22.2二次函数与一元二次方程(2课时)
- 格式:ppt
- 大小:271.50 KB
- 文档页数:9
22.2 二次函数与一元二次方程1.二次函数y=ax2+bx+c对于x的任何值都恒为负值的条件是( )A.a>0,>0 B.a>0,<0C.a<0,>0 D.a<0,<02.二次函数y=ax2+bx+c,若ac<0,则其图象与x轴( )A.有两个交点 B.有一个交点 C.没有交点 D.可能有一个交点3.y=x2+kx+1与y=x2-x-k的图象相交,若有一个交点在x轴上,则k值为( )1A.0 B.-1 C.2 D.44.函数y=kx2-6x+3的图象与x轴有交点,则k的取值范围是( )A.k<3B.k<3且k≠0C.k≤3D.k≤3且k≠05.已知二次函数y=ax2+bx+c的图象如图所示,那么关于x的方程ax2+bx+c+2=0的根的情况是( )A.无实根 B.有两个相等实数根 C.有两个异号实数根 D.有两个同号不等实数根6.已知二次函数y=x2+x+m,当x取任意实数时,都有y>0,则m的取值范围是( )A.m≥错误!未找到引用源。
B.m>错误!未找到引用源。
C.m≤错误!未找到引用源。
D.m<错误!未找到引用源。
7.若二次函数y=ax2+bx+c(a≠0)的图象与x轴有两个交点,坐标分别为(x1,0),(x2,0),且x1<x2,图象上有一点M(x0,y0)在x轴下方,则下列判断正确的是( )A.a>0B.b2-4ac≥0C.x1<x0<x2D.a(x0-x1)(x0-x2)<08.无论m为任何实数,二次函数y=x2+(2-m)x+m的图象总过的点是()A.(-1,0);B.(1,0)C.(-1,3) ;D.(1,3)9.如果抛物线y=-x2+2(m-1)x+m+1与x轴交于A、B两点,且A点在x轴正半轴上,B点在x轴的负半轴上,则m的取值范围应是()A.m>1B.m>-1C.m<-1D.m<110.下列关于二次函数y=ax2﹣2ax+1(a>1)的图象与x轴交点的判断,正确的是()A.没有交点 B.只有一个交点,且它位于y轴右侧C.有两个交点,且它们均位于y轴左侧 D.有两个交点,且它们均位于y轴右侧11.二次函数y=x2+x+c的图象与x轴的两个交点A(x1,0),B(x2,0),且x1<x2,点P(m,n)是图象上一点,那么下列判断正确的是()A.当n<0时,m<0 B.当n>0时,m>x2 C.当n<0时,x1<m<x2 D.当n>0时,m<x1 12.二次函数y=a(x﹣4)2﹣4(a≠0)的图象在2<x<3这一段位于x轴的下方,在6<x<7这一段位于x轴的上方,则a的值为()A.1 B.﹣1 C.2 D.﹣213.如图,抛物线y=﹣2x2+8x﹣6与x轴交于点A、B,把抛物线在x轴及其上方的部分记作C1,将C1向右平移得C2,C2与x轴交于点B,D.若直线y=x+m与C1、C2共有3个不同的交点,则m的取值范围是()A.﹣2<m< B.﹣3<m<﹣ C.﹣3<m<﹣2 D.﹣3<m<﹣14.二次函数y=x2+x+c的图象与x轴的两个交点A(x1,0),B(x2,0),且x1<x2,点P(m,n)是图象上一点,那么下列判断正确的是()A.当n<0时,m<0 B.当n>0时,m>x2 C.当n<0时,x1<m<x2 D.当n>0时,m<x1 15.若二次函数y=ax2+bx+c(a≠0)的图象与x轴有两个交点,坐标分别为(x1,0)、(x2,0),且x1<x2,图象上有一点M(x0,y0),在x轴下方,则下列判断正确的是()A.a(x0﹣x1)(x0﹣x2)<0 B.a>0 C.b2﹣4ac≥0 D.x1<x0<x216.若抛物线y=x2-(2k+1)x+k2+2,与x轴有两个交点,则整数k的最小值是____.17.已知一抛物线与x轴的交点为A(-1, 0)、B(m,0),且过第四象限内的点C(1,n),而m+n=-1,mn=-12,则此抛物线关系式是__________.18.已知抛物线的顶点到x轴的距离为3,且与x轴两交点的横坐标为4、2,则该抛物线的关系式为__________________.19.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,由抛物线的特征你能得到含有a、b、c三个字母的等式或不等式为______(写出三个).。
22.2二次函数与一元二次方程问题:二次函数的223y x x =--的图象如图所示。
根据图象回答:⑴ x 为何值时, 0y =?⑵ 你能根据图象,求方程2230x x --=的根吗?⑶ 你认为二次函数223y x x =--与方程2230x x --=之间有何关系呢?请你谈一谈你的看法。
探究(一)二次函数与一元二次方程之间的关系如图,以40m/s 的速度将小球沿与地面成30°角的方向击出时,球的飞行路线将是一条抛物线。
如果不考虑空气阻力,球的飞行高度h (单位:m )与飞行时间t (单位:s )之间具有关系:2205h t t =-。
考虑以下问题:⑴ 球的飞行高度能否达到15m ?如能,需要多少飞行时间? ⑵ 球的飞行高度能否达到20m ?如能,需要多少飞行时间? ⑶ 球的飞行高度能否达到20.5m ?为什么? ⑷ 球从飞出到落地需要多少时间?知识总结:一般地,已知二次函数y =ax 2+bx +c 的函数值为m,求自变量x 的值,可以看作解一元二次方程__________________.反之,解一元二次方程ax 2+bx +c =m 又可以看作已知二次函数_______________的值为______时自变量x 的值。
所以:⑴ 如果抛物线2y ax bx c =++与x 轴有公共点(x 0,0),那么 就是方程20ax bx c ++=的一个根。
⑵ 抛物线与x 轴的三种位置关系:相交,即有_____公共点;相切,即有______公共点;相离,即______公共点。
这对应着一元二次方程根的三种情况:有 实数根;有________ 的实数根; ______的实数根。
(3)二次函数与一元二次方程的关系如下:(一元二次方程的实数根记为21x x 、)基础练习:1. 二次函数232+-=x x y ,当x =1时,y =______;当y =0时,x =______. 2.抛物线342+-=x x y 与x 轴的交点坐标是 ,与y 轴的交点坐标是 ; 3、二次函数642+-=x x y ,当x =________时,y =3.4、抛物线 y=2x 2-3x -5 与y 轴交于点 ,与x 轴交于点5、一元二次方程 3 x 2+x -10=0的两个根是x 1=-2 ,x 2=5/3,那么二次函数 y= 3 x 2+x -10与x 轴的交点坐标是4.利用抛物线图象求解一元二次方程及二次不等式 (1)方程ax 2+bx +c =0的根为___________; (2)方程ax 2+bx +c =-3的根为__________; (3)方程ax 2+bx +c =-4的根为__________;变式训练:1.不与x 轴相交的抛物线是( )A. y = 2x 2 – 3B. y=-2 x 2 + 3C. y= -x 2 – 3xD. y=-2(x+1)2 -3 2.若抛物线 y = ax 2+bx+c= 0,当 a>0,c<0时,图象与x 轴交点情况是( ) A. 无交点 B. 只有一个交点 C. 有两个交点 D. 不能确定3.已知抛物线y = ax 2+bx+c 的图象如图,则关于x 的方程ax 2 + bx + c -3 = 0根的情况是( ) A. 有两个不相等的实数根 B. 有两个异号的实数根 C. 有两个相等的实数根 D. 没有实数根4、已知函数2y ax bx c =++的图象如图所示,那么关于x 的方程220ax bx c +++=的根的情况是( )A .无实数根B .有两个相等实数根C .有两个异号实数根D .有两个同号不等实数根判断方程 ax 2+bx+c =0 (a ≠0,a,b,c 为常数)一个解x 的范围是( )A. 3< x < 3.23B. 3.23 < x < 3.24C. 3.24 <x< 3.25D. 3.25 <x< 3.26 6、关于x 的一元二次方程 x 2-2x+m=0有两个相等的实数根,则m=___,此时抛物线 y=x 2-2x+m 与x 轴有__个交点.7.已知抛物线 y=x 2 – 8x + c 的顶点在 x 轴上,则 c =__.8.若抛物线 y=x 2 + bx+ c 的顶点在第一象限,则方程 x 2 + bx+ c =0 的根的情况是 。
《22.2 二次函数与一元二次方程》教案【教学目标】1.通过探索,理解二次函数与一元二次方程之间的联系.2.能运用二次函数及其图象确定方程和不等式的解或解集.3.根据函数图象与x轴的交点情况确定未知字母的值或取值范围.【教学过程】一、情境导入如图,是二次函数y=ax2+bx+c图象的一部分,你能通过观察图象得到一元二次方程ax2+bx+c=0的解集吗?不等式ax2+bx+c<0的解集呢?二、合作探究探究点一:二次函数与一元二次方程【类型一】二次函数图象与x轴交点情况判断下列函数的图象与x只有一个交点的是( )A.y=x2+2x-3 B.y=x2+2x+3C.y=x2-2x+3 D.y=x2-2x+1解析:选项A中b2-4ac=22-4×1×(-3)=16>0,选项B中b2-4ac=22-4×1×3=-8<0,选项C中b2-4ac=(-2)2-4×1×3=-8<0,选项D中b2-4ac=(-2)2-4×1×1=0,所以选项D的函数图象与x轴只有一个交点,故选D.【类型二】利用二次函数图象与x轴交点坐标确定抛物线的对称轴如图,对称轴平行于y轴的抛物线与x轴交于(1,0),(3,0)两点,则它的对称轴为________.解析:∵点(1,0)与(3,0)是一对对称点,其对称中心是(2,0),∴对称轴的方程是x=2.方法总结:解答二次函数问题,若能利用抛物线的对称性,则可以简化计算过程.【类型三】利用函数图象与x轴交点情况确定字母取值范围若函数y=mx2+(m+2)x+12m+1的图象与x轴只有一个交点,那么m的值为( )A.0 B.0或2C.2或-2 D.0,2或-2解析:若m≠0,二次函数与x轴只有一个交点,则可根据一元二次方程的根的判别式为零来求解;若m=0,原函数是一次函数,图象与x轴也有一个交点.由(m+2)2-4m(12m+1)=0,解得m=2或-2,当m=0时原函数是一次函数,图象与x轴有一个交点,所以当m=0,2或-2时,图象与x轴只有一个交点.方法总结:二次函数y=ax2+bx+c,当b2-4ac>0时,图象与x轴有两个交点;当b2-4ac=0时,图象与x轴有一个交点;当b2-4ac<0时,图象与x 轴没有交点.【类型四】利用抛物线与x轴交点坐标确定一元二次方程的解小兰画了一个函数y=x2+ax+b的图象如图,则关于x的方程x2+ax +b=0的解是( )A.无解B.x=1C.x=-4D.x=-1或x=4解析:∵二次函数y=x2+ax+b的图象与x轴交于(-1,0)和(4,0),即当x=-1或4时,x2+ax+b=0,∴关于x的方程x2+ax+b=0的解为x1=-1,x=4,故选D.2方法总结:本题容易出错的地方是不知道二次函数的图象与一元二次方程的解的关系导致无法求解.探究点二:二次函数y=ax2+bx+c中的不等关系【类型一】利用抛物线解一元二次不等式抛物线y=ax2+bx+c(a<0)如图所示,则关于x的不等式ax2+bx+c >0的解集是( )A.x<2B.x>-3C.-3<x<1D.x<-3或x>1解析:观察图象,可知当-3<x<1时,抛物线在x轴上方,此时y>0,即ax2+bx+c>0,∴关于x的不等式ax2+bx+c>0的解集是-3<x<1.故选C.方法总结:抛物线y=ax2+bx+c在x轴上方部分的点的纵坐标都为正,所对应的x的所有值就是一元二次不等式ax2+bx+c>0的解集;在x轴下方部分的点的纵坐标均为负,所对应的x的所有值就是一元二次不等式ax2+bx+c<0的解集.【类型二】确定抛物线相应位置的自变量的取值范围二次函数y=ax2+bx+c(a≠0)的图象如图所示,则函数值y>0时,x 的取值范围是( )A.x<-1B.x>3C.-1<x<3D.x<-1或x>3解析:根据图象可知抛物线与x轴的一个交点为(-1,0)且其对称轴为x=1,则抛物线与x轴的另一个交点为(3,0).当y>0时,函数的图象在x轴的上方,由左边一段图象可知x<-1,由右边一段图象可知x>3.因此,x<-1或x >3.故选D.方法总结:利用数形结合思想来求解,抛物线与x轴的交点坐标是解题的关键.三、板书设计【教学反思】教学过程中,强调学生自主探索和合作交流,通过观察二次函数与x轴的交点个数,讨论一元二次方程的根的情况.体会知识间的相互转化和相互联系.《22.2 二次函数与一元二次方程》教学设计【教学目标】知识与技能1.总结出二次函数与x轴交点的个数与一元二次方程的根的个数之间的关系,表述何时方程有两个不等的实根、两个相等的实数和没有实根.2.会利用二次函数的图象求一元二次方程的近似解.过程与方法经历探索二次函数与一元二次方程的关系的过程,体会方程与函数之间的联系.情感态度价值观通过观察二次函数图象与x轴的交点个数,讨论一元二次方程的根的情况,进一步体会数形结合思想.【教学重点和难点】重点:方程与函数之间的联系,会利用二次函数的图象求一元二次方程的近似解.难点:二次函数与x轴交点的个数与一元二次方程的根的个数之间的关系.【教学过程设计】(一)问题的提出与解决问题如图,以40m/s的速度将小球沿与地面成30°角的方向击出时,球的飞行路线将是一条抛物线.如果不考虑空气阻力,球的飞行高度h(单位:m)与飞行时间t(单位:s)之间具有关系h=20t—5t2考虑以下问题(1)球的飞行高度能否达到15m?如能,需要多少飞行时间?(2)球的飞行高度能否达到20m?如能,需要多少飞行时间?(3)球的飞行高度能否达到20.5m?为什么?(4)球从飞出到落地要用多少时间?分析:由于球的飞行高度h与飞行时间t的关系是二次函数h=20t-5t2.所以可以将问题中h的值代入函数解析式,得到关于t的一元二次方程,如果方程有合乎实际的解,则说明球的飞行高度可以达到问题中h的值:否则,说明球的飞行高度不能达到问题中h的值.解:(1)解方程 15=20t—5t2. t2—4t+3=0. t1=1,t2=3.当球飞行1s和3s时,它的高度为15m.(2)解方程 20=20t-5t2. t2-4t+4=0. t1=t2=2.当球飞行2s时,它的高度为20m.(3)解方程 20.5=20t-5t2. t2-4t+4.1=0因为(-4)2-4×4.1<0.所以方程无解.球的飞行高度达不到20.5m.(4)解方程 0=20t-5t2. t2-4t=0. t1=0,t2=4.当球飞行0s和4s时,它的高度为0m,即0s时球从地面飞出.4s时球落回地面播放课件:函数的图像,画出二次函数h=20t-5t2的图象,观察图象,体会以上问题的答案.从上面可以看出.二次函数与一元二次方程关系密切.由学生小组讨论,总结出二次函数与一元二次方程的解有什么关系?例如:已知二次函数y=-x2+4x的值为3.求自变量x的值.可以解一元二次方程-x2+4x=3(即x2-4x+3=0) .反过来,解方程x2-4x+3=0又可以看作已知二次函数y=x2-4+3的值为0,求自变量x的值.一般地,我们可以利用二次函数y=ax2+bx+c深入讨论一元二次方程ax2+bx+c=0.(二)问题的讨论二次函数(1)y=x2+x-2;(2) y=x2-6x+9;(3) y=x2-x+0.的图象如图26.2-2所示.(1)以上二次函数的图象与x轴有公共点吗?如果有,公共点的横坐标是多少?(2)当x取公共点的横坐标时,函数的值是多少?由此,你能得出相应的一元二次方程的根吗?先画出以上二次函数的图象,由图像学生展开讨论,在老师的引导下回答以上的问题.可播放课件:函数的图像,输入a,b,c的值,划出对应的函数的图像,观察图像,说出函数对应方程的解.可以看出:(1)抛物线y=x2+x-2与x轴有两个公共点,它们的横坐标是-2,1.当x取公共点的横坐标时,函数的值是0.由此得出方程x2+x-2=0的根是-2,1.(2)抛物线y=x2-6x+9与x轴有一个公共点,这点的横坐标是3.当x=3时,函数的值是0.由此得出方程x2-6x+9=0有两个相等的实数根3.(3)抛物线y=x2-x+1与x轴没有公共点,由此可知,方程x2-x+1=0没有实数根.总结:一般地,如果二次函数y=2ax bx c++的图像与x轴相交,那么交点的横坐标就是一元二次方程2ax bx c++=0的根.(三)归纳一般地,从二次函数y=ax2+bx+c的图象可知,(1)如果抛物线y=ax2+bx+c与x轴有公共点,公共点的横坐标是x,那么当x=x0时,函数的值是0,因此x=x就是方程ax2+bx+c=0的一个根.(2)二次函数的图象与x轴的位置关系有三种:没有公共点,有一个公共点,有两个公共点.这对应着一元二次方程根的三种情况:没有实数根,有两个相等的实数根,有两个不等的实数根.由上面的结论,我们可以利用二次函数的图象求一元二次方程的根.由于作图或观察可能存在误差,由图象求得的根,一般是近似的.(四)例题例利用函数图象求方程x2-2x-2=0的实数根(精确到0.1).解:作y=x2-2x-2的图象(图26.2-3),它与x轴的公共点的横坐标大约是-0.7,2.7.所以方程x2-2x-2=0的实数根为x1≈-0.7,x2≈2.7.播放课件:函数的图象与求解一元二次方程的解,前一个课件用来画图,可根据图像估计出方程x2-2x-2=0实数根的近似解,后一个课件可以准确的求出方程的解,体会其中的差异.(五)小结总结本节的知识点.(六)作业:(七)板书设计《22.2 二次函数与一元二次方程(第一课时)》教案【教学目标】:1.知识与技能:通过探索,使学生理解二次函数与一元二次方程、一元二次不等式之间的联系.2.方法与过程:使学生能够运用二次函数及其图象、性质解决实际问题,提高学生用数学的意识.3.情感、态度与价值观:进一步培养学生综合解题能力,渗透数形结合思想.【教学重点】:使学生理解二次函数与一元二次方程、一元二次不等式之间的联系,能够运用二次函数及其图象、性质去解决实际问题是教学的重点.【教学难点】:进一步培养学生综合解题能力,渗透数形结合的思想是教学的难点.【教学过程】:一、引言在现实生活中,我们常常会遇到与二次函数及其图象有关的问题,如拱桥跨度、拱高计算等,利用二次函数的有关知识研究和解决这些问题,具有很现实的意义.本节课,请同学们共同研究,尝试解决以下几个问题二、探索问题问题1:某公园要建造一个圆形的喷水池,在水池中央垂直于水面竖一根柱子,上面的A处安装一个喷头向外喷水.连喷头在内,柱高为0.8m.水流在各个方向上沿形状相同的抛物线路径落下,如图(1)所示.根据设计图纸已知:如图(2)中所示直角坐标系中,水流喷出的高度y(m)与水平距离x(m)之间的函数关系式是y=-x2+2x+4 5 .(1)喷出的水流距水平面的最大高度是多少?(2)如果不计其他的因素,那么水池至少为多少时,才能使喷出的水流都落在水池内?问题2:画出函数y=x2-x-3/4的图象,根据图象回答下列问题.(1)图象与x轴交点的坐标是什么;(2)当x取何值时,y=0?这里x的取值与方程x2-x-34=0有什么关系?(3)你能从中得到什么启发?对于问题(2),教师组织学生分组讨论、交流,各组选派代表发表意见,全班交流,达成共识:从“形”的方面看,函数y=x2-x-34的图象与x轴交点的横坐标,即为方程x2-x-34=0的解;从“数”的方面看,当二次函数y=x2-x-34的函数值为0时,相应的自变量的值即为方程x2-x-34=0的解.更一般地,函数y=ax2+bx+c的图象与x轴交点的横坐标即为方程ax2+bx+c=0的解;当二次函数y=ax2+bx+c的函数值为0时,相应的自变量的值即为方程ax2+bx+c=0的解,这一结论反映了二次函数与一元二次方程的关系.三、课堂练习: P23练习1、2.五、小结:1.通过本节课的学习,你有什么收获?有什么困惑?2.若二次函数y=ax2+bx+c的图象与x轴无交点,试说明,元二次方程ax2+bx+c=0和一元二次不等式ax2+bx+c>0、ax2+bx+c<0的解的情况.六、作业:《22.2 二次函数与一元二次方程(第二课时)》教案【教学目标】:1.知识与能力:复习巩固用函数y=ax2+bx+c的图象求方程ax2+bx+c=0的解.2.方法与过程:让学生体验函数y=x2和y=bx+c的交点的横坐标是方程x2=bx+c的解的探索过程,掌握用函数y=x2和y=bx+c图象交点的方法求方程ax2=bx+c的解.3.情感、态度与价值观:提高学生综合解题能力,渗透数形结合思想.【教学重点】;用函数图象法求方程的解以及提高学生综合解题能力是教学的重点.【教学难点】:提高学生综合解题能力,渗透数形结合的思想是教学的难点.【教学过程】:一、复习巩固1.如何运用函数y=ax2+bx+c的图象求方程ax2+bx+c的解?2.完成以下两道题:(1)画出函数y=x2+x-1的图象,求方程x2+x-1=0的解.(精确到0.1)(2)画出函数y=2x2-3x-2的图象,求方程2x2-3x-2=0的解.二、探索问题已知抛物线y1=2x2-8x+k+8和直线y2=mx+1相交于点P(3,4m).(1)求这两个函数的关系式;(2)当x取何值时,抛物线与直线相交,并求交点坐标.解:(1)因为点P(3,4m)在直线y2=mx+1上,所以有4m=3m+1,解得m =1所以y1=x+1,P(3,4). 因为点P(3,4)在抛物线y1=2x2-8x+k+8上,所以有4=18-24+k +8 解得 k =2 所以y 1=2x 2-8x +10(2)依题意,得⎩⎪⎨⎪⎧y =x +1y =2x 2-8x +10 解这个方程组,得⎩⎪⎨⎪⎧x 1=3y 1=4 ,⎩⎪⎨⎪⎧x 2=1.5y2=2.5所以抛物线与直线的两个交点坐标分别是(3,4),(1.5,2.5).五、小结: 如何用画函数图象的方法求方程的解?六、作业:《22.2二次函数与一元二次方程》导学案【学习目标】:1.探索二次函数与一元二次方程、一元二次不等式之间的关系.2.掌握一元二次方程(组)的图象解法.【重点、难点】1.重点:探索二次函数与一元二次方程、一元二次不等式之间的关系.2.难点:掌握一元二次方程(组)的图象解法.【导学过程】:阅读教材P16 — 19 , 完成课前预习【课前预习】1:准备知识(1) 一元二次方程根的情况:(2)一次函数与一元一次方程的关系:2:探究1以40米/秒的速度将小球沿与地面成300角的方向击出时,球的飞行路线将是一条抛物线。
答卷时应注意事项1、拿到试卷,要认真仔细的先填好自己的考生信息。
2、拿到试卷不要提笔就写,先大致的浏览一遍,有多少大题,每个大题里有几个小题,有什么题型,哪些容易,哪些难,做到心里有底;3、审题,每个题目都要多读几遍,不仅要读大题,还要读小题,不放过每一个字,遇到暂时弄不懂题意的题目,手指点读,多读几遍题目,就能理解题意了;容易混乱的地方也应该多读几遍,比如从小到大,从左到右这样的题;4、每个题目做完了以后,把自己的手从试卷上完全移开,好好的看看有没有被自己的手臂挡住而遗漏的题;试卷第1页和第2页上下衔接的地方一定要注意,仔细看看有没有遗漏的小题;5、中途遇到真的解决不了的难题,注意安排好时间,先把后面会做的做完,再来重新读题,结合平时课堂上所学的知识,解答难题;一定要镇定,不能因此慌了手脚,影响下面的答题;6、卷面要清洁,字迹要清工整,非常重要;7、做完的试卷要检查,这样可以发现刚才可能留下的错误或是可以检查是否有漏题,检查的时候,用手指点读题目,不要管自己的答案,重新分析题意,所有计算题重新计算,判断题重新判断,填空题重新填空,之后把检查的结果与先前做的结果进行对比分析。
亲爱的小朋友,你们好!经过两个月的学习,你们一定有不小的收获吧,用你的自信和智慧,认真答题,相信你一定会闯关成功。
相信你是最棒的!课时练第22章二次函数22.2二次函数与一元二次方程一、选择题1.已知二次函数y=kx2-5x-5的图象与x轴有交点,则k的取值范围是()A.k>-1.25B.k≥-1.25且k≠0C.k≥-1.25D.k>-1.25且k≠02.根据下列表格的对应值:判断方程ax2+bx+c=0(a≠0,a、b、c为常数)的一个解x的范围是()A.3.00<x<3.23B.3.23<x<3.24C.3.24<x<3.25D.3.25<x<3.263.如图,平面直角坐标系中,点M是直线y=2与x轴之间的一个动点,且点M是抛物线y=0.5x2+bx+c的顶点,则方程0.5x2+bx+c=1的解的个数是()A.0或2B.0或1C.1或2D.0,1或24.二次函数y=ax2+bx+c(a≠0,a,b,c为常数)的图象如图,ax2+bx+c=m有实数根的条件是()A.m≥﹣2B.m≥5C.m≥0D.m>45.已知抛物线y=x2﹣x﹣1与x轴的一个交点为(m,0),则代数式m2﹣m+2025的值为()A.2023B.2024C.2025D.20266.如图,二次函数y=ax2+bx+c的图象与x轴相交于(﹣2,0)和(4,0)两点,当函数值y>0时,自变量x的取值范围是()A.x<﹣2B.﹣2<x<4C.x>0D.x>47.下列关于二次函数y=ax2﹣2ax+1(a>1)的图象与x轴交点的判断,正确的是()A.没有交点B.只有一个交点,且它位于y轴右侧C.有两个交点,且它们均位于y轴左侧D.有两个交点,且它们均位于y轴右侧8.已知二次函数y=ax2+bx+c的y与x的部分对应值如下表:下列结论:①抛物线的开口向下;②其图象的对称轴为直线x=1;③当x<1时,函数值y随x的增大而增大;④方程ax2+bx+c=0有一个根大于4.其中正确的结论有()A.1个B.2个C.3个D.4个9.抛物线y=x2-2x+1与坐标轴的交点个数是()A.0B.1C.2D.310.下表是一组二次函数y=x2+3x-5的自变量x与函数值y的对应值:那么方程x2+3x-5=0的一个近似根是()A.1B.1.1C.1.2D.1.311.如图,已知顶点为(-3,-6)的抛物线y=ax2+bx+c经过点(-1,-4).则下列结论中错误的是()A.b2>4acB.ax2+bx+c≥-6C.若点(-2,m),(-5,n)在抛物线上,则m>nD.关于x的一元二次方程ax2+bx+c=-4的两根为-5和-112.如图所示为二次函数y=x2+bx的图象,对称轴为直线x=1.若关于x的一元二次方程x2+bx-t=0(t为实数)在-1<x<4的范围内有解,则t的取值范围是().A.t≥-1B.-1≤t<3C.-1≤t<8D.3<t<8二、填空题13.如图,直线y=mx+n与抛物线y=ax2+bx+c交于A(-1,p),B(4,q)两点,则关于x 的不等式mx+n>ax2+bx+c的解集是.14.若二次函数y=(m+5)x2+2(m+1)x+m的图象全部在x轴的上方,则m取值范围是.15.二次函数y=ax2+bx的图象如图,若一元二次方程ax2+bx+m=0有实数根,则m的取值范围为.16.抛物线y=(k-1)x2-x+1与x轴有交点,则k的取值范围是_______________.17.已知抛物线y=x2-k的顶点为点P,与x轴交于点A,B,且△ABP是正三角形,则k值是.18.已知函数y=|x2-4|,若方程|x2-4|=m(m为实数)有4个不相等实数根,则m取值范围是.三、解答题19.如图所示,已知二次函数y=x2-4x+3.(1)用配方法求其图象的顶点C的坐标,并描述该函数的函数值随自变量的增减而变化的情况.(2)求函数图象与x轴的交点A,B的坐标及△ABC的面积.20.如图所示,二次函数的图象与x轴交于A(-3,0)和B(1,0)两点,交y轴于点C(0,3),点C,D是二次函数图象上的一对对称点,一次函数的图象过点B,D.(1)请直接写出点D的坐标.(2)求二次函数的表达式.(3)根据图象直接写出使一次函数值大于二次函数值的x的取值范围.21.如图,在平面直角坐标系中,抛物线y=x2+bx+c经过点(﹣1,8)并与x轴交于点A,B两点,且点B坐标为(3,0).(1)求抛物线的解析式;(2)若抛物线与y轴交于点C,顶点为点P,求△CPB的面积.22.已知抛物线y=(x-m)2-(x-m),其中m是常数.(1)求证:无论m为何值,该抛物线与x轴一定有两个公共点;(2)若该抛物线的对称轴为直线x=2.5.①求该抛物线的函数解析式;②把该抛物线沿y轴向上平移多少个单位长度后,得到的抛物线与x轴只有一个公共点?23.如图,已知二次函数y=ax2+bx+c的图象过A(2,0),D(﹣1,0)和C(4,5)三点.(1)求二次函数的解析式;(2)在同一坐标系中画出直线y=x+1,并写出当x在什么范围内时,一次函数的值大于二次函数的值.24.已知关于x 的一元二次方程x 2-(m+1)x+21(m 2+1)=0有实数根.(1)求m 的值.(2)先作y=x 2-(m+1)x+12(m 2+1)的图象关于x 轴的对称图形,然后将所作图形向左平移3个单位,再向上平移2个单位,写出变化后图象的表达式.(3)在(2)的条件下,当直线y=2x+n(n≥m)与变化后的图象有公共点时,求n 2-4n 的最大值和最小值.参考答案1.B.2.C.3.D.4.A.5.D.6.B.7.D.8.B.9.C.10.C.11.C.12.C.13.x<-1或x>4.14.m>31.15.m≤3.16.k≤1.25且k≠1.17.3.18.0<m<4.19.解:(1)y=x 2-4x+3=x 2-4x+4-4+3=(x-2)2-1.∴顶点C 的坐标是(2,-1).当x≤2时,y 随x 的增大而减小;当x≥2时,y 随x 的增大而增大.(2)令x 2-4x+3=0,解得x 1=3,x 2=1.∴点A 的坐标是(1,0),点B 的坐标是(3,0).∴S △ABC =21AB×h=21×2×1=1.20.解:(1)D(-2,3).(2)设二次函数的表达式为y=ax 2+bx+c,由题意得ïîïíì==++=+-30039c c b a c b a ,解得ïîïíì=-=-=321c b a ,∴二次函数的表达式为y=-x 2-2x+3.(3)x<-2或x>1.21.解:(1)∵抛物线y=x 2+bx+c 经过点(﹣1,8)与点B(3,0),∴解得:∴抛物线的解析式为:y=x 2﹣4x+3(2)∵y=x 2﹣4x+3=(x﹣2)2﹣1,∴P(2,﹣1)过点P 作PH⊥Y 轴于点H,过点B 作BM∥y 轴交直线PH 于点M,过点C 作CN⊥y 轴叫直线BM 于点N,如下图所示:S △CPB =S 矩形CHMN ﹣S △CHP ﹣S △PMB ﹣S △CNB =3×4﹣×2×4﹣﹣=3即:△CPB 的面积为322.解:(1)证明:∵y=(x-m)2-(x-m)=(x-m)(x-m-1),∴令y=0,得x 1=m,x 2=m+1.∵m≠m+1,∴无论m 为何值,该抛物线与x 轴一定有两个公共点(m,0),(m+1,0).(2)①∵y=(x-m)(x-m-1)=x 2-(2m+1)x+m(m+1),∴该抛物线的对称轴为直线x=--(2+1)2=2+12,又该抛物线的对称轴为x=2.5,2+12=2.5,解得m=2,∴该抛物线的函数解析式为y=x 2-5x+6.②∵y=x 2-5x+6=(x-2.5)2-0.25,∴该抛物线沿y 轴向上平移0.25个单位长度后,得到的抛物线与x 轴只有一个公共点.23.解:(1)∵二次函数y=ax 2+bx+c 的图象过A(2,0),B(0,﹣1)和C(4,5)三点,∴,∴a=,b=﹣,c=﹣1,∴二次函数的解析式为y=x 2﹣x﹣1;(2)当y=0时,得x 2﹣x﹣1=0;解得x 1=2,x 2=﹣1,∴点D 坐标为(﹣1,0);∴图象如图,∴当一次函数的值大于二次函数的值时,x 的取值范围是﹣1<x<4.24.解:(1)对于一元二次方程x 2-(m+1)x+21(m 2+1)=0,Δ=(m+1)2-4×21(m 2+1)=-m 2+2m-1=-(m-1)2,∵方程有实数根,∴-(m-1)2≥0.∴m=1.(2)由(1)知y=x 2-2x+1=(x-1)2,它的图象关于x 轴的对称图形的函数表达式为y=-(x-1)2,∴平移后的表达式为y=-(x+2)2+2=-x 2-4x-2.(3)由îíì---=+=2422x x y n x y ,消去y 得到x 2+6x+n+2=0,由题意知Δ≥0,∴36-4(n+2)≥0.∴n≤7.∵n≥m,m=1,∴1≤n≤7.令y′=n2-4n=(n-2)2-4,∴当n=2时,y′的值最小,最小值为-4,n=7时,y′的值最大,最大值为21.∴n2-4n的最大值为21,最小值为-4.。