第02课时(正弦定理(2))
- 格式:doc
- 大小:205.50 KB
- 文档页数:4
正弦定理一、教学内容的分析“正弦定理”是人教A版必修五第一章第一节的主要内容。
其主要任务是引入并证明正弦定理.做好正弦定理的教学,不仅能复习巩固旧知识,使学生掌握新的有用的知识,体会联系、发展等辩证观点,而且能培养学生的应用意识和实践操作能力,以及提出问题、解决问题等研究性学习的能力.二、学生学习情况分析在初中学生已经学习过关于任意三角形中大边对大角、小边对小角的边角关系,本节内容是处理任意三角形中的边角关系,与初中学习的三角形的边与角的基本关系有着密切的联系;这里的一个重要问题是:是否能得到这个边、角关系准确量化的表示.也就是如何从已知的两边和它们的夹角计算出三角形的另一边和两个角的问题.这样,用联系的观点,从新的角度看过去的问题,使学生对过去的知识有了新的认识,同时使新知识建立在已有知识的坚实基础上,形成良好的知识结构.三、设计思想培养学生学会学习、学会探究是全面发展学生能力的重要前提,是高中新课程改革的主要任务。
这就要求教师在教学中引导学生在一定的情境中,运用已有的学习经验,并通过与他人(在教师指导和学习伙伴的帮助下)协作,主动建构而获得知识。
所以本节课的教学将以学生为中心,视学生为认知的主体,教师只对学生的意义建构起帮助和促进作用。
四、三维目标1、知识与技能通过对任意三角形边长和角度关系的探索,掌握正弦定理的内容及证明方法,并能解决一些简单的三角形问题。
2、过程与方法通过对特殊三角形边长和角度关系的探索,发现正弦定理,初步学会用特殊到一般的思想方法发现数学规律。
3、情感态度与价值观通过生活实例的探究引出正弦定理,体现数学来源于生活,并应用于生活,激发学生学习数学的兴趣,并体会数学的应用价值。
五、教学重难点重点:正弦定理的证明及其基本运用.难点:(1)正弦定理的探索和证明;(2)已知两边和其中一边的对角解三角形时,判断解的个a cb O B C A 数.六、教学过程设计(一)新课导入如图,河流两岸有A 、B 两村庄,有人说利用测角器与直尺,不过河也可以得到A 、B 两地的距离(假设现在的位置是A 点),请同学们讨论设计一个方案解决这个问题。
必修5解三角形第02课时 正弦定理2要求:会应用正弦定理求解实际问题、判断三角形的形状、证明平面几何问题重点:求解实际问题、判断三角形的形状 难点:证明平面几何问题过程:一、复习一般地,已知三角形的某些边和角,求其它的边和角的过程叫作解三角形.1、正弦定理表示形式:R C c B b A a 2sin sin sin ===(外接圆直径);⎪⎩⎪⎨⎧===C R c B R b A R a sin 2sin 2sin 2;C B A cb a sin :sin :sin ::=.2、正弦定理应用范围:利用正弦定理可以解决以下两类有关三角形的问题. ①已知两角和任一边,求其他两边和一角;②已知两边和其中一边的对角,求另一边的对角(从而进一步求出其他的边或角).3、正弦定理的变形及面积公式:①C R c B R b A R a sin 2,sin 2,sin 2===;(R 为△ABC 的外接圆半径) ②R c C R b B R a A 2sin ,2sin ,2sin ===;③三角形面积公式:B ca A bc C ab S ABC sin 21sin 21sin 21===∆ Rabc 4=C B A R s i n s i n s i n 22= r c b a )(21++=(其中r 为△ABC 的内切圆半径).4、基础练习:(1)在△ABC 中,一定成立的等式是( )A .B b A a sin sin = B .B b A a cos cos =C .A b B a sin sin =D .A b B a cos cos =(2)在△ABC 中,若2cos 2cos 2cos C c B b A a==,则△ABC 是( )A .等腰三角形B .等腰直角三角形C .直角三角形D .等边三有形(3)在∆ABC 中,A =60︒,a =3,则CB A c b a s i n s i n si n ++++等于 .(4)根据下列条件解三角形:b =47,c =38,C =110︒二、正弦定理的应用常规题型及其解法例1:根据下列条件解三角形:a =16,b =26,A =30︒.两解变:(1) a=13,b=26,A=30︒;一解(2) a=12,b=26,A=30︒;零解(3) a=30,b=26,A=30︒.一解归纳:在△ABC中,已知a、b和A时解三角形的各种情况:1.如果A为锐角,当:(1) a=b sin A时有一解;(2) b sin A< a <b时有两解;(3) a≥b时有一解.(4) a < b sin A时无解2.A为直角或钝角,a>b时一解.利用正弦定理求范围例2:在△ABC中,a=x,b=2,B=45︒,若三角形有两解,则x的取值范围是.练习:在△ABC中,a=2,c=1,则角C的取值范围是.例 3.在△ABC 中, 若C =3B , 求b c 的取值范围.这类题型一般是将目标式转化为某个变量的函数解: ∵ A + B + C=π, ∴ C=3B.∴ A=π- 4B>0, ∴ 0<B<4π,∴ 0<sin 2B<21. 又 ∵ sin sin 3sin(2)sin sin sin c C B B B b B B B+=== =3sin 2cos cos 2sin 3sin 4sin sin sin B B B B B B B B+-==3 – 4sin 2B , ∴ 1<3 – 4sin 2B <3, 故1<bc <3.若改条件“C =3B ”为“C =2B ”呢?例 4. 判断满足下列条件的△ABC 的形状:(1) sin 2A+sin 2B=sin 2C ;(2) a cos B =b cos A ; (3) C c B b A a cos cos cos ==; (4)c C b B a A cos cos sin ==.小结:利用正弦定理判断三角形形状的方法1、化角为边的等式,根据勾股定理判断;2、化边为角的等式,根据三角函数的单调性判断.变:在△ABC 中,设BC =a ,CA =b ,=c , 且a ∙b =b ∙c =c ∙a ,判断三角形的形状.提巩固高例 5.在△ABC 中,AD 是∠A 的内(外)角平分线, 证明:DC BD AC AB =.利用正弦定理证明平面几何问题把分散的量集中起来!三、课堂小结:1、解的组数的讨论在△ABC 中,已知a 、b 和A 时解三角形的各种情况:(1)如果A 为锐角,当:(1) a =b sin A 时有一解;(2) b sin A < a <b 时有两解;(3) a ≥b 时有一解.(4) a < b sin A 时无解(2)A 为直角或钝角,a >b 时一解.2、利用正弦定理判断三角形形状的方法(1)化角为边的等式,根据勾股定理判断;(2)化边为角的等式,根据三角函数的单调性判断.3、利用正弦定理证明平面几何问题四、课堂巩固1.在△ABC 中,若a·cosA=b·cosB ,则△ABC 是( )(A)等腰三角形 (B)直角三角形(C)等腰或直角三角形 (D)等腰直角三角形2.在△ABC 中,若c b a C B A ::求,5:4:3::=3.在△ABC 中,若,3,600==a A 求 cb C B C B Ac b a 2sin 2sin )2(sin sin sin )1(++++++的值4.在△ABC 中,若B a sin =C b sin =Ac sin ,试判断三角形的形状五、作业布置1. 在∆ABC 中,若ba B A =tan tan ,则∆ABC 的形状为 . 2. 在∆ABC 中,若3a=2bsinA ,则B= .3. 在∆ABC 中,若a+b=3+2,A=60︒,B=45︒,则c= .4. 在∆ABC 中,若sinA:sinB:sinC=4:5:6,且a+b+c=30,则a= .5. 在∆ABC 中,若b=2,B=45︒,且此三角形有两解,则a 的取值范围是 .6. 在∆ABC 中,已知C=2B ,求c b 的取值范围.7. 在∆ABC 中,已知tanA=21,tanB=31,且最长边的长为55,求: (1)C ;(2)最短边的长.8.在ABC ∆中,若cC b B a A cos cos sin ==,试判断ABC ∆的形状.9.在△ABC 中,已知a =m ,c =10,C =30︒,求b .(1) m =20;(2) m =15;(3) m =8;(4) m =25.参考答案:1. 等腰三角形2. 60︒或120︒3.226+4.85.(2,22)6.(21,1)7.(1)C=π43;(2)最短边长b=58. C B A。
1.在ABC ∆中,若5:4:3sin :sin :sin =C B A ,则ABC ∆的形状是( ) A .等腰三角形 B .直角三角形 C .等腰直角三角形 D .等边三角形 2.在ABC ∆中,若
2
cos
2cos
2cos
C c B b A a =
=
,则ABC ∆的形状是( )
A .等腰三角形
B .直角三角形
C .等腰或直角三角形
D .等边三角形
3.在ABC ∆中,若︒=60A ,3=
a ,则
=++++C
B A c b a sin sin sin ________________.
4.在ABC ∆中,C a b cos =,则ABC ∆是________________三角形.
5.在ABC ∆中,计算)sin (sin )sin (sin )sin (sin B A c A C b C B a -+-+-的值.
例题剖析
例1 如图,海中小岛A 周围38海里内有暗礁,一艘船正在向南航行,
在B 处测得小岛A 在船的南偏东︒30,航行30海里后,在C 处测得小岛A 在船的南偏东︒45,如果此船不改变航向,继续向南航行,有无触礁危险?
D A
C
B
在ABC ∆中,已知C
c B
b A
a cos cos cos =
=
,试判断ABC ∆的形状.
在ABC ∆中,AD 是BAC ∠的平分线,用正弦定理证明:DC
BD BD
AB =
.
巩固练习
1.根据下列条件,判断ABC ∆的形状: (1)C B A 2
2
2
sin
sin
sin =+; (2)B b A a cos cos =.
2.已知ABC ∆的外接圆的面积是π4,求
C
B A c b a sin sin sin ++++的值.
3.为了在一条河上建一座桥,施工前在河两岸打上两个桥位桩A ,B ,要测算出A ,B
两点间的距离,测量人员在岸边定出基线BC ,测得m BC 78=,︒=∠60B ,︒=∠45C ,试计算AB 的长.
课堂小结
正弦定理的应用.
例2 例3
课后训练
班级:高一( )班 姓名:____________
一 基础题
1.在ABC ∆中,已知2
cos sin sin 2A C B =,则ABC ∆的形状是________________.
2.在ABC ∆中,已知,B C 3=,则
b
c 的取值范围是________________.
3.在ABC ∆中,已知︒<<<90C B A ,︒=60B ,2
13)2cos 1)(2cos 1(-=
++C A ,
则b a 2+
________c 2(填不等号)
. 4.在ABC ∆中,已知21tan =A ,31
tan =B ,且最长边为1,则最短边的长为________.
5.在ABC ∆中,已知)(4
12
2b a S ABC +=∆,求C B A ,,.
6.为了测量校园里旗杆AB 的高度,学生们在D C ,两处测得A 点的仰角分别为︒30和
︒45,测得DC 的距离为m 10,那么旗杆的高度是多少米?
二 提高题
7.海上有B A ,两个小岛相距10海里,从A 岛观测C 岛与B 岛成︒60的视角,从B 岛观测A 岛和C 岛成︒75的视角,那么B 岛与C 岛之间的距离是多少海里?
8.在ABC ∆中,A ∠的外角平分线交BC 的延长线于D ,用正弦定理证明:DC
BD AC
AB =
.
9.在ABC ∆中,设a BC =,b CA =,c AB =,已知a c c b b a ∙=∙=∙,
证明ABC ∆为正三角形.
三 能力题 10.在ABC ∆中,已知D 为AB 上一点,α=∠ACD ,
β=∠BCD ,BD AD CD ∙=2
,求证:
βαs i n s i n s i n s i n =B A .
A
B
C D。