第四章_线性代数方程组的解法
- 格式:ppt
- 大小:1.28 MB
- 文档页数:139
线性方程组的解法线性方程组是数学中常见的问题,它可以用于描述多个未知数之间的关系。
解决线性方程组的问题是求解未知数的具体取值,从而得到方程组的解。
本文将介绍几种常见的解线性方程组的方法。
一、高斯消元法高斯消元法是解决线性方程组的经典方法之一。
它通过矩阵变换的方式,将线性方程组转化为一个三角矩阵,从而简化求解过程。
以下是高斯消元法的步骤:1. 将线性方程组写成增广矩阵的形式,其中最后一列为常数项。
2. 选取一个非零元素作为主元,在当前列中将主元素所在的行作为第一行,然后通过初等行变换将其他行的主元素变为0。
3. 重复第2步,直到所有的主元素都变成1,并且每个主元素所在的列的其他元素都变为0。
4. 反向代入,从最后一行开始,依次回代求解未知数的值。
二、矩阵的逆矩阵法矩阵的逆矩阵法是利用矩阵的逆矩阵来求解线性方程组。
以下是逆矩阵法的步骤:1. 对于线性方程组Ax=b,如果矩阵A可逆,将方程组两边同时左乘A的逆矩阵AI,得到x=A^(-1)b。
2. 通过求解矩阵A的逆矩阵来得到未知数向量x的值。
3. 如果矩阵A不可逆,那么线性方程组没有唯一解,可能有无穷多解或者无解。
三、克拉默法则克拉默法则是另一种解决线性方程组的方法,它利用行列式的性质来求解未知数的值。
以下是克拉默法则的步骤:1. 对于线性方程组Ax=b,令|A|=D,其中D表示矩阵A的行列式。
2. 分别计算将矩阵A的第i列替换为常数列b所得到的行列式|A_i|。
3. 未知数向量x的第i个分量可以通过x_i = |A_i|/D来得到。
克拉默法则的优点是简单直观,但是当方程组的规模很大时,计算行列式将变得非常复杂。
四、矩阵的广义逆法矩阵的广义逆法是一种应对方程组无解或者有无穷多解的情况的方法。
对于线性方程组Ax=b,如果矩阵A不可逆,我们可以通过求解广义逆矩阵A^+来得到一个特解x_0。
1. 分别计算A^+ = (A^T·A)^(-1)·A^T和x_0 = A^+·b。
线性方程组的解法作为一个线性代数主题,线性方程组的解法是一个非常重要的领域。
在本文中,我们将介绍几种解决线性方程组问题的方法。
我们将从初等变换、高斯消元法、矩阵展开式等几个方面来深入探讨。
一、初等变换初等变换往往是解决线性方程组问题的起点。
我们可以对方程组进行一些基本的操作来得到一个简化的等价方程组,从而方便我们去寻找方程组的解,初等变换主要包括三种操作:1.交换方程组中的两个方程的位置。
2.将某个方程的倍数加到另一个方程上。
3.用一个非零常数来乘某个方程。
执行初等变换时,我们必须记住每个变换对解x的影响。
在交换方程x 和y 的位置时,它们的解不变,而在加上一只方程的某个倍数时,系数矩阵和右侧向量也会随之改变,但解不变。
用一个非零常数乘以方程只会改变右侧向量,同时系数矩阵也会改变。
二、高斯消元法高斯消元法是解决线性方程组问题的另一种方法。
该方法通过使用矩阵增广形式来解决线性方程组问题。
具体步骤如下:1. 将线性方程组写成增广矩阵的形式,其中右侧向量位于最后一列。
2. 使用初等变换来将增广矩阵化为行梯阵形式。
行梯阵是矩阵的形式,其中每一行从左侧开始的第一个非零元素称为主元(pivot),每个主元下方的元素均为零。
3. 从最后一行开始,使用回带算法来求得线性方程组的解。
高斯消元法对于小规模的线性方程组可以轻松解决。
但是,在大规模问题上,该方法可能会产生误差或需要很长时间才能找到解决方案。
三、克拉默法则克拉默法则是解决线性方程组问题的第三种方法。
该方法的关键在于将解决方案表示为每个未知数的一个比值。
这个比值是通过计算每个未知数对其余所有未知数的系数行列式比率而得到的。
这个方法的好处在于消去解方程组所需要的系数矩阵增广形式和行梯阵形式的需要。
但是,如果有许多未知数,计算每个比率可能会非常繁琐。
另外,如果有两个或更多个未知数系数具有相同的值,则克拉默法则计算行列式比率会失败。
四、矩阵展开式最后,我们来看一下使用矩阵展开式来解决线性方程组问题的方法。
第四章线性方程组§1 消元法在实际问题中,我们经常要研究一个线性方程组的解,解线性方程组最常用的方法就是消元法,其步骤是逐步消除变元的系数,把原方程组化为等价的三角形方程组,再用回代过程解此等价的方程组,从而得出原方程组的解.例1 解线性方程组解 将第一个方程加到第二个方程,再将第一个方程乘以(-2)加到第三个方程得在上式中交换第二个和第三个方程,然后把第二个方程乘以-2加到第三个方程得再回代,得.分析上述例子,我们可以得出两个结论:(1) 我们对方程施行了三种变换:① 交换两个方程的位置;② 用一个不等于0的数乘某个方程;③ 用一个数乘某一个方程加到另一个方程上.我们把这三种变换叫作线性方程组的初等变换.由初等代数可知,以下定理成立.定理1 初等变换把一个线性方程组变为一个与它同解的线性方程组.(2) 线性方程组有没有解,以及有些什么样的解完全决定于它的系数和常数项,因此我们在讨论线性方程组时,主要是研究它的系数和常数项.定义1 我们把线性方程组的系数所组成的矩阵叫做线性方程组的系数矩阵,把系数及常数所组成的矩阵叫做增广矩阵.设线性方程组则其系数矩阵是增广矩阵是显然,对一个方程组实行消元法求解,即对方程组实行了初等变换,相当于对它的增广矩阵实行了一个相应的初等变换.而化简线性方程组相当于用行初等变换化简它的增广矩阵,这样,不但讨论起来比较方便,而且能够给予我们一种方法,利用一个线性方程组的增广矩阵来解这个线性方程组,而不必每次把未知量写出.例2 解线性方程组解 增广矩阵是,交换矩阵第一行与第二行,再把第一行分别乘以和(-2)加到第二行和第三行,再把第二行乘以(-2)得,在中将第二行乘以2加到第三行得,相应的方程组变为三角形(阶梯形)方程组:回代得.§2 线性方程组有解判别定理上一节我们讨论了用消元法解方程组(4.1)这个方法在实际解线性方程组时比较方便,但是我们还有几个问题没有解决,就是方程组(4.1)在什么时候无解?在什么时候有解?有解时,又有多少解?这一节我们将对这些问题予以解答.首先,由第三章,我们有下述定理定理2 设A是一个m行n列矩阵,通过矩阵的初等变换能把A化为以下形式这里r≥0,r≤m,r≤n.注:以上形式为特殊标准情况,不过,适当交换变元位置,一般可化为以上形式.由定理2,我们可以把线性方程组(4.1)的增广矩阵进行初等变换化为:(4.2)与(4.2)相应的线性方程组为:(4.3)由定理1知:方程组(4.1)与方程组(4.3)是同解方程组,要研究方程组(4.1)的解,就变为研究方程组(4.3)的解.① 若dr+1,dr+2,…,dm中有一个不为0,方程组(4.3)无解,那么方程组(4.1)也无解.② 若dr+1,dr+2,…,dm全为0,则方程组(4.3)有解,那么方程组(4.1)也有解.对于情形①,表现为增广矩阵与系数矩阵的秩不相等,情形②表现为增广矩阵与系数矩阵的秩相等,由此我们可以得到如下定理.定理3 (线性方程组有解的判别定理)线性方程组(4.1)有解的充分必要条件是系数矩阵与增广矩阵有相同的秩r.① 当r等于方程组所含未知量个数n时,方程组有惟一的解;② 当r<n时,方程组有无穷多解.线性方程组(4.1)无解的充分必要条件是:系数矩阵A的秩与增广矩阵B的秩不相等.在方程组有无穷多解的情况下,方程组有n-r个自由未知量,其解如下:其中是自由未知量,若给一组数就得到方程组的一组解例3 研究线性方程组解 写出增广矩阵对进行初等行变换可化为由此断定系数矩阵的秩与增广矩阵的秩不相等,所以方程组无解.例4 在一次投料生产中,获得四种产品,每次测试总成本如下表:生产批次产品(公斤)总成本(元)ⅠⅡⅢⅣ12001001005029002500250200100705031004002013604400180160605500试求每种产品的单位成本.解 设Ⅰ、Ⅱ、Ⅲ、Ⅳ四种产品的单位成本分别为,由题意得方程组:化简,得写出增广矩阵对其进行初等行变换,化为由上面的矩阵可看出系数矩阵与增广矩阵的秩相等,并且等于未知数的个数,所以方程组有唯一解:例5 解线性方程组解 这里的增广矩阵是对其进行初等行变换,化为由上式可看出系数矩阵与增广矩阵的秩相等,所以方程组有解,对应的方程组是把移到右边,作为自由未知量,得原方程组的一般解为给自由未知量一组固定值:,我们就得到方程组的一个解.事实上,在例5中,也可作为自由未知量.我们同样可考察.。