化工传递过程第七章
- 格式:ppt
- 大小:1.09 MB
- 文档页数:50
《化工传递过程》讲稿【讲稿】第一章 传递过程概论(4学时)传递现象是自然界和工程技术中普遍存在的现象。
传递过程:物理量(动量、热量、质量)朝平衡转移的过程即为传递过程。
平衡状态:物系内具有强度性质的物理量如速度、温度、组分浓度等不存在梯度。
*动量、热量、质量传递三者有许多相似之处。
*传递过程的研究,常采用衡算方法。
第一节 流体流动导论流体:气体和液体的统称。
微元体:任意微小体积。
流体质点:当考察的微元体积增加至相对于分子的几何尺寸足够大,而相对于容器尺寸充分小的某一特征尺寸时,便可不计分子随机运动进出此特征体积分子数变化所导致的质量变化,此一特征体积中所有流体分子的集合称为流体质点。
可将流体视为有无数质点所组成的连续介质一、静止流体的特性(一)流体的密度流体的密度:单位体积流体所具有的质量。
对于均质流体 对于不均质流体点密度dVdM d =ρ *流体的点密度是空间的连续函数。
*流体的密度随温度和压力变化。
流体的比体积:单位流体质量的体积。
MV =υ (二)可压缩流体与不可压缩流体可压缩流体:密度随空间位置和时间变化的流体,称为可压缩流体。
(气体)不可压缩流体:密度不随空间位置和时间变化的流体,称为不可压缩流体。
(液体)(三)流体的压力流体的压力(压强,静压力):垂直作用于流体单位面积上的力。
A P p =(四)流体平衡微分方程1.质量力(重力)单位流体质量所受到的质量力用B f 表示。
在直角坐标z y x ,, 三个轴上的投影分量分别以 X ﹑Y ﹑Z 表示。
B F V M =ρ2.表面力:表面力是流体微元的表面与其临近流体作用所产生的力用Fs 表示。
在静止流体中,所受外力为重力和静压力,这两种力互相平衡,利用平衡条件可导出流体平衡微分方程。
916:16化工传递过程基础黄山学院化学系首先分析x 方向的作用力,其质量力为由静压力产生的表面力为XdxdydzdF Bx ρ=dydz dx x p p pdydz dF sx ⎪⎭⎫ ⎝⎛∂∂+-=12(五)流体静压力学方程流体静压力学方程可由流体平衡微分方程导出。
第七章 传质与分离过程概论3. 在直径为0.012 m 、长度为0.35 m 的圆管中,CO 气体通过N 2进行稳态分子扩散。
管内N 2的温度为373 K ,总压为101.3 kPa ,管两端CO 的分压分别为70.0 kPa 和7.0 kPa ,试计算CO 的扩散通量。
解:设 A -CO ; B -N 2 查附录一得 s m 10318.024AB -⨯=D()31.3kPa kPa 703.101A1B1=-=-=p p p 总().3kPa 49kPa 0.73.101A2B2=-=-=p p p 总kPa 12.57kPa 3.313.94ln 3.313.94lnB1B2B1B2 BM =-=-=p p p p p8. 有一厚度为8 mm 、长度为800 mm 的萘板。
在萘板的上层表面上有大量的45 ℃的常压空气沿水平方向吹过。
在45 ℃下,萘的饱和蒸汽压为73.9 Pa ,固体萘的密度为1 152 kg/m 3,由有关公式计算得空气与萘板间的对流传质系数为0.016 5 m/s 。
试计算萘板厚度减薄5%所需要的时间。
解:由式(7-45)计算萘的传质通量,即() Ab Ai L A c c k N -= 式中Ab c 为空气主体中萘的浓度,因空气流量很大,故可认为0Ab =c ;Ai c 为萘板表面 处气相中萘的饱和浓度,可通过萘的饱和蒸气压计算,即3Ai 5Ai 73.9kmol/m 2.795108314318p c RT -===⨯⨯kmol / m 322L Ai Ab 57A ()0.0165(2.795100)kmol/(m s) 4.61210kmol/(m s)N k c c --=-=⨯⨯-⋅=⨯⋅设萘板表面积为S ,由于扩散所减薄的厚度为b ,物料衡算可得A A A Sb N M S ρθ=2.168h s 10806.7s 12810612.41152008.005.037A A A1=⨯=⨯⨯⨯⨯==-M N b ρθ第八章 气体吸收填空题试题——工业生产中的吸收操作以 流操作为主。
《化工传递过程基础》教学大纲一、说明(一)本课程的目的、要求《化工传递过程基础》课程是一门探讨自然现象和化工过程中动量、热量和质量传递速率的课程。
将化工单元操作(化工原理)的共性归纳为动量、热量和质量传递过程("三传")的原理系统地论述,将化学工程的研究方法由经验分析上升为理论分析方法。
本课程的教学目的是了解和掌握化工过程中三传现象的机理及其数学描述。
确定边界条件从而分别求出过程的解析、数值解或转化为准数关联式,培养学生分析和解决化学工程中传递问题的能力,为在工程上进一步改善各种传递过程和设备的设计、操作及控制过程打下良好的理论基础。
具体为包括动量传递、热量传递和质量传递过程、非牛顿流体中的传递现象、粘弹性及广义牛顿流体连续性方程和运动方程及其应用、边界层方程及其应用、湍流理论评价、能量方程、对流传热的解析、温度边界层、平壁和楔形强制层流传热的数学描述、湍流传热的解析计算、自然对流的传热过程等。
(二)内容选取和实施中注意的问题本课程总学时为32学时,理论课讲解时应注意对化工过程中"三传"的类似关系进行研究理解,使学生掌握化学工程专业中有关动量、热量和质量传递的共性问题,课后注意安排一定量的习题。
(三)教学方法本课程采用多种教学方式与教学手段相结合,以讲授为主,电化教学为辅,课堂教学的重点是强调基本理论和分析方法,如何根据具体过程建立其物理模型和数学模型,培养学生运用知识的能力。
(四)考核方式本课程为考试课,平时考勤及作业20%+期末考试成绩80%,满分100分。
二、大纲内容第一章流体流动导论1.牛顿型流体的粘度2.非牛顿型流体的类型3.圆管中的层流流动说明与要求:(1) 掌握牛顿型流体和非牛顿型流体得基本概念。
第二章动量、热量与质量传递导论1.动量、热量与质量的通量表达式2.总衡算方程3.微分衡算方程说明与要求:(1) 掌握总质量衡算方程、总能量衡算方程与总动量衡算方程(2) 单组分系统、多组分系统的微分质量衡算方程、微分能量衡算方程与微分动量衡算方程。