思维导图公开课:平行四边形 PPT
- 格式:ppt
- 大小:1.86 MB
- 文档页数:14
平行四边形与多边形主题单元学习目标知识技能:1、掌握平行四边形、菱形、矩形、正方形的概念,了解他们之间的关系;2、掌握平行四边形及特殊平行四边形的性质与判定;3、掌握多边形的内角和与外角和公式;4、了解基础图形的密铺。
过程与方法:1、经历平行四边形与特殊平行四边形性质与判定的探索过程,丰富学生从事数学活动的经验与体验进一步培养学生的合情推理能力,增强学生的简单逻辑推理意识,使学生掌握说理的基本方法。
2、通过多边形内角和的推导过程,让学生体会并掌握知识转化的思想情感态度与价值观:1、通过实例引入,让学生体验数学在生活中的无处不在,体验数学图形在生活中的重要作用。
2、通过密铺图案设计,让学生体验到数学的美,培养审美意识。
3.通过小组合作学习,培养主动参与、勇于探究的精神.4.通过师生共同活动,在学习活动中培养良好的情感,合作交流,主动参与的意识,在独立思考的同时能够认同他人。
对应课标专题问题设计1. 三角形的三边长有怎样的数量关系?2. 怎样说明三角形的内角和是180°?3. 多边形的内角和有什么性质?4. 三角形、多边形的外角和有什么性质?5. 三角形是否具有稳定性?所需教学材料和资源信息化资源几何画板课件常规资源作图工具(直尺,三角尺,量角器等)教学支撑环境学生每人一台计算机的网络教室或多媒体教室,几何画板软件其他纸笔等学习活动设计第一课时:三角形的内角和定理活动1:探索三角形三边关系【活动步骤】1.任意长度的三条线段都能组成三角形吗?教师组织学生用短木条进行实验.2.组成三角形的三条线段有何关系?学生观察、猜想,教师组织学生交流.3.用文字或式子表述你发现的结论.【技术应用】在几何画板中画三条线段,观察它们的长度满足什么条件是可构成三角形.活动2:探索三角形内角和【活动步骤】1.验证三角形内角和是180°.利用三角形纸片,通过剪拼成平角的方法验证;.利用几何画板软件,通过度量计算的方法验证.2.探索证明方法,用规范的推理步骤表达你的推证过程.3.班内交流证法,思考证明方法的本质和关键.【技术应用】(1)探索结论时,计算验证;(2)探索证明方法时,动态体现转化过程.活动3:探索三角形的外角性质【活动步骤】1.自主学习,探索三角形一个外角与内角的关系;2.组内交流结论和方法;3.学以致用,用刚得到的结论,求出三角形的外角和;4.开阔思路,用不同方法求得三角形的外角和.【技术应用】探索外角和;动态体现三角形的三个外角转化为一个周角的过程.第二课时:多边形的内角和与外角和活动一:探究四边形内角和【活动步骤】1.提出问题:三角形的内角和为180°,那么四边形的内角和是多少?2.指导学生探究,交流。
平行四边形章节重难点思维导图
精品文档
Ufi y i ;l!H
过
住质
对怡民轴习
矩形
宵三个和£宜朗的冏边羽是地尉
判走
时爲罐相等的平疔四边晦星矩形
罡义
却塩対边分益年行的四辻羽.
对边孚齐目辑等 性质
两IB 対吊曲刖輻誓 对雷蟻互相平分
曲喟灼讥井角巫行的四囚甲痒▽厅円応那. 两也刘忧分别鉅利:冃辺世JS 平陌四边托” 扎定
-tn 对边平和H 相曙的w 边羽見讦上川边羽 iSlF
S H 】
一组邨边相尊的平存四边能叫變总
、
平行四边形
菱形
1判庠
鼻壽竽打四
A 住:』4和
丫
I 性质
\ 时帝駕虬槽1良,亂母最对箱故T 井飢律鶴
四妹边都生月的四边骸足農花 细兀边杓算的TtfH 边廉足菱聒 对甫舞相耳垂直的YiJPl 边形是菱宠
对肃總兀相平什的四边母是平廿四边形1
茴枳
两曲耐用用等的四辿瞄足平疗西址书 S Al
S = ri h
性虜
—'2 <h, ■:旳F :袅苛用爼的;S
. LI 苒一迥那血oh 的平行E :血母叫皿臣
评卜廟亂艮白用,囚案也邢押算
对柏找抬轩n 耳相畢岂辛片‘毎廉对閑找平曲
正方册
判疋|
有一牛期再宜曲的蔓总是止方世 有ill 邻边rti 才的矩应是兀庁聯
制作人;西平目金刚初级中学 高敬华
收集于网络,如有侵权请联系管理员删除
$=H :-任d 人
面扶
S I UI.2 b 肓对将扎的LL。
平行四边形的性质与判定
主题单元学习目标
知识与技能:
1、掌握平行四边形的概念和性质。
2、掌握平行四边形的判定定理一与判定定理二及推论;会用平行四边形的判定方法进行简单的推理.
3、经历平行四边形性质和判定的探究、归纳过程,体会通过观察、猜想、操作、论证获得数学知识的方法;
图一
图二
②∵四边形ABCD是平行四边形∴AB//DC,
活动三:做一做
【探究】平行四边形是一种特殊的四边形,它除具有四边形的性质和两组对边分别平行外,还有什么特殊的性质呢?我们一起来
根据上面的问题,画出右边的图形:
图五
、合作交流:
小组合作:转动四边形,改变它的形状的过程中,能否观察得到在此过程中它始终是一个平行四边形;师生共同探索得出:对角线互相平分的四边形是平行四边形.
思考:这个方法的前提是什么?结论又是什么?
3.如图,D、E在三角形AB C 的边BC上,F、G分别在AC、AB边上,DF 与EG互相平分,且DF∥AB,EG∥AC。