点1.楞次定律:推广可以具体简化为以下三种情况:①阻碍原磁通的变化;②阻碍导体间的相对运动;③阻碍原电流的变化.2.应用法拉第电磁感应定律时应注意:①一般用E = n ΔΦΔt (或E = nB ΔSΔt )求平均电动势,用E = Bl υ求瞬时电动势,但当Δs 随Δt 均匀变化时,由于电动势恒定,平均电动势和瞬时电动势相等,可用E = n ΔΦΔt 求某一时刻的电动势;②匀强磁场中,B 、l 、υ相互垂直,导体平动切割磁感线时E = Bl υ,绕固定转轴转动时E = 12Bl 2ω.规律方法【例1】如图所示,在磁感应强度大小为B ,方向垂直纸面向里的匀强磁场中,有一个质量为m 、半径为r 、电阻为R 的均匀圆形导线圈,线圈平面跟磁场垂直(位于纸面内),线圈与磁场边缘(图中虚线)相切,切点为A ,现在A 点对线圈施加一个方向与磁场垂直,位于线圈平面内的,并跟磁场边界垂直的拉力F ,将线圈以速度υ匀速拉出磁场.以切点为坐标原点,以F 的方向为正方向建立x 轴,设拉出过程中某时刻线圈上的A 点的坐标为x .(1)写出此时F 的大小与x 的关系式;(2)在F -x 图中定性画出F -x 关系图线,写出最大值F 0的表达式. 【解析】由于线圈沿F 方向作切割磁感线运动,线圈上要产生顺时针方向的感应电流,从而要受到与F 方向反向的安培力F f 作用,由图可知,此时线圈切割磁感线的有效长度l = 2r 2-(r -x )2线圈上感应电动势,感应电流i =ER线圈所受安培力大小为F f = Bil ,方向沿x 负方向 因线圈被匀速拉出,所以F = F f 解上各式得F = 8B 2υr R x -4B 2υRx2(2)当x = r 时,拉力F 最大,最大值为F 0 =4B 2r 2υR图线如图所示.训练题如图(甲)所示,一对平行光滑轨道放置在水平面上,两轨道间距l=0.20m ,电- 2 -阻R =1.0Ω;有一导体杆静止地放在轨道上,与两轨道垂直,杆及轨道的电阻皆可忽略不计,整个装置处于磁感强度B =0.50T 的匀强磁场中,磁场方向垂直轨道面向下,现用一外力F 沿轨道方向拉杆,使之做匀加速运动,测得力F 与时间t 的关系如图(乙)所示,求杆的质量m 和加速度a .答案:a=10m/s2,m=0.1kg【例2】如图所示,两根相距l 平行放置的光滑导电轨道,与水平面倾角均为α轨道间有电阻R ,处于磁感应强度为B 方向竖直向上的匀强磁场中,一根质量为m 、电阻为R /4的金属杆ab ,由静止开始沿导电轨道下滑.设下滑中ab 杆始终与轨道保持垂直,且接触良好,导电轨道有足够的长度,且电阻不计,求ab 杆沿轨道下滑可达到的最终速度.【解析】当ab 杆沿轨道加速下滑至速度υ时,ab 杆上的电动势为E = BL υcos αab 杆与导电轨道组成的回路中的电流为I =4cos 154E BL R R R υα=+ ab 杆受到的安培力为F = BIl = 224cos 5B l Rυα方向水平向右.当ab 杆的速度增大至某一值υm 时,ab 杆受到的合外力F 合恰减为零,此时ab 杆的加速度a 也减为零,之后ab 杆保持速度υm 沿轨道匀速下滑.速度υm 即是ab 杆沿轨道下滑可达到的最终速度.据共点合力平衡条件,有mg sin α = F cos α即mg sin α = R l B 5cos 42m 2α·cos α,解得:υm = αα222cos 4sin 5l B mgR .训练题如图所示,具有水平的上界面的匀强磁场,磁感强度为B ,方向水平指向纸内,一个质量为m ,总电阻为R 的闭合矩形线框abcd 在竖直平面内,其ab 边长为L ,bc 边长为h ,磁场宽度大于h ,线框从ab 边距磁场上界面H 高处自由落下,线框下落时,保持ab 边水平且线框平面竖直.已知ab 边进入磁场以后,cd 边到达上边界之前的某一时刻线框的速度已达到这一阶段的最大值,此时cdB边距上边界为h 1,求:(1)线框ab 边进入磁场时的速度大小;(2)从线框ab 边进入磁场到线框速度达到最大的过程中,线框中产生的热量; 答案:(1)v=(2gh )1/2(2)Q=mg (H+h+h 1)—m 3R 2g 2/2B 4L 4能力训练1.一直升飞机停在南半球某处上空.设该处地磁场的方向竖直向上,磁感应强度为B .直升飞机螺旋桨叶片的长度为l ,螺旋桨转动的频率为f ,顺着地磁场的方向看螺旋桨,螺旋桨按顺时针方向转动.螺旋桨叶片的近轴端为a ,远轴端为b ,如图所示.如果忽略到转轴中心线的距离,用E 表示每个叶片中的感应电动势,则 ( A )A .E = πfl 2B ,且a 点电势低于b 点电势 B .E = 2πfl 2B ,且a 点电势低于b 点电势C .E = πfl 2B ,且a 点电势高于b 点电势D .E = 2πfl 2B ,且a 点电势高于b 点电势2.如图是电磁驱动的原理图,把一个闭合线圈放在蹄形磁铁的两磁极间,蹄形磁铁和闭合线圈都可以绕OO ′轴转动.当转动蹄形磁铁时,线圈将( B )A .不动B .跟随磁铁一起转动C .向与磁铁相反的方向转动D .磁铁的磁极未知,无法判断3.如图所示,C 是一只电容器,先用外力使金属杆ab 贴着水平平行金属导轨在匀强磁场中沿垂直磁场方向运动,到有一定速度时突然撤销外力.不计摩擦,则ab 以后的运动情况可能是 ( C )A .减速运动到停止B .来回往复运动C .匀速运动D .加速运动4.在匀强磁场中放一电阻不计的平行金属导轨,导轨跟大线圈M 相接,如图所示,导轨上放一根导线ab ,磁感线垂直导轨所在的平面,欲使M 所包围的小闭合线圈N 产生顺时针方向的感应电流,则导线的运动可能是 ( CD )A .匀速向右运动B .加速向右运动C .减速向右运动D .加速向左运动 5.如右图所示,光滑的水平平行放置的导轨左端连有电阻R ,导轨上架有一根裸金属棒ab ,整个装置处于垂直轨道平面的匀强磁场中,今从静止起用力拉金属棒(保持棒与导轨垂直),若拉力- 4 -恒定,经时间t 1后ab 的速度为v ,加速度为a 1,最终速度可达2v ;若拉力的功率恒定,经时间t 2后ab 的速度也为v ,加速度为a 2,最终速度也可达2v 。
求a 1和a 2满足的关系。
(不计其他电阻)答案:a 2=3a 16.水平固定的光滑U 型金属框架宽为L ,足够长,其上放一质量为m 的金属棒ab ,左端连接有一阻值为R 的电阻(金属框架、金属棒及导线的电阻均可忽略不计),整个装置处在向下的匀强磁场中,磁感应强度大小为B 。
现给棒一个初速v 0,使棒始终垂直框架并沿框架运动,如图所示。
(1)金属棒从开始运动到达稳定状态的过程中求通过电阻R 的电量和电阻R 中产生的热量 (2)金属棒从开始运动到达稳定状态的过程中求金属棒通过的位移(3)如果将U 型金属框架左端的电阻R 换为一电容为C 的电容器,其他条件不变,如图所示。
求金属棒从开始运动到达稳定状态时电容器的带电量和电容器所储存的能量(不计电路向外界辐射的能量)答案:(1)由动量定理得00Ft mv -=- 即00ILB t mv -⋅=- 所以0mv q BL= 由能量守恒定律得2012Q mv =(2)B S BLs E t t t φ∆∆===∆∆∆ E BLs q I t t R R =∆=∆= 所以022mv RqR s BL B L ==(3)当金属棒ab 做切割磁力线运动时,要产生感应电动势,这样,电容器C 将被充电,ab 棒中有充电电流存在,ab 棒受到安培力的作用而减速,当ab 棒以稳定速度v 匀速运动时,BLv =U C =/c Q C 而对导体棒ab 利用动量定理可得 —BL c Q =mv -mv 0由上述二式可求得: CL B m mv v 220+=22c CBLmv Q CBLv m B L C ==+2222000221111()2222c mv E mv mv mv m m B L C =-=-+7.两根水平平行固定的光滑金属导轨宽为L ,足够长,在其上放置两根长也为L 且与导轨垂直的金属棒ab 和cd ,它们的质量分别为2m 、m ,电阻阻值均为R (金属导轨及导线的电阻均可忽略不计),整个装置处在磁感应强度大小为B 、方向竖直向下的匀强磁场中。
(1)现把金属棒ab 锁定在导轨的左端,如图甲,对cd 施加与导轨平行的水平向右的恒力F ,使金属棒cd 向右沿导轨运动,当金属棒cd 的运动状态稳定时,金属棒cd 的运动速度是多大?(2)若对金属棒ab 解除锁定,如图乙,使金属棒cd 获得瞬时水平向右的初速度v 0,当它们的运动状态达到稳定的过程中,流过金属棒ab 的电量是多少?整个过程中ab 和cd 相对运动的位移是多大?答案:⑴当cd 棒稳定时,恒力F 和安培力大小相等,方向相反,以速度v 匀速度运动,有:F =BIL 又RBLv I 2= 联立得: 222L B FRv =⑵ab 棒在安培力作用下加速运动,而cd 在安培力作用下减速运动,当它们的速度相同,达到稳定状态时,回路中的电流消失,ab ,cd 棒开始匀速运动。
设这一过程经历的时间为t ,最终ab 、cd 的速度为v ′,通过ab 棒的电量为Q 。
则对于ab 棒由动量守恒:BILt =2mv ′ 即:BLQ =2 mv ′同理,对于cd 棒:-BILt =mv ′-mv 0 即: BLQ =m (v 0-v ′)得:BL mv Q 320=设整个过程中ab 和cd 的相对位移为S ,由法拉第电磁感应定律得: t BLS t E =∆Φ=流过ab 的电量:t R EQ 2= 得:22034LB R mv S =8.如图,光滑平行的水平金属导轨MN 、PQ 相距l ,在M 点和P 点间接一个阻值为R 的电阻,在两导轨间OO 1O 1′O ′矩形区域内有垂直导轨平面竖直向下、宽为d 的匀强磁场,磁感强度为B 。
一质量为m ,电阻为r 的导体棒ab ,垂直搁在导轨上,与磁场左边界相距d 0。
现用一大小为F 、水平向右的恒力拉ab 棒,使它由静止开始运动,棒ab 在离开磁场前已经做匀速直线运动(棒ab 与导轨始终保持良好的接触,导轨电阻不计)。
求: (1)棒ab 在离开磁场右边界时的速度; (2)棒ab 通过磁场区的过程中整个回路所消R0甲 O 乙- 6 -耗的电能;(3)试分析讨论ab 棒在磁场中可能的运动情况。
答案:(1)ab 棒离开磁场右边界前做匀速运动, 速度为m v ,则有 m E Blv = EI R r=+ 对ab 棒 F -BIl =0 解得 22()m F R r v B l +=(2)由能量守恒可得: 201()2m F d d W mv +=+电解得: 22044()()2mF R r W F d d B l +=+-电(3)设棒刚进入磁场时速度为v由 2012F d mv ⋅= 可得v =棒在进入磁场前做匀加速直线运动,在磁场中运动可分三种情况讨论:22()F R r B l +=(或44022()d B l F m R r =+),则棒做匀速直线运动;22()F R r B l +<(或F >44022()d B l m R r +),则棒先加速后匀速;22()F R r B l +>(或F <44022()d B l m R r +=,则棒先减速后匀速。