21.3 实际问题与一元二次方程(第二课时)
- 格式:doc
- 大小:35.00 KB
- 文档页数:2
21.3 实际问题与一元二次方程教学时间课题21.3实际问题与一元二次方程(2)课型新授教学媒体多媒体教学目标知识技能1.能根据○1以流感为问题背景,按一定传播速度逐步传播的问题;○2以封面设计为问题背景,边衬的宽度问题中的数量关系列出一元二次方程,体会方程刻画现实世界的模型作用.2.培养学生的阅读能力与分析能力.3.能根据具体问题的实际意义,检验结果是否合理.过程方法通过自主探究,独立思考与合作交流,使学生弄清实际问题的背景,挖掘隐藏的数量关系,把有关数量关系分析透彻,找出可以作为列方程依据的主要相等关系,正确的建立一元二次方程.情感态度在分析解决问题的过程中逐步深入地体会一元二次方程的应用价值.教学重点建立数学模型,找等量关系,列方程教学难点找等量关系,列方程教学过程设计教学程序及教学内容师生行为设计意图一、复习引入导语:通过上节课的学习,谈谈列一元二次方程解决实际问题的一般步骤及应注意的问题.二、探究新知课本45页探究1分析:○1设每轮传染中平均一个人传染x了个人.这里的一轮指一个传染周期.○2第一轮的传染源有几个人?第一轮后有几个人被传染了流感?包括传染源在内,共有几个人患着流感?○3第二轮的传染源有几个人?第二轮后有几个人被传染了流感?包括第二轮的传染源在内,共有几个人患着流感?点题,板书课题.教师提出问题,并指导学生进行阅读,独立思考,学生根据个人理解,回答教师提出的问题.弄清题意,设出未知数,并表示相关量,根据相等关系尝试列方程,求根.根据实际问题要求,对根进行选择确定问题的解.教师组织学生合作交流,达到共识,联系上节课内容,进一步学习一元二次方程的应用弄清问题背景,特别注意分析清楚题意,题中没有特别说明,那么最早的患者没有痊愈,仍在继续传染别人.○4本题用来列方程的相等关系是什么?列出方程.拓展:课本思考.四轮呢?归纳:本题一流感为问题背景,讨论按一定传播速度逐步传播的问题,,特别需要注意的是,在第二轮传染中,在实际生活中,类似原型很多,比如细胞分裂,信息传播,传染病扩散,害虫繁殖等,一般就考虑两轮传播,这些问题有通性,在解题时有规律可循.课本47页探究3分析:○1正中央的长方形与整个封面的长宽比例相同,是什么含义?○2上下边衬与左右边衬的宽度相等吗?如果不相等,应该有什么关系?○3若设正中央的长方形的长和宽分别为9a㎝,7a㎝,尝试表示边衬的长度,并探究上下边衬与左右边衬的宽度的数量关系?○4“应如何设计四周边衬的宽度?”是要求四周边衬的宽度,除了根据上下边衬与左右边衬的宽度比为,设上下边衬宽为与左右边衬宽为.还可以根据正中央的长方形长与宽的比为9:7,设正中央的长方形的长为9x㎝,宽为7x ㎝.尝试列出方程.○5方程的两个根都是正数,但是它们不都是问题的解,需要根据它们的值的大小来确定哪个更合乎实际,这种取舍选择更多的要考虑问题的实际意义.归纳:○1在实际生活中有许多几何图形的问题原型,可以用一元二次方程作为数学模型来分析和解决○2.对于比较复杂的问题,可以通过设间接未知数的方法来列方程.三、课堂训练补充练习:1.从正方形铁片,截去2cm宽的一条长方形,余下的面积是48cm2,则原来的正方形铁片的面积是().师生汇总生活中常见的类似问题,总结这类题的做题技巧.教师提出问题,让学生结合画图独立理解并解答问题,培养学生对几何图形的分析能力,将数学知识和实际问题相结合的应用意识教师总结,学生体会学生独立完成,教师巡视指导,了解学生掌握情况,并集中订正师生归纳总结,学生作笔记.让学生掌握这一类题型将几何图形的问题用一元二次方程方法来解决使学生巩固提高,了解学生掌握情况纳入知识系统,总结本节课内容,让学生体会方程刻画现实世界的模型作用.A.8cm B.64cm C.8cm2 D.64cm2 2.如图,是长方形鸡场平面示意图,一边靠墙,另外三面用竹篱笆围成,若竹篱笆总长为35m,所围的面积为150m2,则此长方形鸡场的长、宽分别为_______.3.有一张长方形的桌子,长6尺,宽3尺,有一块台布的面积是桌面面积的2倍,并且铺在桌面上时,各边垂下的长度相同,求台布的长和宽各是多少?(精确到0.1尺)4.在一块长12m,宽8m的长方形平地中央,划出地方砌一个面积为8m2•的长方形花台,要使花坛四周的宽地宽度一样,则这个宽度为多少?四小结归纳谈一节课的收获和体会.五、作业设计必做:P18:4-8选做:P19:10补充作业:某林场计划修一条长750m,断面为等腰梯形的渠道,断面面积为1.6m2,•上口宽比渠深多2m,渠底比渠深多0.4m.(1)渠道的上口宽与渠底宽各是多少?(2)如果计划每天挖土48m3,需要多少天才能把这条渠道挖完?教学反思。
《实际问题与一元二次方程增长率》教学设计
教材:义务教育课程标准实验教科书(人教版九年级上册21.3)第二课时
一、教学任务分析
二、教学流程设计
三、教学过程设计
问题与情境师生活动设计意图环节1:情景导入
(一)温故知新
1. 解一元二次方
程有哪些方法?
2.列一元一次方
程解应用题都是
有哪些步骤?
3.回忆:变化率的
公式
(二)探索新知
列方程解应用题:某药品原来每盒售价54元,由于两次提价,现在每盒96元,•求平均每次提价的百分数.
学生独立思考问题,
回答
学生板演,通过学生
作答,展示不同学生的思
维层次。
利用实际问题
引入课题,,激发
学生的学习兴趣;
通过师生互动,消
除师生间的陌生
与隔阂,营造轻松
愉悦的课堂氛围.
为学习能力较
强的学生通过一
个展示的平台。
实际问题与一元二次方程第2课时教学内容21.3实际问题与一元二次方程(2):建立一元二次方程的数学模型,解决增长率与降低率问题.教学目标1.掌握建立数学模型以解决增长率与降低率问题.2.经历将实际问题抽象为数学问题的过程,探索问题中的数量关系,并能运用一元二次方程对之进行描述.3.通过用一元二次方程解决身边的问题,体会数学知识应用的价值,提高学生学习数学的兴趣,了解数学对促进社会进步和发展人类理性精神的作用.教学重点如何解决增长率与降低率问题.教学难点某些量的变化状况,不能衡量另外一些量的变化状况.教学过程一、导入新课问题:某商场礼品柜台春节期间购进大量贺年卡,一种贺年卡平均每天可售出500张,每张盈利0.3元,为了尽快减少库存,商场决定采取适当的降价措施,调查发现,如果这种贺年卡的售价每降低0.1元,那么商场平均每天可多售出100张,•商场要想平均每天盈利120元,每张贺年卡应降价多少元?分析:总利润=每件平均利润×总件数.设每张贺年卡应降价x元,•x×100).则每件平均利润应是(0.3-x)元,总件数应是(500+0.1解:设每张贺年卡应降价x元,则x)=120.(0.3-x)(500+1000.1解得:x=0.1.答:每张贺年卡应降价0.1元.我们分析了一种贺年卡原来平均每天可售出500张,每张盈利0.3元,为了减少库存降价销售,并知每降价0.1元,便可多售出100元,为了达到某个目的,每张贺年卡应降价多少元?如果本题中有两种贺年卡或者两种其它东西,量与量之间又有怎样的关系呢?即绝对量与相对量之间的关系.二、新课教学例 1 某商场礼品柜台春节期间购进甲、乙两种贺年卡,甲种贺年卡平均每天可售出500张,每张盈利0.3元,乙种贺年卡平均每天可售出200张,每张盈利0.75元,为了尽快减少库存,商场决定采取适当的降价措施,调查发现,如果甲种贺年卡的售价每降价0.1元,那么商场平均每天可多售出100张;如果乙种贺年卡的售价每降价0.25元,•那么商场平均每天可多售出34•张.•如果商场要想每种贺年卡平均每天盈利120元,那么哪种贺年卡每张降价的绝对量大.分析:原来,两种贺年卡平均每天的盈利一样多,都是150元;0.30.751000.10.2534=≈,从这些数目看,好象两种贺年卡每张降价的绝对量一样大,下面我们就通过解题来说明这个问题.解:(1)从上面可知,商场要想平均每天盈利120元,甲种贺年卡应降价0.1元.(2)乙种贺年卡:设每张乙种贺年卡应降价y 元,则:(0.75-y )(200+0.25y ×34)=120. 即(34-y )(200+136y )=120 整理:得68y 2+49y -15=0y =49268-±⨯ ∴y ≈-0.98(不符题意,应舍去)y ≈0.23元答:乙种贺年卡每张降价的绝对量大.因此,我们从以上一些绝对量的比较,不能说明其它绝对量或者相对量也有同样的变化规律.例2 两年前生产1 t 甲种药品的成本是5 000元,生产1 t 乙种药品的成本是6 000元,随着生产技术的进步,现在生产1 t 甲种药品的成本是3 000元,生产1 t 乙种药品的成本是3 600元,哪种药品成本的年平均下降率较大?分析和解答见教材第20页.三、巩固练习1.填空.(1)一个产品原价为a 元,受市场经济影响,先提价20%后又降价15%,现价比原价多_______%.(2)甲用1000元人民币购买了一手股票,随即他将这手股票转卖给乙,获利10%,乙而后又将这手股票返卖给甲,但乙损失了10%,•最后甲按乙卖给甲的价格的九折将这手股票卖出,在上述股票交易中,甲盈了_________元.(3)一个容器盛满纯药液63L ,第一次倒出一部分纯药液后用水加满,•第二次又倒出同样多的药液,再加水补满,这时容器内剩下的纯药液是28L ,设每次倒出液体x L ,则列出的方程是________.参考答案:(1)2 (2)1 (3)(1-63x )2=2863 2.某商店经销一种销售成本为每千克40元的水产品,•据市场分析,•若每千克50元销售,一个月能售出500kg ,销售单价每涨1元,月销售量就减少10kg ,针对这种水产品情况,请解答以下问题:(1)当销售单价定为每千克55元时,计算销售量和月销售利润.(2)设销售单价为每千克x 元,月销售利润为y 元,求y 与x 的关系式.(3)商品想在月销售成本不超过10000元的情况下,使得月销售利润达到8000元,销售单价应为多少?分析:(1)销售单价定为55元,比原来的销售价50元提高5元,因此,销售量就减少5×10kg .(2)销售利润y =(销售单价x -销售成本40)×销售量[500-10(x -50)](3)月销售成本不超过10000元,那么销售量就不超过1000040=250kg,在这个提前下,求月销售利润达到8000元,销售单价应为多少.解:(1)销售量:500-5×10=450(kg);销售利润:450×(55-40)=450×15=6 750元.(2)y=(x-40)[500-10(x-50)]=-10x2+1 400x-40 000(3)由于水产品不超过10 000÷40=250kg,定价为x元,则(x-400)[500-10(x-50)]=8 000.解得:x1=80,x2=60.当x1=80时,进货500-10(80-50)=200kg<250kg,满足题意.当x2=60时,进货500-10(60-50)=400kg>250kg,(舍去).四、课堂小结本节课应掌握:建立多种一元二次方程的数学建模以解决如何全面地比较几个对象的变化状况的问题.五、布置作业习题21.3 第7题.21.1 一元二次方程【学习目标】1、会根据具体问题列出一元二次方程,体会方程的模型思想,提高归纳、分析的能力.2、理解一元二次方程的概念;知道一元二次方程的一般形式;会把一个一元二次方程化为一般形式;会判断一元二次方程的二次项系数、一次项系数和常数项.【重点难点】重点:由实际问题列出一元二次方程和一元二次方程的概念.难点:由实际问题列出一元二次方程,准确认识一元二次方程的二次项和系数以及一次项和系数还有常数项.【自主先学】请观察一下,下列哪些是方程?⑴⑵2x+y=16⑶3x+y -1 ⑷3x-4=2x+6一元一次方程的概念:一元一次方程的一般形式:【课堂活动】一、请根据题目意思列出方程,并化简:1.要设计一座高2 m 的人体雕像,使它的上部(腰以上)与下部(腰以下)的高度比,等于下部与全部(全身)的高度比,求雕像的下部应设计为高多少米?2.有一块矩形铁皮,长100 cm,宽50 cm,在它的四角各切去一个同样的正方形,然后将四周突出部分折起,就能制作一个无盖方盒,如果要制作的无盖方盒的底面积为3600 cm2,那么铁皮各角应切去多大的正方形?二、这两个方程都不是一元一次方程.那么这两个方程与一元一次方程的有什么共同点呢?不同点呢?对照一元一次方程,写出一元二次方程的概念:一元二次方程的一般式:练一练:1、将下列方程化成一元二次方程的一般形式,并写出其中的二次项系数、一次项系数和常数项(1)4x(x+2) =25 (2)(3 x -2)(x +1)=x -3 (3)x(x-4)=02、(小组合作)已知关于x的方程(a2— 4)x 2— ax +2x+a —2=0⑴若此方程是一元一次方程,则a的取值范围是什么?⑵若此方程是一元二次方程,则a的取值范围是什么?三、下面哪些数能使方程x2–x– 6 = 0 成立?-3 , -2 ,-1 ,0 , 1, 2, 3一元二次方程的解 : 叫作一元二次方程的解(又叫做根).练一练:若x =2是方程 的一个根,你能求出a 的值吗?四、课堂小结:一元二次方程的概念,一元二次方程的一般式,一元二次方程的解. 2450ax x +-=。
人教版数学九年级上21.3第二课时教学设计课题21.3.2解一元二次方程单元第二十一章学科数学年级九年级上学习目标情感态度和价值观目标探究感受用一元二次方程解决实际问题的过程,提高数学应用意识。
能力目标通过列方程解应用题体会一元二次方程在实际生活中的应用,经历将实际问题转化为数学问题的过程。
知识目标 1.掌握建立数学模型以解决增长率与降低率问题2.正确分析问题中的数量关系并建立一元二次方程模型。
重点建立数学模型以解决增长率与降低率问题。
难点正确分析问题中的数量关系并建立一元二次方程模型。
学法探究学习、合作交流法教法启发引导、讲练结合法教学过程教学环节教师活动学生活动设计意图导入新课一、情境导入思考:小明学习非常认真,学习成绩直线上升,第一次月考数学成绩是80分,第二次月考增长了10%,第三次月考又增长了10%,问他第三次数学成绩是多少?分析:教师引导学生积极讨论,引入新课。
创设问题情境,激发学生的解题求知欲。
结解决传播问题的注意事项。
数学思想。
三、重难点精讲例题:某例题某公司2014年的各项经营中,一月份的营业额为200万元,一月、二月、三月的营业额共950万元,如果平均每月营业额的增长率相同,求这个增长率.变化率问题:若平均增长(降低)率为x,增长(或降低)前的基数是a,增长(或降低)n次后的量是b,则有:a(1±x)n=b (常见n=2)学生独立完成,再合作交流,教师最后巡视指导,并总结解决变化率问题的主义事项和技巧规律。
学生思考使用一元二次方程解决变化率问题,进一步加强对所学知识的理解和掌握。
四、学以致用菜农李伟种植的某蔬菜,计划以每千克5元的价格对外批发销售.由于部分菜农盲目扩大种植,造成该蔬菜滞销,李伟为了加快销售,减少损失,对价格经过两次下调后,以每千克3.2元的价格对外批发销售. 通过实际应用练习使用一元二次方程解决变化率问题的过程。
师生交流看通过解决实际问题,进一步巩固一元二次方程在实际变化。
21.3 实际问题与一元二次方程(第二课时)导学探究阅读教材P19-20,回答下列问题:1.请根据你对“变化额”“变化率”的理解,填空:(1)某工厂一月份生产零件1000个,二月份生产零件1200个,那么二月份比一月份增产______个,增长率是______;若三月份生产零件1140个,那么三月份比二月份减产____个,下降率是________.(2)某厂今年一月份的总产量为100吨,设平均每月增长率是x,则二月份总产量为_____吨;三月份总产量为_________吨.(用含x的代数式表示).(3)某种商品原价是100元,平均每次降价的百分率为x,则第一次降价后的价格是_____元;第二次降价后的价格是______元.(用含x的代数式)2.我市前年有汽车3万辆,据统计平均每年的增长率为x.(1)去年我市汽车有万_______辆; (用含x的代数式表示)(2)今年我市汽车有万_______辆; (用含x的代数式表示)(3)若我市今年有汽车12万辆,根据题意,可列出方程___________________________.3.请你总结:(1) 增长率问题: 若原来的量为a,平均增长率是x,则第一次增长后的量为________;第二次增长后的量为__________;若两次增长后的量为A,则可列方程__________________.(2)下降率问题:若原来的量为a,平均下降率是x,则第一次下降后的量为__________;第二次下降后的量为___________;若两次下降后的量为A,则可列方程_________________.归纳梳理1.本节课我们将讨论平均变化率问题,变化率有增长率和________率.2.有关变化率的公式:(1)增长后的量= 原来的量+_________= 原来的量×(1+________);下降后的量= 原来的量-________ = 原来的量×(1-_______).(2)单位时间增长量=增长后的量一_______=原来的量×__________;单位时间下降量=原来的量一__________=原来的量×__________(3)如果某个量原来的值是a,每次增长的百分率是x, 则增长1次后的值是________,增长2次后的值是_________,…,增长n次后的值是______________.如果某个量原来的值是a,每次下降的百分率是x,则下降1次后的值是__________,下降2次后的值是_________,…,下降n次后的值是____________.3.如果设平均每次增长(或下降)的百分数为x,则原来的量a, 经过两次增长(或下降)到A,可列方程为______________(或)_______________.典例探究【例1】(·湖北随州)随州市尚市“桃花节”观赏人数逐年增加,据有关部门统计,约为20万人次,约为28.8万人次,设观赏人数年均增长率为x,则下列方程中正确的是()A.20(1+2x)=28.8 B.28.8(1+x)2=20C.20(1+x)2=28.8 D.20+20(1+x)+20(1+x)2=28.8总结:增长率问题会涉及到最后产量、基数、平均增长率或平均降低率.若平均增长(或降低)百分率为x,增长(或降低)前基数为a,增长(或降低)n次后的最后产量是b,则它们的数量关系可表示为a(1±x)n=b,其中增长取“+”,降低取“-”,注意1与x的位置不能调换.增长率问题中,解方程一般用直接开平方法,注意方程根的取舍问题.练1:(•珠海)白溪镇有绿地面积57.5公顷,该镇近几年不断增加绿地面积,达到82.8公顷.(1)求该镇至绿地面积的年平均增长率;(2)若年增长率保持不变,该镇绿地面积能否达到100公顷?练2. (·青海西宁·10分)青海新闻网讯:2月21日,西宁市首条绿道免费公共自行车租赁系统正式启用.市政府今年了112万元,建成40个公共自行车站点、配置720辆公共自行车.今后将逐年增加,用于建设新站点、配置公共自行车.预计将340.5万元,新建120个公共自行车站点、配置2205辆公共自行车.(1)请问每个站点的造价和公共自行车的单价分别是多少万元?(2)请你求出到市政府配置公共自行车数量的年平均增长率.夯实基础1.(•丹江口市校级月考)一种药品经过两次降价,由每盒60元调至48.6元,平均每次降价的百分率是多少?2.(•泰安模拟)某工厂第二季度的产值比第一季度的产值增长了x%,第三季度的产值又比第二季度的产值增长了x%,则第三季度的产值比第一季度增长了()A.2x% B.1+2x% C.(1+x%)•x% D.(2+x%)•x%3.(•江岸区校级模拟)为提高民生,让人民更好的享受经济和社会发展的成果,今年多数药品生产的企业对某些药品实行降价,其中某种药品经过再次降价,每盒下降了36%.假设每次降价的百分率相同,降价前的药品价格为100元,则第一次降价后的价格为()A.18元 B.36元 C.64元 D.80元4.(春•富阳市校级月考)甲菜农计划以每千克5元的价格对外批发某种蔬菜,由于部分菜农盲目扩大种植这种蔬菜,造成这种蔬菜滞销.甲菜农为加快销售,减少损失,对这种蔬菜的价格经过两次下调,最后以每千克3.2元的单价对外批发销售,则他平均每次下调的百分率是.5.(·四川眉山·3分)受“减少税收,适当补贴”政策的影响,某市居民购房热情大幅提高.据调查,1月该市宏鑫房地产公司的住房销售量为100套,3月份的住房销售量为169套.假设该公司这两个月住房销售量的增长率为x,根据题意所列方程为100(1+x)2=169.6.(•泗县校级模拟)某公司一月份营业额为100万元,第一季度总营业额为331万元,问:该公司二、三月份营业额的平均增长率是多少?7.(春•淮阴区校级月考)前一阶段,我校成功的举办了首届数学节,某种活动所需材料经过两次降价后,从原来的20元减少到12.8元,若两次降价的百分率相同,请你求出降价的百分率.8.(•香洲区校级一模)据媒体报道,我国公民出境旅游总人数约5000万人,公民出境旅游总人数约7200万人,若、公民出境旅游总人数逐年递增,请解答如下问题:(1)求这两年我国公民出境旅游总人数的年平均增长率;(2)如果仍保持相同的年平均增长率,请你预测我国公民出境旅游总人数约多少万人?9、(贵州毕节)为进一步发展基础教育,自以来,某县加大了教育经费的投入,该县投入教育经费6000万元.投入教育经费8640万元.假设该县这两年投入教育经费的年平均增长率相同.(1)求这两年该县投入教育经费的年平均增长率;(2)若该县教育经费的投入还将保持相同的年平均增长率,请你预算该县投入教育经费多少万元.典例探究答案【例1】(·湖北随州)随州市尚市“桃花节”观赏人数逐年增加,据有关部门统计,约为20万人次,约为28.8万人次,设观赏人数年均增长率为x,则下列方程中正确的是()A.20(1+2x)=28.8 B.28.8(1+x)2=20C.20(1+x)2=28.8 D.20+20(1+x)+20(1+x)2=28.8【考点】由实际问题抽象出一元二次方程.【分析】设这两年观赏人数年均增长率为x,根据“约为20万人次,约为28.8万人次”,可得出方程.【解答】解:设观赏人数年均增长率为x,那么依题意得20(1+x)2=28.8,故选C.练1:(•珠海)白溪镇有绿地面积57.5公顷,该镇近几年不断增加绿地面积,达到82.8公顷.(1)求该镇至绿地面积的年平均增长率;(2)若年增长率保持不变,该镇绿地面积能否达到100公顷?分析:(1)设每绿地面积的年平均增长率为x,就可以表示出的绿地面积,根据的绿地面积达到82.8公顷建立方程求出x的值即可;(2)根据(1)求出的年增长率就可以求出结论.解答:解:(1)设绿地面积的年平均增长率为x,根据意,得57.5(1+x)2=82.8,解得x1=0.2,x2=﹣2.2(不合题意,舍去).答:增长率为20%;(2)由题意,得82.8(1+0.2)=99.36(万元)答:该镇绿地面积不能达到100公顷.点评:本题考查了增长率问题的数量关系的运用,关键是运用增长率的数量关系建立一元二次方程求解.练2. (·青海西宁·10分)青海新闻网讯:2月21日,西宁市首条绿道免费公共自行车租赁系统正式启用.市政府今年了112万元,建成40个公共自行车站点、配置720辆公共自行车.今后将逐年增加,用于建设新站点、配置公共自行车.预计将340.5万元,新建120个公共自行车站点、配置2205辆公共自行车.(1)请问每个站点的造价和公共自行车的单价分别是多少万元?(2)请你求出到市政府配置公共自行车数量的年平均增长率.【考点】一元二次方程的应用;二元一次方程组的应用.【分析】(1)分别利用了112万元,建成40个公共自行车站点、配置720辆公共自行车以及340.5万元,新建120个公共自行车站点、配置2205辆公共自行车进而得出等式求出答案;(2)利用配置720辆公共自行车,结合增长率为x,进而表示出配置公共自行车数量,得出等式求出答案.【解答】解:(1)设每个站点造价x万元,自行车单价为y万元.根据题意可得:解得:答:每个站点造价为1万元,自行车单价为0.1万元.(2)设到市政府配置公共自行车数量的年平均增长率为a.根据题意可得:720(1+a)2=2205解此方程:(1+a)2=,即:,(不符合题意,舍去)答:到市政府配置公共自行车数量的年平均增长率为75%.夯实基础1.(•丹江口市校级月考)一种药品经过两次降价,由每盒60元调至48.6元,平均每次降价的百分率是多少?分析:设该药品平均每次降价的百分率为x,根据降价后的价格=降价前的价格(1﹣降价的百分率),则第一次降价后的价格是60(1﹣x),第二次后的价格是60(1﹣x)2,据此即可列方程求解.解答:解:设平均每次降价的百分率是x,依题意得:60(1﹣x)2=48.6,解方程得:x1=0.1=10%,x2=1.9(舍去),答:平均每次降价的百分率是10%.故答案为:10%.点评:此题主要考查了一元二次方程的应用﹣﹣增长率(下降率)问题,关键是读懂题意,掌握公式:“a(1±x)n=b”,理解公式是解决本题的关键.2.(•泰安模拟)某工厂第二季度的产值比第一季度的产值增长了x%,第三季度的产值又比第二季度的产值增长了x%,则第三季度的产值比第一季度增长了()A.2x% B.1+2x% C.(1+x%)•x% D.(2+x%)•x%解:根据题意得:第三季度的产值比第一季度增长了(2+x%)•x%,故选D3.(•江岸区校级模拟)为提高民生,让人民更好的享受经济和社会发展的成果,今年多数药品生产的企业对某些药品实行降价,其中某种药品经过再次降价,每盒下降了36%.假设每次降价的百分率相同,降价前的药品价格为100元,则第一次降价后的价格为()A.18元 B.36元 C.64元 D.80元解:∵原价为100元的药品经过两次降价后下降了36%,∴降价后的药品价格为100(1﹣36%)=64元,设平均每次降价的百分率是x,依题意得:100(1﹣x)2=64,解方程得:x1=0.2=20%,x2=1.8(舍去),第一次降价的价格为100×(1﹣20%)=80元.故选D.4.(春•富阳市校级月考)甲菜农计划以每千克5元的价格对外批发某种蔬菜,由于部分菜农盲目扩大种植这种蔬菜,造成这种蔬菜滞销.甲菜农为加快销售,减少损失,对这种蔬菜的价格经过两次下调,最后以每千克3.2元的单价对外批发销售,则他平均每次下调的百分率是20% .解:设平均每次下调的百分率是x.由题意,得5(1﹣x)2=3.2.解得x1=0.2,x2=1.8(不符合题意),符合题目要求的是x1=0.2=20%.答:平均每次下调的百分率是20%.故答案为:20%.5.(·四川眉山·3分)受“减少税收,适当补贴”政策的影响,某市居民购房热情大幅提高.据调查,1月该市宏鑫房地产公司的住房销售量为100套,3月份的住房销售量为169套.假设该公司这两个月住房销售量的增长率为x,根据题意所列方程为100(1+x)2=169.【分析】根据年1月该市宏鑫房地产公司的住房销售量为100套,3月份的住房销售量为169套.设该公司这两个月住房销售量的增长率为x,可以列出相应的方程.【解答】解:由题意可得,100(1+x)2=169,故答案为:100(1+x)2=169.【点评】本题考查由实际问题抽象出一元二次方程,解题的关键是明确题意,列出形应的方程.6.(•泗县校级模拟)某公司一月份营业额为100万元,第一季度总营业额为331万元,问:该公司二、三月份营业额的平均增长率是多少?解:设该公司二、三月份营业额平均增长率是x.根据题意得100+100(1+x)+100(1+x)2=331,解得x1=0.1,x2=﹣3.1(不合题意,舍去).答:该公司二、三月份营业额平均增长率是10%.7.(春•淮阴区校级月考)前一阶段,我校成功的举办了首届数学节,某种活动所需材料经过两次降价后,从原来的20元减少到12.8元,若两次降价的百分率相同,请你求出降价的百分率.解:设平均每次降价的百分率为x,根据题意得:20(1﹣x)2=12.8解得:x1=0.2,x2=1.8(不符合题意舍去).答:每次降价的百分率为:20%.8.(•香洲区校级一模)据媒体报道,我国公民出境旅游总人数约5000万人,公民出境旅游总人数约7200万人,若、公民出境旅游总人数逐年递增,请解答如下问题:(1)求这两年我国公民出境旅游总人数的年平均增长率;(2)如果仍保持相同的年平均增长率,请你预测我国公民出境旅游总人数约多少万人?解:(1)设这两年我国公民出境旅游总人数的年平均增长率为x.根据题意得:5000(1+x)2=7200,解得x1=0.2=20%,x2=﹣2.2 (不合题意,舍去).答:这两年我国公民出境旅游总人数的年平均增长率为20%.(2)如果仍保持相同的年平均增长率,则我国公民出境旅游总人数为 7200(1+x)=7200×(1+20%)=8640(万人次).答:预测我国公民出境旅游总人数约8640万人次.9、(贵州毕节)为进一步发展基础教育,自以来,某县加大了教育经费的投入,该县投入教育经费6000万元.投入教育经费8640万元.假设该县这两年投入教育经费的年平均增长率相同.(1)求这两年该县投入教育经费的年平均增长率;(2)若该县教育经费的投入还将保持相同的年平均增长率,请你预算该县投入教育经费多少万元.【考点】一元二次方程的应用.【分析】(1)设该县投入教育经费的年平均增长率为x,根据该县投入教育经费6000万元和投入教育经费8640万元列出方程,再求解即可;(2)根据该县投入教育经费和每年的增长率,直接得出该县投入教育经费为8640×(1+0.2),再进行计算即可.【解答】解:(1)设该县投入教育经费的年平均增长率为x,根据题意得:6000(1+x)2=8640解得:x=0.2=20%,答:该县投入教育经费的年平均增长率为20%;(2)因为该县投入教育经费为8640万元,且增长率为20%,所以该县投入教育经费为:y=8640×(1+0.2)=10368(万元),答:预算该县投入教育经费10368万元.。
第2课时实际问题与一元二次方程(2)【知识与技能】1.继续探索实际问题中的数量关系,列出一元二次方程,体会方程是刻画现实世界某些问题的一个有效的数学模型;2.能根据具体问题的实际意义,检验结果是否合理.【过程与方法】经历将实际问题抽象为数学问题的过程,体验解决问题策略的多样性,发展数学应用意识.【情感态度】通过构建一元二次方程解决身边的问题,体会数学的应用价值,提高学生学习数学的兴趣,了解数学对促进社会进步和发展人类理性精神的作用.【教学重点】列一元二次方程解决应用问题.【教学难点】寻找问题中的等量关系.一、情境导入,初步认识问题1通过上节课的学习,请谈谈列方程解应用题的一般步骤是怎样的?关键是什么?问题2 现有长19cm,宽为15cm长方形硬纸片,将它的四角各剪去一个同样大小的正方形后,再折成一个无盖的长方形纸盒,要使纸盒的底面积为77cm2,问剪去的小正方形的边长应是多少?你能解决这一问题吗?不妨试试看.【教学说明】问题1的目的是引导学生回顾前面学过的知识,为本节课的学习作好铺垫;问题2则过渡到本节要处理的问题中来,使学生初步感受到一元二次方程也是解决几何问题的重要手段之一,引入新课.二、思考探究,获取新知探究教材20页探究3.【教学说明】让学生自主探究,相互交流,尝试寻求解决问题的方法.为了帮助学生更好地理解题意,可设置如下几个问题:(1)中央长方形的长与宽的比是多少呢?(2)如果设出中央长方形的长的话,你能求出左、右边衬的宽吗?上、下边衬的宽呢?(3)问题中的等量关系是什么?由此你能得到怎样的方程?(4)如果将问题中的等量关系(四周彩色边衬所占面积是整个长方形面积的四分之一)转化为中央长方形面积与整个长方形面积之间的关系时,结论如何?由此你又能列出怎样的方程呢?然后教师在巡视过程中,关注学生的解题方法,选取有代表性的依据不同方式而获得结论的学生上黑板展示他们的解答过程,共同分析,提高认知.三、典例精析,掌握新知例1 有一张长6尺,宽3尺的长方形桌子,现用一块长方形台布铺在桌面上,如果台布的面积是桌面面积的2倍,且四周垂下的长度相同,试求这块台布的长和宽各是多少?(精确到0.1尺)分析:设四周垂下的宽度为x尺时,可知台布的长为(2x+6)尺,宽为(2x+3)尺,利用台布的面积是桌面面积的2倍构建方程可获得结论.解:设四周垂下的宽度为x尺时,依题意可列方程为(6+2x)(3+2x)=2×6×3.整理方程,得2x2+9x-9=0.解得x1≈0.84,x2≈-5.3(不合题意,舍去).即这块台布的长约为7.7尺,宽约为4.7尺.例2如右图是长方形鸡场的平面示意图,一边靠墙,另外三边用竹篱笆围成,且竹篱笆总长为35m.(1)若所围的面积为150m2,试求此长方形鸡场的长和宽;(2)如果墙长为18m,则(1)中长方形鸡场的长和宽分别是多少?(3)能围成面积为160m2的长方形鸡场吗?说说你的理由.分析:如图,若设BC=xm,则AB的长为352xm,若设AB=xm,则BC=(35-2x)m,再利用题设中的等量关系,可求出(1)的解;在(2)中墙长a=18m 意味着BC边长应小于或等于18m,从而对(1)的结论进行甄别即可;(3)中可借助(1)的解题思路构建方程,依据方程的根的情况可得到结论.解:(1)设BC=xm,则AB=CD=352x-,依题意可列方程为x·352x-=150,解这个方程,得x1=20,x2=15.当BC=x=20m时,AB=CD=7.5m,当BC=15m时,AB=CD=10m.即这个长方形鸡场的长与宽分别为20m和7.5m或15m和10m;(2)当墙长为18m时,显然BC=20m时,所围成的鸡场会在靠墙处留下一个缺口,不合题意,应舍去,此时所围成的长方形鸡场的长与宽只能是15m和10m;(3)不能围成面积为160m2的长方形鸡场,理由如下:设BC=xm,由(1)知AB=352x-m,从而有x·352x-=160,方程整理为x2-35x+320=0.此时Δ=352-4×1×320=1225-1280<0,原方程没有实数根,从而知用35m的篱笆按图示方式不可能围成面积为160m2的鸡场.【教学说明】以上两例均应先让学生独立思考,探索出问题的解.教师在学生自主探究过程中,应关注学生是否能正确理解题意,如何设未知数并构建方程,是否能根据问题的实际意义检验结果的合理性等,及时帮助学生克服困难,掌握列方程解决实际问题的方法.最后师生共同给出答案.让学生进一步加深理解,在反思中获取新知.四、运用新知,深化理解1.直角三角形的两条直角边的和为7,面积是6,则斜边长为()A.37B.5C.38D.72.从正方形铁皮的一边切去一个2cm宽的长方形,若余下的长方形的面积为48cm2,则原来正方形的铁皮的面积为.3.如图,在一幅矩形地毯的四周镶有宽度相同的花边,地毯中间的矩形图案的长为6m,宽为3m,若整个地毯的面积为40m2,求花边的宽.4.某种服装进价每件60元,据市场调查,这种服装按80元销售时,每月可卖出400件,若销售价每涨价1元,就要少卖出5件,如果服装店预计在销售这种服装时每月获利12000元,那么这种服装的销售价定为多少时,可使顾客更实惠?【教学说明】让学生学以致用,巩固新知.【答案】1.B 2.64cm23.设花边的宽为xm,依题意有(6+2x)(3+2x)=40,解得x1=1,x2=-11/2(不合题意应舍去),即花边的宽度为1m.4.设销售价提高了x个1元,则每月应少卖出5x件.依题意可列方程为(80+x-60)×(400-5x)=12000.解这个方程,得x1=20,x2=40.显然,当x=40时,销售价为120元,当x=20时,销售价为100元,要使顾客得到实惠,则销售价越低越好,故这种服装的销售价应定为100元合适.五、师生互动,课堂小结通过这节课的学习,谈谈你对列一元二次方程解决实际问题的体会和收获?你认为有哪些地方需要特别注意?【教学说明】让学生回顾整理本节知识,反思学习过程的体会,加深理解.1.布置作业:从教材“习题21.3”中选取.2.完成创优作业中本课时练习的“课时作业”部分.1.面积问题的设置,力求以点带面,了解列一元二次方程的步骤并能解答简单的应用题,训练题是对前面问题的延伸,使学生灵活运用解题的能力有很大的提高,对学生思维能力的拓展、发散有很大的帮助.2.列一元二次方程解应用题是让数学来源于生活,是对一元二次方程解法的延伸,同时又是一元二次方程或二元一次方程组解应用题步骤的总结和内容的升华,列一元二次方程解应用题是下章中学习二次函数解决问题的基础.。
第二课时
一、教学目标
通过应用题教学使学生进一步使用代数中的方程去反映现实中的相等关系,体会代数方法的优越性.二、教学重难点
重点:正确分析实际问题的题意,列出一元二次方程.
难点:正确找出等量关系,准确地列出一元二次方程.
教学过程(教学案)
一、情境引入
1.多媒体出示:利民大药房将原来每盒盈利30%的某种药品先后两次降价,经过两次降价后每盒仍能盈利10%.求这两次降价的平均降价率是多少?(精确到1%)
2.教师引导学生分析题意.
3.师生合作探究解题过程.:
二、互动新授
(一)探究增长率问题
1.多媒体出示“探究2”.
2.教师引导学生根据挖空问题分析题意.
3.学生交流讨论解题过程,独立完成,教师规范解题过程.
4.教师引导学生分析:为什么选择22.5%作为答案?认识解要有实际意义.
5.学生独立完成P20思考题:经过计算,得出两种药品的年平均下降率一样.
(二)探究面积问题
1.多媒体出示“探究3”
2.教师问题引导:
(1)如何理解“正中央是一个与这个封面长宽比例相同的矩形”?
(2)如何得到上、下边衬与左、右边衬的宽度之比?
3.师生合作探究,共同解决问题.
4.练习:如果换一种设未知数的方法,是否可以更简单地解决上面的问题?请你试一试.
三、课堂小结
四、板书设计
五、教学反思
新课改下,要求教师在课堂教学中,发挥学生的主体作用,主张学生个性化学习.因此,在学习建模的过程中,善思善想的学生将得到更多的收获.本课就是通过与学生共同探究、分析已知条件,建立多个一元二次方程的模型,以应对不同的情况变化.学生通过探究,理解同一个问题有不同的解决方法,不过数学教学中虽提倡一题多解,可答案是确定的,并非灵活多变.学生要理解一元二次方程是解决某些实际问题的模型,需要师生双边互动,教师教的活动和学生学的活动的相互作用,才能促进学生建立模型解决实际问题的能力.要促进学生能力的不断提升,也要指导学生学会反思,比如,想想自己这节课都有什么收获,还有哪些疑问,引导学生多问一些为什么.
导学案
一、学法点津
本课主要是探究如何分析已知条件,建立多个一元二次方程的模型,以应对不同的情况变化.上节课学生初步了解了平均上升率,这节课对平均下降率就比较容易理解了,但是成本下降额与成本下降率之间的关系,学生就容易产生混淆了,因此学习时要明确成本下降额是具体的数值,而成本下降率则是比值,不仅与成本下降额有关,也与成本大小有关.同样,面对长宽比例相同的矩形学生也容易忽略边衬有上、下、左、右之分,因此要探究清楚已知条件,不要忽略隐含的已知条件.
二、学点归纳总结
1.知识要点总结
年平均下降额(元)不等同于年平均下降率(百分数).
2.规律方法总结
①成本下降额与成本下降率的区别:成本下降额是具体的数值,而成本下降率则是比值,不仅与成本下降额有关,也与成本大小有关.
②矩形的正中央是一个与这个矩形长宽比例相同的矩形,注意矩形的上、下边衬宽度与左、右边衬宽度未必一样.
课时作业设计
一、选择题
1.一个小组若干人,新年互送贺卡,若全组共送贺卡72张,则这个小组共( ).A.12人 B.18人 C.9人 D.10人
二、填空题
2.我国政府为了解决老百姓看病难的问题,决定下调药品价格,某种药品在1999年涨价30%后,2001年降价70%至a元,则这种药品在1999年涨价前价格是____________________.
3.由于甲型H1N1流感的影响,在一个月内猪肉价格两次大幅下降.由原来每斤16元下调到每斤9元,求平均每次下调的百分率是多少?设平均每次下调的百分率为x,则根据题意可列方程为__________.4.一个产品原价为a元,受市场经济影响,先提价20%后又降价15%,现价比原价多______________%.
三、解答题
5.上海甲商场七月份利润为100万元,九月份的利润为121万元,乙商场七月份利润为200万元,九月份的利润为288万元,那么哪个商场利润的月平均上升率较大?
6.某商品原来单价96元,厂家对该商品进行了两次降价,每次降低的百分数相同,现单价为54元,求平均每次降价的百分数?
【参考答案】
1.C
2.
a
(1-70%)(1+30%)
3.16(1-x)2=9
4.2
5.解:甲商场利润的月平均上升率为10%,乙商场利润的月平均上升率为20%,所以乙商场利润的平均上升率大.
6.25%。