函数导数综合
- 格式:doc
- 大小:195.00 KB
- 文档页数:2
三角函数与导数综合应用一、引言三角函数和导数是高等数学中的两个重要概念,它们在数学和物理等领域具有广泛的应用。
本文将讨论三角函数与导数的综合应用,并结合实际问题展示其重要性。
二、举例:航空器的爬升角度在航空领域中,航空器的爬升角度是一个关键参数,它直接影响飞机的爬升速率和到达目的地所需的时间。
而通过对三角函数和导数的综合应用,我们可以确定最优的爬升角度,使飞机能够以最高的效率完成任务。
1.问题陈述假设一架飞机位于空中,目标高度为H米,初始高度为h米(h < H),飞机的爬升速率为v m/s。
我们的目标是确定最小的爬升角度θ,使得飞机能够以最短的时间到达目标高度H。
2.解决方法我们可以利用三角函数和导数的综合应用来解决这个问题。
假设飞机当前的高度为y米,它的爬升角度为θ。
根据三角函数的定义,我们可以得到飞机的爬升速率与角度之间的关系:v = y' = dy/dt = sin(θ) * v其中,y'表示高度关于时间的导数,即飞机的爬升速率;dy/dt表示高度关于时间的变化率;sin(θ)表示飞机的爬升角度与爬升速率之间的比例关系;v表示飞机的爬升速率。
我们的目标是求解出角度θ的取值范围,使得飞机以最短时间到达目标高度H。
由于飞机的爬升速率是已知的,我们可以将问题转化为求解y与θ的关系式,并对y求导数。
3.问题求解设总时间为T,根据问题陈述,我们可以得到以下方程:∫[0,H] dy / (sin(θ) * v) = T其中,∫[0,H]表示对y从0到H进行积分,dy表示y的微元变化量。
将方程分解后,我们可以得到:∫[0,H] dy / sin(θ) = v * T再次对方程进行分解,我们可以得到:∫[0,H] sec(θ) dy = v * T利用积分规则,我们可以得到以下结果:[ln|sec(θ) + tan(θ)|] [0,H] = v * T由于θ的取值范围在[0,π/2]之间,我们可以得到以下结论:ln|sec(θ) + tan(θ)| = (v * T) / H根据以上方程,我们可以求解出最优的爬升角度θ,进而确定飞机到达目标高度H所需的最短时间T。
导数公式大全1.一元函数的导数公式:。
一元函数的导数公式为:y'=f'(x),其中f'(x)为x的导数,表示对x求导数。
2.二元函数的导数公式:。
二元函数(即具有两个未知变量的函数)的导数公式为:∂f/∂x= limh→0 (f(x+h)-f(x))/h。
∂f/∂y= limh→0 (f(y+h)-f(y))/h。
其中∂f/∂x表示对x求偏导,∂f/∂y表示对y求偏导。
3.三元函数的导数公式:。
三元函数(即具有三个未知变量的函数)的导数公式为:∂f/∂x= limh→0 (f(x+h,y,z)-f(x,y,z))/h。
∂f/∂y= limh→0 (f(x,y+h,z)-f(x,y,z))/h。
∂f/∂z= limh→0 (f(x,y,z+h)-f(x,y,z))/h。
其中∂f/∂x表示对x求偏导,∂f/∂y表示对y求偏导,∂f/∂z表示对z 求偏导。
4.常用函数的导数公式:。
常用函数的导数公式有:(1)多项式函数的导数:n阶多项式f(x)=anxn+an-1xn-1+…+a1x+a0的导数为f'(x)=nanxn-1+n-1an-1xn-2+…+a1;。
(2)指数函数的导数:以a≠0,a≠1为底的指数函数f(x)=a^x的导数为f'(x)=ln|a|a^x;。
(3)对数函数的导数:以a≠0,a≠1为底的对数函数f(x)=ln|x|a 的导数为f'(x)=1/xa;。
(4)三角函数的导数:正弦函数sin(x)的导数为cos(x);余弦函数cos(x)的导数为-sin(x);正切函数tan(x)的导数为sec2(x);反正切函数cot(x)的导数为-csc2(x);反余弦函数arcsin(x)的导。
【母题原题1】【2019年高考全国Ⅲ卷理数】已知函数32()2f x x ax b =-+. (1)讨论()f x 的单调性;(2)是否存在,a b ,使得()f x 在区间[0,1]的最小值为1-且最大值为1?若存在,求出,a b 的所有值;若不存在,说明理由.【答案】(1)见详解;(2)01a b =⎧⎨=-⎩或41a b =⎧⎨=⎩.【解析】(1)2()622(3)f x x ax x x a '=-=-.令()0f x '=,得x =0或3ax =. 若a >0,则当(,0),3a x ⎛⎫∈-∞+∞⎪⎝⎭U 时,()0f x '>;当0,3a x ⎛⎫∈ ⎪⎝⎭时,()0f x '<.故()f x 在(,0),,3a ⎛⎫-∞+∞ ⎪⎝⎭单调递增,在0,3a ⎛⎫⎪⎝⎭单调递减;若a =0,()f x 在(,)-∞+∞单调递增;若a <0,则当,(0,)3a x ⎛⎫∈-∞+∞ ⎪⎝⎭U 时,()0f x '>;当,03a x ⎛⎫∈ ⎪⎝⎭时,()0f x '<.故()f x 在,,(0,)3a ⎛⎫-∞+∞ ⎪⎝⎭单调递增,在,03a ⎛⎫⎪⎝⎭单调递减.(2)满足题设条件的a ,b 存在.(i )当a ≤0时,由(1)知,()f x 在[0,1]单调递增,所以()f x 在区间[0,l]的最小值为(0)=f b ,最大值为(1)2f a b =-+.此时a ,b 满足题设条件当且仅当1b =-,21a b -+=,即a =0,1b =-.专题20函数与导数综合(ii )当a ≥3时,由(1)知,()f x 在[0,1]单调递减,所以()f x 在区间[0,1]的最大值为(0)=f b ,最小值为(1)2f a b =-+.此时a ,b 满足题设条件当且仅当21a b -+=-,b =1,即a =4,b =1.(iii )当0<a <3时,由(1)知,()f x 在[0,1]的最小值为3327a a f b ⎛⎫=-+ ⎪⎝⎭,最大值为b 或2a b -+.若3127a b -+=-,b =1,则a =,与0<a <3矛盾.若3127a b -+=-,21a b -+=,则a =或a =-或a =0,与0<a <3矛盾.综上,当且仅当a =0,1b =-或a =4,b =1时,()f x 在[0,1]的最小值为-1,最大值为1.【名师点睛】这是一道常规的函数导数不等式和综合题,题目难度比往年降低了不少.考查的函数单调性,最大值最小值这种基本概念的计算.思考量不大,由计算量补充.【母题原题2】【2018年高考全国Ⅲ卷理数】已知函数()()()22ln 12f x x ax x x =+++-. (1)若0a =,证明:当10x -<<时,()0f x <;当0x >时,()0f x >; (2)若0x =是()f x 的极大值点,求a . 【答案】(1)见解析;(2)16a =-【解析】(1)当0a =时,()(2)ln(1)2f x x x x =++-,()ln(1)1x f x x x'=+-+. 设函数()()ln(1)1xg x f x x x'==+-+,则2()(1)x g x x '=+.当10x -<<时,()0g x '<;当0x >时,()0g x '>.故当1x >-时,()(0)0g x g ≥=,且仅当0x =时,()0g x =,从而()0f x '≥,且仅当0x =时,()0f x '=. 所以()f x 在(1,)-+∞单调递增.又(0)0f =,故当10x -<<时,()0f x <;当0x >时,()0f x >.(2)(i )若0a ≥,由(1)知,当0x >时,()(2)ln(1)20(0)f x x x x f ≥++->=,这与0x =是()f x 的极大值点矛盾.(ii )若0a <,设函数22()2()ln(1)22f x xh x x x ax x ax==+-++++.由于当||min{x <时,220x ax ++>,故()h x 与()f x 符号相同. 又(0)(0)0h f ==,故0x =是()f x 的极大值点当且仅当0x =是()h x 的极大值点.2222222212(2)2(12)(461)()1(2)(1)(2)x ax x ax x a x ax a h x x x ax x ax x ++-++++'=-=++++++.如果610a +>,则当6104a x a +<<-,且||min{x <时,()0h x '>,故0x =不是()h x 的极大值点.如果610a +<,则224610a x ax a +++=存在根10x <,故当1(,0)x x ∈,且||min{x <时,()0h x '<,所以0x =不是()h x 的极大值点.如果610a +=,则322(24)()(1)(612)x x h x x x x -'=+--.则当(1,0)x ∈-时,()0h x '>;当(0,1)x ∈时,()0h x '<.所以0x =是()h x 的极大值点,从而0x =是()f x 的极大值点综上,16a =-. 【名师点睛】本题考查函数与导数的综合应用,利用函数的单调性求出最值证明不等式,第二问分类讨论0a ≥和0a <,当0a <时构造函数()()22f x axh x x =++时关键,讨论函数()h x 的性质,本题难度较大.【母题原题3】【2017年高考全国Ⅲ卷理数】已知函数()1ln f x x a x =--. (1)若()0f x ≥,求a 的值;(2)设m 为整数,且对于任意正整数n ,2111111222n m ⎛⎫⎛⎫⎛⎫+++< ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭L ,求m 的最小值. 【答案】(1)1a =;(2)3【解析】(1)()f x 的定义域为()0∞,+.①若0a ≤,因为11ln 2022f a ⎛⎫<⎪⎝⎭=-+,所以不满足题意; ②若a >0,由()1a x af 'x x x-=-=知,当()0x ,a ∈时,()f 'x <0;当(),+x a ∈∞时,()f 'x >0,所以()f x 在()0,a 单调递减,在(),+a ∞单调递增,故x =a 是()f x 在()0∞,+的唯一最小值点. 由于()10f =,所以当且仅当a =1时,()0f x ≥.故a =1. (2)由(1)知当()1,x ∈+∞时,1ln 0x x -->. 令112n x =+得11ln 122nn ⎛⎫+< ⎪⎝⎭.从而 221111111ln 1ln 1ln 1112222222n n n ⎛⎫⎛⎫⎛⎫++++++<+++=-< ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭L L .故2111111e 222n ⎛⎫⎛⎫⎛⎫+++< ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭L . 而231111112222⎛⎫⎛⎫⎛⎫+++> ⎪⎪⎪⎝⎭⎝⎭⎝⎭,所以m 的最小值为3. 【名师点睛】导数是研究函数的单调性、极值(最值)最有效的工具,而函数是高中数学中重要的知识点,所以在历届高考中,对导数的应用的考查都非常突出.本专题在高考中的命题方向及命题角度:从高考来看,对导数的应用的考查主要有以下几个角度:(1)考查导数的几何意义,往往与解析几何、微积分相联系.(2)利用导数求函数的单调区间,判断单调性;已知单调性,求参数.(3)利用导数求函数的最值(极值),解决生活中的优化问题.(4)考查数形结合思想的应用.【命题意图】了解函数在某点取得极值的必要条件和充分条件;会用导数求函数的极大值、极小值(对多项式函数不超过三次);会求闭区间上函数的最大值、最小值(对多项式函数不超过三次).主要考查考生的分类讨论思想、等价转化思想以及数学运算能力和逻辑推理能力.【命题规律】导数的综合应用一直是高考的重点和难点.一般以基本初等函数为载体,利用导数研究函数的单调性、极值、最值、零点问题,同时与解不等式关系最为密切,还可能与三角函数、数列等知识综合考查,一般出现在解答题的压轴位置,难度较大.【答题模板】1.利用导数求函数单调区间的基本步骤(1)确定函数f(x)的定义域;(2)求导数f'(x);(3)由f'(x)>0(或<0)解出相应的x的取值范围,对应的区间为f(x)的单调递增(减)区间.还可以通过列表,写出函数的单调区间.2.证明或讨论函数的单调性方法一:求出在对应区间上导数的正负即得结论.方法二:(1)确定函数f(x)的定义域;(2)求导数f'(x),并求方程f'(x)=0的根;(3)利用f'(x)=0的根将函数的定义域分成若干个子区间,在这些子区间上讨论f'(x)的正负,由符号确定f(x)在该子区间上的单调性.【知识总结】1.函数的极值设函数y=f(x)在x0附近有定义,如果对x0附近的所有的点,都有f(x)<f(x0),则f(x0)是函数y=f (x)的一个极大值,记作y极大值=f(x0);如果对x0附近的所有的点,都有f(x)>f(x0),则f(x0)是函数y=f(x)的一个极小值,记作y极小值=f(x0).极大值与极小值统称为极值.一般地,当函数f(x)在x0处连续时,(1)如果在x0附近的左侧f'(x)>0,右侧f'(x)<0,那么f(x0)是极大值;(2)如果在x0附近的左侧f'(x)<0,右侧f'(x)>0,那么f(x0)是极小值.注意:(1)极值点不是点,若函数f(x)在x1处取得极大值,则x1为极大值点,极大值为f(x1);在x2处取得极小值,则x2为极小值点,极小值为f(x2).极大值与极小值之间无确定的大小关系.(2)极值一定在区间内部取得,有极值的函数一定不是单调函数.(3)f'(x0)=0是x0为f(x)的极值点的必要而非充分条件.例如,f(x)=x3,f'(0)=0,但x=0不是极值点.2.函数的最值在区间[a,b]上连续的函数f(x)在[a,b]上必有最大值与最小值.在区间[a,b]上连续的函数f(x)若有唯一的极值点,则这个极值点就是最值点.注意:极值与最值的区别与联系极值只能在定义域内部取得,而最值却可以在区间的端点处取得,有极值的未必有最值,有最值的未必有极值;极值有可能成为最值,最值只要不在端点处必定是极值.在指定区间上极值可能不止一个,也可能一个也没有,而最值最多有一个.3.利用导数解决函数单调性问题应该注意:(1)单调区间是函数定义域的子区间,所以求解函数的单调区间要先求函数的定义域;(2)求可导函数f(x)的单调区间,可以直接转化为f'(x)>0与f'(x)<0这两个不等式的解集问题来处理;(3)若可导函数f(x)在指定区间D上单调递增(减),则应将其转化为f'(x)≥0(f'(x)≤0)来处理;(4)涉及含参数的函数的单调性或单调区间问题,一定要弄清参数对导数f'(x)在某一区间内的符号是否有影响.若有影响,则必须分类讨论.4.函数的图象与导函数图象的关系理解导函数y=f'(x)的图象与函数f(x)图象的升降关系,导函数大于0对应原函数图象由左至右上升,导函数小于0对应原函数图象由左至右下降,在解题时要注意原函数的定义域,如判断定义域是否具有对称性等.5.由函数的单调性求参数的取值范围的技巧(1)由可导函数f(x)在D上单调递增(或递减)求参数范围问题,可转化为f'(x)≥0(或f'(x)≤0)对x∈D恒成立问题,再参变分离,转化为求最值问题,要注意“=”是否取到.(2)可导函数在某一区间上存在单调区间,实际上就是f'(x)>0(或f'(x)<0)在该区间上存在解集,这样就把函数的单调性问题转化成不等式问题.(3)若已知f(x)在区间I上的单调性,区间I中含有参数时,可先求出f(x)的单调区间,令I是其单调区间的子集,从而可求出参数的取值范围.(4)若已知f(x)在D上不单调,则f(x)在D上有极值点,且极值点不是D的端点.6.求函数f(x)在[a,b]上的最值的方法(1)若函数在区间[a,b]上单调递增或递减,f(a)与f(b)一个为最大值,一个为最小值;(2)若函数在区间[a,b]内有极值,要先求出函数在[a,b]上的极值,再与f(a),f(b)比较,最大的是最大值,最小的是最小值,可列表完成;(3)函数f(x)在区间(a,b)上有唯一一个极值点,这个极值点就是最大(或最小)值点,此结论在导数的实际应用中经常用到.注意:求一个函数在闭区间上的最值和在无穷区间(或开区间)上的最值时,方法是不同的.求函数在无穷区间(或开区间)上的最值,不仅要研究其极值情况,还要研究其单调性,并通过单调性和极值情况,画出函数的大致图象,然后借助图象观察得到函数的最值.7.已知函数的极值、最值求参数(1)已知函数的极值求参数时,通常利用函数的导数在极值点处的取值等于零来建立关于参数的方程.需注意的是,可导函数在某点处的导数值等于零只是函数在该点处取得极值的必要条件,所以必须对求出的参数值进行检验,看是否符合函数取得极值的条件.(2)已知函数的最值求参数,一般先求出最值(含参数),再根据最值列方程或不等式(组)求解.8.利用导数解决不等式问题(1)利用导数证明不等式的方法证明f(x)<(>)g(x),x∈(a,b),可以构造函数F(x)=f(x)-g(x),如果F'(x)<(>)0,则F(x)在(a,b)上是减(增)函数,同时若F(a)≤(≥)0,由减(增)函数的定义可知,x∈(a,b)时,有F(x)<(>)0,即证明了f(x)<(>)g(x).其一般步骤是:构造可导函数→研究单调性或最值→得出不等关系→整理得出结论.(2)不等式成立(恒成立)问题①f(x)≥a恒成立⇔f(x)min≥a,f(x)≥a成立⇒f(x)max≥a.②f(x)≤b恒成立⇔f(x)max≤b,f(x)≤b成立⇔f(x)min≤b.③f(x)>g(x)恒成立F(x)min>0.④∀x1∈M,∃x2∈N,f(x1)>g(x2)⇔f(x1)min>g(x2)min.∀x1∈M,∀x2∈N,f(x1)>g(x2)⇔f(x1)min>g(x2)max.∃x1∈M,∃x2∈N,f(x1)>g(x2)⇔f(x1)max>g(x2)min.∃x1∈M,∀x2∈N,f(x1)>g(x2)⇔f(x1)max>g(x2)max.注意:不等式在某区间上能成立与不等式在某区间上恒成立问题是既有联系又有区别的两种情况,解题时应特别注意,两者都可转化为最值问题,但f(a)≥g(x)(f(a)≤g(x))对存在x∈D能成立等价于f(a)≥g(x)min(f(a)≤g(x)max),f(a)≥g(x)(f(a)≤g(x))对任意x∈D都成立等价于f (a)≥g(x)max(f(a)≤g(x)min),应注意区分,不要搞混.9.导数在研究函数零点中的应用(1)研究函数图象的交点、方程的根、函数的零点,归根到底是研究函数的性质,如单调性、极值等. (2)用导数研究函数的零点,一方面用导数判断函数的单调性,借助零点存在性定理判断;另一方面,也可将零点问题转化为函数图象的交点问题,利用数形结合来解决.1.【四川省百校2019年高三模拟冲刺卷数学】已知函数()()()1ln 0,f x a x a g x x x=≠=-. (1)当2a =时,比较()f x 与()g x 的大小,并证明;(2)令函数()22F x fg ⎡⎤⎡⎤=-⎣⎦⎣⎦,若1x =是函数()F x 的极大值点,求a 的取值范围. 【答案】(1)见解析;(2)[)(]2,00,2a ∈-U . 【解析】(1)当2a =时,()()12ln f x g x x x x -=-+,令()12ln h x x x x=-+, 则()()222221212110x x x h x x x x x--+-=--=-'=≤, 所以函数()12ln h x x x x=-+在()0,∞+上单调递减,且()10h =, 所以当01x <<时,()0h x <,即()()f x g x >; 当1x >时,()0h x <,即()()f x g x <, 当1x =时,()0h x =,即()()f x g x =.(2)()22F x fg⎡⎤⎡⎤=-⎣⎦⎣⎦221ln 2,04a x x x x ⎛⎫=-+-> ⎪⎝⎭, 令202a m =>,则()2ln 1111ln x F x m m x x x x x x ⎛⎫=⋅-+=-+ ⎝'⎪⎭, 令()1ln G x m x x x =-+,则()222111m x mx G x x x x -+=--=-', ①当02m <≤时,()2210x mx G x x-+=-≤'恒成立, 所以()1ln G x m x x x=-+在()0,+∞上递减,且()10G = 所以01x <<时,()()0,F x F x '>在()0,1上递增,1x >时,()()0,F x F x '<在()1,+∞上递减,此时1x =是函数()F x 的极大值点,满足题意.②当2m >时,()()120,1,1,x x ∃∈∈+∞,使得当()12,x x x ∈时,()0G x '≥, 所以()1ln G x m x x x=-+在()12,x x 上递增,且()10G =, 所以11x x <<时,()()0,F x F x '<在()1,1x 上递减;21x x <<时,()()0,F x F x '>在()21,x 上递增,此时1x =是函数()F x 的极小值点,不合题意.综合得(]20,22a m =∈,解得[)(]2,00,2a ∈-U .【名师点睛】本题考查函数与导数的综合,函数极值与最值,转化化归思想,分类讨论,准确推理计算是关键,是中档题.2.【四川省乐山市高中2019届高三第三次调查研究考试数学】已知函数()()21ln 1f x a x x a =+--+(1)讨论函数()f x 的单调性;(2)若1a <,求证:当0x >时,函数()y xf x =的图像恒在函数()32ln 1y x a x x =++-的图像上方.【答案】(1)见解析;(2)见证明 【解析】(1)函数的定义域为()0,+∞,且()()121f x a x x =+-'()2211a x x+-=,当1a ≤-时,()0f x '<,函数()f x 在()0,+∞上为增函数; 当1a >-时,令()0f x '=,解得x =此时函数()f x 在⎛ ⎝⎭上递减,在⎫⎪+∞⎪⎝⎭上递增, (2)证明:若1a <,则当0x >时,问题转化为不等式()()32ln 1xf x x a x x >++-在()0,+∞上恒成立,只需要证明()()321ln 1ln 1x a x x a x a x x ⎡⎤+--+>++-⎣⎦在()0,+∞上恒成立,即证ln ln 1xx x a x-<-+在()0,+∞上恒成立, 令()()ln ln ,1xF x x x g x a x=-=--+, 因为()111xF x x x-=-=',易得()F x 在()0,1单调递增,在()1,+∞上单调递减,所以()()11F x F ≤=-, 又()221ln ln 1x x g x x x='--=-, 当0e x <<时,()0g x '<,当e x >时,()0g x '>, 所以()g x 在()0,e 上递减,在()e,+∞上递增,所以()()1e 1e g x g a ≥=--+, 又1a <,所以1111e ea --+>->-,即()()max min F x g x <,所以ln ln 1xx x a x-<-+在()0,+∞上恒成立, 所以当1a <时,函数()xf x 的图像恒在函数()32ln 1y x a x x =++-的图像上方.【名师点睛】本题考查函数的单调性质的讨论,考查不等式恒成立问题,是中档题,解题时要认真审题,注意导数性质和构造法的合理运用.3.【四川省内江市2019届高三第三次模拟考试数学】已知函数()21f x x ax =-+,()()ln g x x a a =+∈R . (1)若1a =,求函数()()()h x f x g x =-在区间1,e t ⎡⎤⎢⎥⎣⎦(其中1e et <<,e 是自然对数的底数)上的最小值;(2)若存在与函数()f x ,()g x 的图象都相切的直线,求实数a 的取值范围. 【答案】(1)见解析;(2)(],1-∞.【解析】(1)由题意,可得()221ln 1ln (0)h x x x x x x x x =-+--=-->,()2121'21x x h x x x x --=--=()()211x x x+-=, 令()'0h x =,得1x =.①当11e t <≤时,()h x 在1,e t ⎡⎤⎢⎥⎣⎦上单调递减, ∴()222min111e e 11e e ee h x h -+⎛⎫==-+= ⎪⎝⎭. ②当1t >时,()h x 在1,1e ⎡⎤⎢⎥⎣⎦上单调递减,在[]1,t 上单调递增, ∴()()min 10h x h ==.综上,当11e t <≤时,()22min e e 1eh x -+=,当1t >时,()min 0h x =. (2)设函数()f x 在点()()11,x f x 处与函数()g x 在点()()22,x g x 处有相同的切线, 则()()()()121212''f x g x f x g x x x -==-,∴211212121ln 12x ax x ax a x x x -+---==-, ∴12122ax x =+,代入21211221ln x x x ax x a x -=-+--,得222221ln 20424a a x a x x ++++-=. ∴问题转化为:关于x 的方程221ln 20424a ax a x x ++++-=有解,设()221ln 2(0)424a a F x x a x x x =++++->,则函数()F x 有零点, ∵()211ln 24F x a x a x ⎛⎫=+++- ⎪⎝⎭,当2e a x -=时,ln 20x a +-=,∴()2e 0a F ->. ∴问题转化为:()F x 的最小值小于或等于0.()23231121'222a x ax F x x x x x--=--+=, 设()20002100x ax x --=>,则当00x x <<时,()'0F x <,当0x x >时,()'0F x >.∴()F x 在()00,x 上单调递减,在()0,x +∞上单调递增,∴()F x 的最小值为()2002001ln 2424a a F x x a x x =++++-. 由200210x ax --=知0012a x x =-,故()20000012ln 2F x x x x x =+-+-. 设()212ln 2(0)x x x x x x ϕ=+-+->, 则()211'220x x x xϕ=+++>,故()x ϕ在()0,+∞上单调递增,∵()10ϕ=,∴当(]0,1x ∈时,()0x ϕ≤, ∴()F x 的最小值()00F x ≤等价于001x <≤.又∵函数12y x x=-在(]0,1上单调递增,∴(]0012,1a x x =-∈-∞. 【名师点睛】本题主要考查导数在函数中的综合应用,以及恒成立问题的求解,着重考查了转化与化归思想、分类讨论、及逻辑推理能力与计算能力,对于恒成立问题,通常要构造新函数,利用导数研究函数的单调性,求出最值,进而得出相应的含参不等式,从而求出参数的取值范围;也可分离变量,构造新函数,直接把问题转化为函数的最值问题.4.【广西桂林市、崇左市2019届高三下学期二模联考数学】设函数()()2e 1xf x a x x =---.(1)当1a =时,讨论()f x 的单调性;(2)已知函数()f x 在()0,+∞上有极值,求实数a 的取值范围.【答案】(1)()f x 在[)0,+∞上单调递增,在(],0-∞上单调递减;(2)3,2⎛⎫+∞ ⎪⎝⎭. 【解析】(1)()()e 211xf x a x '=---.当1a =时()e 1xf x '=-.由()0f x '≥有e 10x -≥,解得0x ≥;()00f x x ≤'⇒≤. 所以函数()f x 在[)0,+∞上单调递增,在(],0-∞上单调递减. (2)设()()()e 211xg x f x a x '==---,()()e 21xg x a ='--,因为函数()f x 在()0,+∞上有极值点,所以函数()g x 在()0,+∞上有零点.①当32a ≤时,0x >,∴e 1x >,∴()()e 210xg x a =-->', ∴()g x 在()0,+∞上单调递增,∵()00g =,所以当0x >时()()00g x g >=恒成立, 即函数()g x 在()0,+∞上没有零点. ②当32a >时,()211a ->,()ln210a ->, ()()e 210x g x a =-->'时,()ln21x a >-,()()e 210x g x a =--<'时,()ln21x a <-,∴()g x 在()(0,ln21a ⎤-⎦上单调递减,在())ln21,a ⎡-+∞⎣上单调递增, ∵()00g =,且()g x 在()(0,ln21a ⎤-⎦上单调递减,∴()()ln210g a -<. 对于0a >,当x →+∞时,()g x →+∞, 所以存在())0ln21,x a ⎡∈-+∞⎣使()00g x >. 所以函数()g x 在()()ln21,a -+∞上有零点.所以函数()f x 在()0,+∞上有极值点时,实数a 的取值范围是3,2⎛⎫+∞ ⎪⎝⎭.【名师点睛】本题主要考查利用导数研究函数的单调性,利用导数研究函数的极值,意在考查学生对这些知识的理解掌握水平和分析推理能力.5.【广西壮族自治区柳州市2019届高三毕业班3月模拟考试数学】已知函数1()ln f x x mx x=--在区间(0,1)上为增函数,m ∈R .(1)求实数m 的取值范围;(2)当m 取最大值时,若直线l :y ax b =+是函数()()2F x f x x =+的图像的切线,且,a b ∈R ,求a b +的最小值.【答案】(1)2m ≤;(2)a b +的最小值为–1. 【解析】(1)∵()1ln f x x mx x=--, ∴()211f x m x x =+-'.又函数()f x 在区间()0,1上为增函数, ∴()2110f x m x x=-'+≥在()0,1上恒成立, ∴()221111124m t x x x x ⎛⎫≤+=+-= ⎪⎝⎭在()0,1上恒成立.令()()2211111,0,124t x x x x x ⎛⎫=+=+-∈ ⎪⎝⎭,则当1x =时,()t x 取得最小值,且()min 2t x =, ∴2m ≤,∴实数m 的取值范围为(],2-∞. (2)由题意的()11ln 22ln F x x x x x x x ⎛⎫=--+=- ⎪⎝⎭,则()211F x x x +'=, 设切点坐标为0001,ln x x x ⎛⎫- ⎪⎝⎭,则切线的斜率()020011a f x x x ==+', 又0001ln x ax b x -=+, ∴002ln 1b x x =--, ∴020011ln 1a b x x x +=+--. 令()211ln 1(0)h x x x x x=+-->, 则()()()23233211212x x x x h x x x x x x'+-+-=-+==, 故当()0,1x ∈时,()()0,h x h x '<单调递减;当()1,x ∈+∞时,()()0,h x h x '>单调递增. ∴当1x =时,()h x 有最小值,且()()min 11h x h ==-, ∴a b +的最小值为1-.【名师点睛】本题考查导数的几何意义和导数在研究函数性质中的作用,其中在研究函数的性质中,单调性是解题的工具和基础,而正确求导并判断导函数的符号是解题的关键,考查计算能力和转化意识的运用,属于基础题.6.【贵州省2019届高三高考教学质量测评卷(八)数学】已知函数()()ln xf x ax a x=-+∈R ,'()f x 为()f x 的导函数.(1)当0a =时,求函数()f x 的极值;(2)若212,e,e x x ⎡⎤∃∈⎣⎦,使()()123'4f x f x a ≤++成立,求实数a 的最小值. 【答案】(1)见解析;(2)211e 2-+. 【解析】(1)()f x 的定义域为(0,1)(1,)+∞U ,当0a =时,2ln 1()(ln )x f 'x x -=,令()0f 'x =,得e x =, 列表得所以当e x =时,()f x 取得极小值,且极小值为e ;无极大值.(2)若212,e,e x x ⎡⎤∃∈⎣⎦,使()()123'4f x f x a ≤++成立()()12min max 3'4f x f x a ⇔++≤. 由(1)知,2ln 1'()(ln )x f x a x -=-+,所以()()2222ln 133'44ln x f x a x -++=+, 令21ln t x =,则原式231,142t t t ⎛⎫⎡⎤=-++∈ ⎪⎢⎥⎣⎦⎝⎭的最大值为1,故存在21[e,e ]x ∈,1()1f x ≤,即1111ln x ax x -+≤,化为1111ln a x x ≥-+, 令11()ln h x x x=-+,2e,e x ⎡⎤∈⎣⎦, 则2222211(ln )'()(ln )(ln )x xh x x x x x x -=-=.对于函数()ln x x ϕ=,(0x >),1'()x x ϕ==, 当4x =时,()x ϕ取最大值为ln 420-<,所以ln x <2(ln )x x <,故()0h'x <恒成立,()h x 在2e,e ⎡⎤⎣⎦为减函数,最小值为211e 2-+, 所以211e 2a ≥-+,a 的最小值为211e 2-+.【名师点睛】本题主要考查了利用导数求函数的极值,利用导数研究不等式成立的问题,涉及存在性问题,构造函数利用导数求其最大最小值问题,换元法,属于难题.此类问题要注意理解存在性和恒成立的差别,结合具体问题实现正确转换为最大值和最小值是关键.7.【贵州省贵阳市2019年高三5月适应性考试(二)数学】已知函数()e xf x bx =+.(1)讨论()f x 的单调性;(2)若曲线()y f x =的一条切线方程为210x y -+=, (i )求b 的值;(ii )若210x x >>时,()()12f x f x -()()12121x x mx mx <-++恒成立,求实数m 的取值范围. 【答案】(1)见解析;(2)(i )1,(ii )e ,2⎛⎤-∞ ⎥⎝⎦.【解析】由()e xf x bx =+得()e xf x b '=+,若0b ≥,则()0f x '>,即()e xf x bx =+在(),-∞+∞上是增函数;若0b <,令()0f x '>得()ln x b >-,令()0f x '<得()ln x b <-,即()e xf x bx =+在()(),ln b -∞-上是单调减函数,在()()ln ,b -+∞上是单调增函数.(2)(i )设切点为()00,x y ,()e xf x bx =+得()e xf x b '=+由题意得000000e 2e 210x xb y bx x y ⎧+=⎪=+⎨⎪-+=⎩,消去b 与0y , 得000e e 10xxx -+=,令()e e 1x x g x x =-+,()e xg x x '=,0x <时,()0g x '<;0x >时,()0g x '>;0x =时,()0g x '=; ()g x ∴在(),0-∞上是减函数,在()0,+∞上是增函数,()()min 00g x g ∴==,即()e e +1x x g x x =-仅有一个零点0x =,即方程000e e 10xxx -+=仅有一个根0x =,02e 1b ∴=-=,(ii )由(i )知()e xf x x =+,()()12f x f x -<()()12121x x mx mx -++即为()2111f x mx x --<()2222f x mx x --, 由210x x >>知,上式等价于函数()()22e x xf x mx x mx φ=--=-在()0,+∞为增函数, ()e 20xx mx φ∴=-≥',即e2x m x≤,令()e xh x x =,()0x >,()()2e 1x x h x x='-, ()0h x '<时,01x <<;()0h x '>时,1x >;()0h x '=时,1x =, ()h x ∴在()0,1上单调递减,在()1,+∞上单调递增,()()min 1e h x h ∴==,则2e m ≤,即e 2m ≤,所以实数m 的范围为e ,2⎛⎤-∞ ⎥⎝⎦.【名师点睛】本题主要考查导数研究函数的单调性及切线方程,利用导数研究恒成立问题等知识,考查了转化能力和计算求解能力,属于较难题.8.【贵州省遵义航天高级中学2019届高三第四次模拟考试数学】已知221()ln ,02f x x a x a =->. (1)若()0f x ≥,求a 的取值范围;(2)若()()12f x f x =,且12x x ≠,证明:122x x a +>.【答案】(1)a 的取值范围是;(2)见解析.【解析】(1)()()()2x a x a a f x x x x+='-=-, 当()0,x a ∈时,()()0,f x f x '<单调递减; 当(),x a ∈+∞时,()0f x '>单调递增; 当x a =时,()f x 取最小值()221ln 2f a a a a =-.令221ln 02a a a -≥,解得0a <≤a 的取值范围是(. (2)由(1)知,()f x 在(0,)a 上单调递减,在(),a +∞上单调递增, 不失一般性,设120.x a x <<<,则22a x a -<,要证122x x a +>,即122x a x >-,则只需证()()122f x f a x <-, 因为()()12f x f x =,则只需证()()222f x f a x <-, 设()()()2,2g x f x f a x a x a =--≤<.则()()()22222022a a x a a g x x a x x a x x a x -=-+--'=-≤--, 所以()g x 在[),2a a 上单调递减,从而()()0.g x g a ≤= 又由题意得22a x a <<,于是()()()22220g x f x f a x =--<,即()()222f x f a x <-, 因此122x x a +>.【名师点睛】本题考查了利用导数求出函数单调性,解决不等式恒成立问题、同时也考查了通过函数值的大小来判断两个的变量的大小的问题.9.【贵州省凯里市第一中学2019届高三下学期模拟考试《黄金卷三》数学】已知函数21()ln (1)()2f x x ax a x a =+-+∈R .(1)当1a ≥时,函数()f x 在区间[1,]e 上的最小值为–5,求a 的值;(2)设3211()()(1)22g x xf x ax a x x =-++-,且()g x 有两个极值点1x ,2x . (i )求实数a 的取值范围;(ii )证明:212e x x >.【答案】(1)8;(2)(i )1(1,1)e--;(ii )详见解析.【解析】(1)()()111()1a x x a f 'x ax a x x⎛⎫-- ⎪⎝⎭=+-+=, ∵1a ≥,[]1,e x ∈,∴()0f 'x ≥, 所以()f x 在区间[]1,e 上为单调递增.所以()()()min 111582f x f a a a ⎡⎤==-+=-⇒=⎣⎦, 又因为81a =≥, 所以a 的值为8.(2)(i )∵()()()232111ln 11222g x x x ax a x ax a x x ⎡⎤=+-+-++-⎢⎥⎣⎦()21ln 12x x a x x =-+-,且()g x 的定义域为()0,+∞,∴()()()ln 111ln 1g'x x a x x a x =+-+-=-+. 由()g x 有两个极值点1x ,2x ,等价于方程()ln 10x a x -+=有两个不同实根1x ,2x . 由()ln 10x a x -+=得ln 1xa x+=. 令()ln (0)xh x x x =>, 则21ln ()xh'x x-=,由()0e h'x x =⇒=. 当()0,e x ∈时,()0h'x >,则()h x 在()0,e 上单调递增; 当()e,x ∈+∞时,()0h'x <,则()h x 在()e,+∞上单调递减. 所以,当e x =时,()ln x h x x =取得最大值()max 1e eh =,∵()10h =,∴当()0,1x ∈时,()0h x <,当()1,x ∈+∞时,()0h x >,所以101e a <+<,解得111e a -<<-,所以实数a 的取值范围为11,1e ⎛⎫-- ⎪⎝⎭.(ii )不妨设120x x <<,且()11ln 1x a x =+①,()22ln 1x a x =+②, ①+②得:()()()1212ln 1x x a x x =++③ ②–①得:()()2211ln1x a x x x =+-④ ③÷④得:()12122211ln ln x x x x x x x x +=-,即()12212211ln ln x x x x x x x x +=⋅-, 要证:212e x x >,只需证()12212211ln ln 2x x xx x x x x +=⋅>-.即证:212212121121ln 21x x x x x x x x x x ⎛⎫- ⎪-⎝⎭>⋅=++.令21(1)x t t x =>, 设()()214ln ln 211t F t t t tt -=-=+-++, ()()()221'01t F t t t -=>+.∴()F t 在()1,+∞上单调递增, ∴()()10F t F >=,即()21ln 1t t t->+,∴212e x x >.【名师点睛】本题考查利用导数研究函数的单调性,极值,最值问题,参变分离,数形结合讨论参数范围,构造函数等,比较综合,属于难题.10.【云南省昆明市2019届高三1月复习诊断测试数学】已知函数()ln f x x ax =-,a ∈R .(1)讨论()f x 的单调性;(2)若函数()f x 存在两个零点1x ,2x ,使12ln ln 0x x m +->,求m 的最大值. 【答案】(1)当0a ≤时,()f x 在()0,+∞单调递增;当0a >时,()f x 在10,a ⎛⎫ ⎪⎝⎭单调递增,在1,a ⎛⎫+∞ ⎪⎝⎭单调递减;(2)2.【解析】(1)函数()f x 的定义域为()0+∞,,()1=f x a x'-. 当0a ≤时,()0f x '>,()f x 在()0,+∞单调递增; 当0a >时,令()0f x '=,得10x a=>, 当10,x a ⎛⎫∈ ⎪⎝⎭时,()0f x '>;当1,x a ⎛⎫∈+∞ ⎪⎝⎭时,()0f x '<. 所以()f x 在10,a ⎛⎫ ⎪⎝⎭单调递增,在1,a ⎛⎫+∞ ⎪⎝⎭单调递减.综上所述,当0a ≤时,()f x 在()0,+∞单调递增; 当0a >时,()f x 在10,a ⎛⎫ ⎪⎝⎭单调递增,在1,a ⎛⎫+∞ ⎪⎝⎭单调递减. (2)因为11ln 0x ax -=,22ln 0x ax -=,即11ln x ax =,22ln x ax =.两式相减得()1212ln ln x x a x x -=-,即1212lnx x a x x =-. 由已知12ln ln x x m +>,得()12a x x m +>.因为10x >,20x >,所以12ma x x >+,即121212ln x x m x x x x >-+.不妨设120x x <<,则有()121212lnm x x x x x x -<+. 令12x t x =,则()0,1t ∈,所以()1ln 1m t t t -<+,即()1ln 01m t t t --<+恒成立. 设()()1ln (01)1m t g t t t t -=-<<+.()()()222111t m t g't t t +-+=+.令()()2211h t t m t =+-+,()01h =,()h t 的图象开口向上,对称轴方程为1t m =-, 方程()22110t m t +-+=的判别式()42m m ∆=-.当1m ≤时,()h t 在()0,1单调递增,()()01h t h >=,所以()0,g't >()g t 在()0,1单调递增,所以()()10g t g <=在()0,1恒成立.当12m <≤时,()420m m ∆=-≤,()0h t ≥在()0,1上恒成立,所以()0g't >,()g t 在()0,1单调递增,所以()()10g t g <=在()0,1恒成立.当2m >时,()h t 在()0,1单调递减,因为()01h =,()1420h m =-<, 所以存在()00,1t ∈,使得()00h t =当()00,t t ∈时,()0h t >,()0g't >;当()0,1t t ∈时,()0h t <,()0g't <, 所以()g t 在()00,t 上递增,在()0,1t 上递减. 当()0,1t t ∈时,都有()()10g t g >=, 所以()0g t <在()0,1不恒成立.综上所述,m 的取值范围是(],2-∞,所以m 的最大值为2.【名师点睛】本题考查了函数的单调性的判断和换元构造新函数求其最值的问题,求导后讨论函数的单调性是本题的关键,属于中档题.11.【云南省曲靖市第一中学2019届高三高考复习质量监测三数学】已知函数()1ln 1xf x x+=+.(1)求函数()f x 的单调区间;(2)若()()g x xf x mx =+在区间(0,e ]上的最大值为–3,求m 的值; (3)若x ≥1时,不等式()11kf x x ≥++恒成立,求实数k 的取值范围. 【答案】(1)见解析;(2)3e 1m =--;(3)(],2-∞ 【解析】(1)由题意得函数的()f x 的定义域为()0,+∞.∵()1ln 1xf x x +=+, ∴()2ln xf x x=-',由()0f x '>,得01x <<; 由()0f x '<,得1x >.∴函数()f x 的增区间为()()0,11,+∞,减区间为. (2)由题意得()1ln g x x mx x =+++, ∴()11g x m x=++',(]0,e x ∈, ①当10m +≥,即1m ≥-时,则()0g x '>,()g x 在(]0,e 上是增函数, ∴()()()max e 1e 20g x g m ==++≥,不合题意; ②当10m +<,即1m <-时,则由()0g x '>,得101x m <<-+, 若1e 1m -≥+,则()g x 在(]0,e 上是增函数,由①知不合题意; 若1e 1m -<+,则()g x 在10,1m ⎛⎫- ⎪+⎝⎭上是增函数;在1,e 1m ⎛⎤- ⎥+⎝⎦上为减函数, ∴()max 11ln 311g x g m m ⎛⎫⎛⎫=-=-=- ⎪ ⎪++⎝⎭⎝⎭,∴311e 1em -=<+, 解得3e 1m =--,满足题意. 综上可得3e 1m =--.(3)∵当1x ≥时,()11kf x x ≥++恒成立, ∴()()ln 111ln 1x k x f x x x x ⎡⎤≤+-=+++⎣⎦当1x ≥时恒成立, 令()ln 1ln 1x h x x x x =+++,1x ≥, 则()2ln 0x xh x x'-=>恒成立, ∴()h x 在[)1,+∞上为增函数, ∴()()min 12h x h ==, ∴2k ≤.∴实数k 的取值范围为(],2-∞.【名师点睛】(1)用导数解决函数的问题时,可先根据导函数的符号得到函数的单调性,进而得到函数的极值或最值.对于解析式中含有参数的问题,求解时注意分类讨论的运用.(2)解答恒成立问题时,常用的方法是分离参数法,通过分离参数将问题转化成求具体函数的最值的问题处理,体现了转化思想方法的运用.12.【四川省宜宾市2019届高三第三次诊断性考试数学】已知函数()()e 2,0axf x a x a =-+≠.(1)讨论()f x 的单调性;(2)若函数()f x 有两个零点()1212,x x x x <,求证:12e e 2ax ax +>.【答案】(1)()f x 的增区间是[)0,+∞,减区间是(),0-∞;(2)证明见解析.【解析】(1)对函数求导可得'e e 1ax ax f x a a a =-=-()(),令'0f x =(),得0x = ①当0a >时,若0x >,则e 1ax >,即'0f x >(), 若0x <,则e 1ax <,即'0f x <(). ②当0a <时,若0x >,则e 1ax <,即'0f x >(), 若0x <,则e 1ax >,即'0f x <(). 综上,()f x 的单调递增区间是[0+∞,),单调递减区间是0-∞(,). (2)由(1)知,()f x 有两个零点时,()()01200e 020x x f a <<=-+<,,∴12a >.令11eax t =,22e ax t =,则1122ln ,ln ax t ax t ==∴12t t ,为方程ln 20t t a --=的两个根.令()ln 2g t t t a =--,则12t t ,为()g t 的两个零点,1201t t <<<. ∴()()()()121122g t g t g t g t --=--()()11112ln 22ln 2t t a t t a =------- ()11122ln 2ln t t t =---+,令()()()1111122ln 2ln ,0,1h t t t t t =---+∈,则()()()()()()21111111111112222111'20222t t t t t h t t t t t t t --++--=-++==>---. ∴1h t ()在01(,)上单调递增, ∴110h t h <=()(), ∴1220g t g t --<()(),即122g t g t -<()().∵()11'1t g t t t-=-=, ∴当1t ∈+∞(,)时,g t ()单调递增. ∵12211t t -∈+∞∈+∞()(,),(,),∴122t t -<,∴122t t +>,∴12e e 2ax ax +>.【名师点睛】本题考查了利用导数研究函数的单调性极值与最值、方程与不等式的解法、等价转化方法,考查了极值点偏移的综合应用,是高考的常考点和难点,属于难题.。
关于导数综合计算的求导方法总结报告导数是微积分中的重要概念,它描述了函数在一点上的变化率。
在实际应用中,求导是一项必不可少的技巧,用来解决各种问题。
本文将从定义、基本导数、导数的性质和多元函数等方面总结导数的计算方法。
一、定义导数的定义是:对于函数f(x),如果函数在点x处的导数存在,则该导数定义为:f'(x) = lim┬(h→0)〖(f(x+h)-f(x))/h〗该定义表示函数在x处的变化率,即在函数图像上切线的斜率。
二、基本导数1. 常数函数的导数为0。
2. 可以使用以下公式计算常见函数的导数:- 幂函数 f(x)=x^n 的导数为 f'(x)=n*x^(n-1)。
- 指数函数 f(x)=a^x 的导数为 f'(x)=a^x*lna。
- 对数函数 f(x)=ln(x) 的导数为 f'(x)=1/x。
- 三角函数 sin(x)、cos(x)、tan(x) 的导数分别为 cos(x)、-sin(x)、1/cos^2(x)。
3. 复合函数的求导可以使用链式法则:- 如果 g(x) 可导,f(x) 在 g(x) 处可导,则 (f∘g)'(x)=f'(g(x))*g'(x)。
三、导数的性质1. 导数与函数的性质:- 如果 f(x) 是一个偶函数,则 f'(x) 也是一个偶函数。
- 如果 f(x) 是一个奇函数,则 f'(x) 也是一个奇函数。
- 如果 f(x) 是一个周期函数,则 f'(x) 也是一个周期函数。
2. 导数与运算的性质:- (f+g)'(x) = f'(x) + g'(x)- (c*f)'(x) = c*f'(x),其中 c 为常数- (f*g)'(x) = f'(x)*g(x) + f(x)*g'(x)- (f/g)'(x) = (f'(x)*g(x) - f(x)*g'(x))/g^2(x)3. 导数与乘法法则:- (f*g)'(x) = f'(x)*g(x) + f(x)*g'(x) 是乘法法则的一般形式。
集合函数导数综合测试卷集合函数可以理解为一种将一些集合中的元素映射到一个新集合中的函数。
在高等数学中,研究集合函数的导数是非常重要的。
下面我为你准备了一个综合测试卷,涵盖了集合函数导数的相关知识点。
题一:求下列集合函数的导数。
1. $f(x) = \{ x^2 , x \in [0, 2] \}$2. $g(x) = \{ x^2 - x + 1 , x \in [0, 3] \}$3. $h(x) = \{ \frac{1}{x} , x \in (0, 1] \}$题二:求下列函数的临界点。
1. $f(x) = \{ x^3 - 3x^2 , x \in \mathbb{R} \}$2. $g(x) = \{ x^3 - 3x^2 + 3x - 1 , x \in \mathbb{R} \}$题三:求下列函数的最值。
1. $f(x) = \{ x^2 + 2x - 1 , x \in [-2, 2] \}$2. $g(x) = \{ -x^2 + 4x - 3 , x \in [1, 3] \}$题四:求下列函数的单调区间。
1. $f(x) = \{ x^2 - 2x + 1 , x \in \mathbb{R} \}$2. $g(x) = \{ x^3 - 6x^2 + 9x , x \in \mathbb{R} \}$题五:求下列函数的凸凹区间。
1. $f(x) = \{ x^3 - 3x^2 + 3x - 1 , x \in \mathbb{R} \}$2. $g(x) = \{ \frac{1}{x^2} , x \in (-\infty, 0) \}$题六:证明下列函数具有极值点。
1. $f(x) = \{ x^3 - 3x^2 , x \in \mathbb{R} \}$2. $g(x) = \{ \sin(x) + \cos(x) , x \in \mathbb{R} \}$题七:对下列函数进行分类讨论,并画出图像。
高中数学一轮复习之函数之导数求和之倒序相加与错位相减法引言在高中数学的研究中,函数是一个非常重要的概念,而导数则是函数中的一种重要工具。
本文将介绍函数的导数求和的两种方法,即倒序相加法和错位相减法。
函数的导数求和之倒序相加法倒序相加法是一种常用的方法,用于计算函数的导数的和。
具体步骤如下:1. 首先,找到函数的导数表达式,并按照x的幂次从高到低的顺序列出。
2. 然后,将每个导数的表达式从高到低的顺序相加,并化简。
3. 最后,得到函数的导数的和。
例如,对于函数f(x) = 3x^3 + 2x^2 - 5x + 1,求其导数的和的过程如下:1. 求导数:f'(x) = 9x^2 + 4x - 5。
2. 将导数的表达式按照x的幂次从高到低的顺序相加:9x^2 + 4x - 5。
3. 化简得到函数的导数的和:9x^2 + 4x - 5。
函数的导数求和之错位相减法错位相减法是另一种常用的方法,用于计算函数的导数的和。
具体步骤如下:1. 首先,找到函数的导数表达式,并按照x的幂次从高到低的顺序列出。
2. 然后,将相邻导数的表达式相减。
3. 最后,得到函数的导数的和。
例如,对于函数f(x) = 3x^3 + 2x^2 - 5x + 1,求其导数的和的过程如下:1. 求导数:f'(x) = 9x^2 + 4x - 5。
2. 将相邻导数的表达式相减:(9x^2 - 4x) + (4x - 5)。
3. 化简得到函数的导数的和:9x^2 - 5。
结论函数的导数求和是高中数学中的重要内容。
本文介绍了倒序相加法和错位相减法这两种常用的方法。
通过这些方法,我们可以得到函数的导数的和,进一步理解函数的性质和变化规律。
在数学一轮复中,掌握这些方法对于应对考试和解决实际问题都具有重要意义。
数学教案-导数复习函数的极值与最值,导数的综合运用教案章节:一、函数的极值概念与判定1. 学习目标:理解函数极值的概念,掌握函数极值的判定方法。
2. 教学内容:介绍函数极值的定义,分析函数极值的判定条件,举例说明函数极值的判定方法。
3. 教学过程:(1) 引入函数极值的概念,解释函数在某一点取得最大值或最小值的意义。
(2) 讲解函数极值的判定条件,如导数为零或不存在,以及函数在该点附近的单调性变化。
(3) 举例说明函数极值的判定方法,如通过导数的正负变化来判断函数的增减性。
二、函数的最值问题1. 学习目标:理解函数最值的概念,掌握函数最值的求解方法。
2. 教学内容:介绍函数最值的概念,分析函数最值的求解方法,举例说明函数最值的求解过程。
3. 教学过程:(1) 引入函数最值的概念,解释函数在整个定义域内取得最大值或最小值的意义。
(2) 讲解函数最值的求解方法,如通过导数的研究来确定函数的极值点,进而求得最值。
(3) 举例说明函数最值的求解过程,如给定一个函数,求其在定义域内的最大值和最小值。
三、导数的综合运用1. 学习目标:掌握导数的综合运用方法,能够运用导数解决实际问题。
2. 教学内容:介绍导数的综合运用方法,分析导数在实际问题中的应用,举例说明导数的综合运用过程。
3. 教学过程:(1) 讲解导数的综合运用方法,如通过导数研究函数的单调性、极值、最值等。
(2) 分析导数在实际问题中的应用,如优化问题、速度与加速度的关系等。
(3) 举例说明导数的综合运用过程,如给定一个实际问题,运用导数来解决问题。
四、实例分析与练习1. 学习目标:通过实例分析与练习,巩固函数极值与最值的求解方法,提高导数的综合运用能力。
2. 教学内容:分析实例问题,运用函数极值与最值的求解方法,进行导数的综合运用练习。
3. 教学过程:(1) 分析实例问题,引导学生运用函数极值与最值的求解方法来解决问题。
(2) 进行导数的综合运用练习,让学生通过实际问题来运用导数,巩固所学知识。
导数与三角函数的综合的解题技巧
1.使用导数公式:对于三角函数,有 sin'x=cosx, cos'x=-sinx, tan'x=sec^2x, cot'x=-csc^2x。
根据公式,可以快速求导数。
2.化简式子:如果要求导数的式子比较复杂,可以先把式子化简,再使用导数公式。
3.注意多项式函数:如果式子包含多项式函数,可以先对多项式函数求导,再根据导数公式求出整个式子的导数。
二、解题技巧
1.化简式子:对于一些比较复杂的题目,可以先把式子化简,减少计算难度。
2.注意特殊点:三角函数的周期性很强,要注意特殊点,如0度、90度、180度、270度、360度等,这些点的函数值会有特殊的表现。
3.使用变形公式:有些题目可以使用三角函数的变形公式,如和角公式、差角公式、倍角公式等,将原式化简成已知的函数形式,再进行计算。
4.备选法:如果在计算中出现不确定的式子,可以先把各种可能的取值列出来,再逐一验证。
综上所述,求导数和解题技巧是解决导数与三角函数综合题目的关键。
在解题过程中,要善于化简式子,注意特殊点,灵活运用三角函数的变形公式和备选法,从而提高解题的效率和准确性。
数学教案-导数复习函数的极值与最值,导数的综合运用一、教学目标:1. 理解函数的极值与最值的概念,掌握求解函数极值与最值的方法。
2. 熟练运用导数性质,解决实际问题中的最值问题。
3. 提高学生分析问题和解决问题的能力,培养学生的逻辑思维和数学素养。
二、教学内容:1. 函数的极值与最值概念。
2. 求解函数极值与最值的方法。
3. 导数在实际问题中的应用。
三、教学重点与难点:1. 教学重点:函数的极值与最值的概念,求解方法及实际应用。
2. 教学难点:导数在实际问题中的综合运用。
四、教学方法与手段:1. 采用问题驱动法,引导学生主动探究函数极值与最值的问题。
2. 利用多媒体课件,展示函数图像,直观地引导学生理解极值与最值的概念。
3. 结合实际问题,运用导数求解最值问题,培养学生的应用能力。
五、教学过程:1. 导入新课:复习函数的极值与最值概念,引导学生回顾求解方法。
2. 知识讲解:讲解求解函数极值与最值的方法,结合实例进行分析。
3. 课堂练习:布置练习题,让学生巩固所学知识,提高解题能力。
4. 案例分析:结合实际问题,运用导数求解最值问题,培养学生的应用能力。
6. 作业布置:布置课后作业,巩固所学知识,提高学生的自主学习能力。
教案将继续编写后续章节,敬请期待。
六、教学评估:1. 课堂练习环节,通过学生解答练习题的情况,评估学生对函数极值与最值概念的理解以及求解方法的掌握程度。
2. 案例分析环节,通过学生分析实际问题、运用导数求解最值问题的过程,评估学生的应用能力和逻辑思维。
3. 课后作业的完成情况,评估学生对课堂所学知识的巩固程度和自主学习能力。
七、教学反思:1. 根据教学评估的结果,反思教学过程中是否存在不足,如有需要,调整教学方法,以提高教学效果。
2. 针对学生的掌握情况,针对性地进行辅导,解决学生在学习过程中遇到的问题。
3. 结合学生的反馈,优化教学内容,使之更符合学生的学习需求。
八、课后作业:1. 复习本节课所学的函数极值与最值的概念及求解方法。
1.已知全集U R =,集合2{|20}A x x x =->,{|lg(1)}B x y x ==-,
则()B A C U ⋂等于 ( ) (A).{|20}x x x ><或 (B).{|12}x x <<
(C).{|12}x x <≤ (D).{|12}≤≤x x
2.下列函数f (x )中,满足“对任意x 1,x 2∈(-∞,0),当x 1<x 2时,都有f (x 1)<f (x 2)”的函数是( )
(A).f (x )=-x +1 (B) f (x )=2x (C). f (x )=x 2
-1 (D).f (x )=ln(-x )
3.函数()x x x f 2log +=π的零点所在区间为( ) (A)[
116,18] (B)[18,14
] (C)[14,12] (D)[12,1] 4.在函数y=|x|(x ∈ [-1,1])的图象上有一点P(t,|t|),此函数与x 轴、直线x=-1及x=t 围成图形(如图阴影部分)的面积为S ,则S 与t 的函数关系图可表示
为( )
5.若函数y =f (x )的定义域是[0,2],则函数()()x
x f x g ln 2=的定义域是( ) (A).(0,1) (B).[0,1) (C).[0,1)∪(1,4] (D).[0,1]
6.设0<b <a <1,则下列不等式成立的是( )
A .122<<b a
B .0log log 212
1<<b a C .222<<b a D .12<<ab a
7.若函数f (x )=(a 2-2a -3)x 2+(a -3)x +1的定义域和值域都为R ,则a 的取值范围是
(A).a =-1或3 (B).a >3或a <-1 (C).a =-1 (D).-1<a <3
8. 不等式01232<--x x 成立的一个必要不充分条件是( )
9定义在R 上的函数f(x )满足()⎩⎨
⎧>---≤-=0),2()1(0),4(log 2x x f x f x x x f ,则()3f 的值为 ( ) A .-1 B .-2 C .1 D .2
10.不等式ax x e x >-的解集为P ,且[0,2]⊆P ,则实数a 的取值范围是( )
A (-∞,e -1)
B (e -1,+∞)
C (-∞,e +1)
D (e +1,+∞)
11.函数
ln x 1+的定义域为_______.
12.定义在R 上的偶函数()x f 在[0,∞+)上是增函数,则方程()()23f x f x =-的所有实
数根的和为 .
13.已知函数⎩⎨⎧≤>+=+-,
2,2,2,1)2(2x x x x f x 则)1(f = . 14.函数|()x x f 5log =在区间[a ,b ]上的值域为[0,1]则a b -的最小值为________.
15.已知定义在实数集R 上的奇函数,)(x f 有最小正周期2,且当)1,0(∈x 时,
1
42)(+=x x
x f (1)求函数)(x f 在]1,1[-上的解析式;
(2)判断)(x f 在)1,0(上的单调性;
(3)当λ取何值时,方程λ=)(x f 在]1,1[-上有实数解?
16已知函数()x g y =与()()()11log >-=a x x f a 的图象关于原点对称.
(1)写出()x g y =的解析式; (2)若函数()()()m x g x f x F ++=为奇函数,试确定实数m 的值;
(3)当x ∈[0,1)时,总有()()n x g x f ≥+成立,求实数n 的取值范围.。