三维地势及洪水走向模拟
- 格式:ppt
- 大小:543.00 KB
- 文档页数:14
数字高程模型在测量与分析中的应用技巧数字高程模型(Digital Elevation Model,简称DEM)是一种用于描述地球表面高程的数字模型。
它通过采集大量的地形数据,包括海拔、坡度和坡向等信息,将地表数字化,并将其存储为一个二维或三维的数据集。
数字高程模型在测量和分析中有着广泛的应用,本文将探讨其在实际工程和科学研究中的应用技巧。
首先,数字高程模型在地质勘探和地质灾害研究中发挥着重要作用。
通过对DEM数据进行分析,可以获取地表的高程信息,并进一步研究地表的地貌特征和变化趋势。
例如,在地质勘探中,可以利用数字高程模型对矿产资源进行调查和分析。
DEM可以提供矿山区域的地形变化情况,为矿产开发过程中的地质风险评估提供依据。
此外,数字高程模型还可以用于地震活动和滑坡等地质灾害的研究,通过分析DEM数据,可以预测和评估地质灾害的潜在威胁。
其次,数字高程模型在水资源管理和地表水研究中具有重要的应用价值。
根据DEM数据,可以构建水流方向和流量模型,以及洪水模拟和预测模型。
这些模型可以帮助决策者更好地了解河流和湖泊的水文特征,优化水资源管理策略,提高抗洪和供水能力。
此外,数字高程模型还可以用于分析地表水体的水文类型和演变过程。
通过DEM数据,可以估算水体的面积、深度和容量,进一步研究水体的动态变化规律。
此外,数字高程模型也在城市规划和土地利用管理中扮演着重要角色。
利用DEM数据,可以对城市地势进行精确测量和建模,评估城市地貌类型和坡度,为城市规划提供科学依据。
例如,可以通过数字高程模型分析城市内的地势变化情况,识别出潜在的风险区域,规划出更加安全和合理的城市布局。
此外,数字高程模型还可以研究土地利用的潜力和可持续发展的策略。
通过DEM数据,可以确定土地的适宜程度和利用潜力,为土地规划和管理决策提供指导。
最后,数字高程模型还在环境保护和生态研究中具有广泛的应用前景。
DEM数据可以提供地表的高程和坡度信息,帮助评估生态系统的稳定性和脆弱性。
文章编号:1006 2610(2023)03 0007 08基于BIM+GIS的水库下游洪水模拟与可视化方法郭敏鹏1,王 剑2,杨少雄1,孙继鑫1,杨 波1,赵 博1(1.西安航天天绘数据技术有限公司,西安 710100;2.航天恒星科技有限公司,北京 100094)摘 要:为有效推进水旱灾害防御高质量发展,国家大力支持智慧水利建设㊂基于此,为实现水库下游洪水演进过程快速模拟及三维立体可视,基于一㊁二维耦合水动力模型及三维倾斜摄影㊁BIM㊁GIS技术构建水库下游洪水模拟与可视化方法,以吉林市碾子沟水库为例,对不同重现期设计洪水条件下水库下游洪水进行快速模拟,并在真实三维场景下对洪水演进过程及淹没区范围㊁淹没历时及淹没水深等洪水要素信息进行全景映射表达和交互查询分析展示㊂结果表明:在各重现期设计洪水条件下,洪水模型计算稳定,各方案模型计算相对误差均低于10-6数量级,可知计算结果合理且满足工程要求,同时可实现洪水演进过程三维全景展示和灾害信息分析与交互查询㊂研究可为水库下游洪水风险决策提供支撑,提升洪水灾害防范能力,为智慧水利建设提供解决方案㊂关键词:设计洪水;BIM+GIS技术;数值模拟;洪水演进;三维可视化中图分类号:TV122.3 文献标志码:A DOI:10.3969/j.issn.1006-2610.2023.03.002A Simulation and Visualization Method for Flood Evolution Downstream of Reservoirs based on BIM+GIS TechnologyGUO Minpeng1,WANG Jian2,YANG Shaoxiong1,SUN Jixin1,YANG Bo1,ZHAO Bo1(1.XI'AN Aerospace Remote Sensing Data Technology Co.,Ltd.,Xi'an 710100,China;2.Space Star Technology Co.,Ltd,Beijing 100094,China)Abstract:In order to effectively promote the high-quality development of flood and drought disaster prevention,smart water conservancy con⁃struction is strongly supported by the state.Based on this,in order to achieve rapid simulation and three-dimensional visualization of the flood e⁃volution process downstream of the reservoir,based on one-and two-dimensional coupled hydrodynamic models and three-dimensional oblique photography,BIM and GIS technologies are used to build a flood simulation and visualization method in the downstream of the reservoir.Taking the Nianzigou Reservoir in Jilin City as an example,the downstream flood of the reservoir is quickly simulated under the design flood conditions of different return periods,and the flood evolution is analyzed in a real three-dimensional scene.The process and flood element information such as the range of the submerged area,the submerged duration,and the submerged water depth are displayed by panoramic mapping and interactive query analysis.The results show that under the design flood conditions of each return period,the calculation result of the flood model is stable, and the relative error of the calculation model of each scheme is less than10-6orders of magnitude.It indicates that the calculation results are rea⁃sonable and can meet the engineering requirements.Meanwhile,the model can realize the three-dimensional panoramic display of the flood evolu⁃tion process and the analysis and interactive query of disaster information.The research can provide support for flood risk decision downstream of the reservoir,improve flood disaster prevention capabilities,and provide solutions for smart water conservancy construction.Key words:design flood;BIM-GIS technology;numerical simulation;flood evolution;3D visualization 收稿日期:2023-03-31 作者简介:郭敏鹏(1996-),男,陕西省宝鸡市人,工程师,主要从事水利算法模型及洪水风险研究. 通讯作者:王剑(1978-),男,河北省秦皇岛市人,研究员,主要从事遥感及洪水风险研究. 基金项目:国家重点研发计划(2018YFC1508206);吉林市水库洪水风险图智能决策系统建设项目(20190917Z1041-1);水利部重大科技项目(SKS-2022129).0 前 言近年来,气候变化引发的极端强降雨频发,导致洪涝灾害的剧烈程度越来越强,造成了巨大的生命和财产损失[1-4]㊂水库作为中国水利建设重要的防洪建筑物,其泄洪流量对下游地区人民生命安全及社会经济和稳定有着重要的影响[5]㊂因此,对水库不同设计洪水条件下下游洪水演进过程精确模拟并7西北水电㊃2023年㊃第3期===============================================进行可视化表达分析,对库区下游地区防洪减灾㊁避险转移预案编制具有重要意义㊂国内外学者对洪水演进过程开展了深入的探索, 19世纪下半叶,圣维南方程组的提出为洪水演进过程的数值模拟提供了理论支撑[6-7];20世纪中后期,随着高性能计算机技术的发展和数值模拟理论的完善,数值模拟计算效率及精度得到进一步的提高,数值模拟成为洪水演进过程研究的主要手段[8-12],如Liang等[13]构建了捕捉地表快速水流的耦合水文过程的水动力模型,模拟了英国Haltwhistle Burn流域大尺度雨洪过程;Hou等[14-15]基于自主研发的二维水动力模型,对法国Malpasset小镇的大坝失事事件进行了高效高精度的模拟分析;王敏等[16]基于自主开发的溃坝模型及MIKE11对堰塞湖溃决洪水过程进行了模拟,模拟结果与实际演进过程基本一致,证明了模型的准确性㊂以上模型均可对洪水演进过程进行有效模拟,对洪水风险管理及防洪决策预案的编制具有重要意义,但其结果的二维展示,对水力要素展示还不够全面,信息交互查询与感知较差㊂鉴于此,王俊珲等[17]基于高分辨率数值模型与Unity3D可视化技术开展了城市及河道洪涝过程模拟及三维可视化研究,实现了洪涝过程三维场景的构建,但其构建的三维场景与真实场景差别较大,不能还原实际的场景;李政鹏等[18]集成了BIM-GIS技术与溃坝洪水模型,并将集成模型应用于前坪水库溃坝分析中,实现了溃坝洪水演进过程的二㊁三维分析与展示,但其在进行三维场景构建时,仅采用GIS技术进行建筑物地基开挖和河道扩挖,未融合倾斜摄影和高精度DOM 等数据,对真实地形和场景展示不足,并未考虑不同洪水条件下洪水演进过程,在洪水风险管理体系中,不同来洪条件下的洪水演进过程对精准施策具有重要的支撑作用;Yang等[19]基于WebGIS技术㊁CTS虚拟显示技术并结合TOPMODEL半分布式水文模型及IFMS洪水分析软件构建了洪水多元虚拟现实平台,实现了洪水演进三维场景的可视化和信息交互查询,并应用于实际工程中㊂以上研究虽均实现了洪水演进三维场景的可视化,但对其不同来洪条件下水库等工程措施对下游洪水演进过程的影响及三维可视化研究尚浅㊂基于此,本文以碾子沟水库工程为例,基于HydroMPM-FloodRisk模型对水库下游淹没区域在不同设计洪水条件下的洪水演进过程进行模拟,利用BIM㊁倾斜摄影㊁GIS等技术,构建真实水库下游三维场景,通过对洪水模拟结果㊁三维模型数据的融合可视化,实现洪水演进过程的分析表达,为洪水风险决策建设提供技术保障㊂1 洪水模拟数值模型与BIM+GIS耦合技术1.1 洪水模拟数值模型本文采用HydroMPM-FloodRisk模型对研究区域进行洪水演进过程模拟,该模型包含一维水动力学模型㊁二维水动力学模型和一㊁二维耦合水动力学模型模块[20-23]㊂其中,一维水动力模型可以很好地模拟分析河道洪水的演进情况,二维模型能够较为精准的计算区域内的洪水演进情况,一㊁二维耦合模型可以通过不同的耦合方式实现明渠㊁水工构筑物及二维地表漫流的模拟[24],模型计算原理如下所示: (1)一维水动力模型控制方程如下:BəZət+əQəs=q(1)əQət+2QA+(gA-BQ2A2)əZəs=B Q2A2(i+1BəAəs)-g Q2AC2R(2)式中:B为断面宽度,m;Z为断面水位,m;t为时间, s;S为沿水流方向的河道距离,m;q为旁侧流量, m3/s;Q为总流量,m3/s;A为过水断面面积,m2;V 为断面平均流速,m/s;i为渠底坡降;C为谢才系数;R为水力半径,m;g为重力加速度取9.8m/s2㊂(2)二维水动力模型控制方程如下:əHət+əMəx+əNəy=q(3) 动量方程:əMət+ə(uM)əx+ə(vM)əy+gHəZəx+g n2u u2+v2H1/3=0(4)əNət+ə(uN)əx+ə(vN)əy+gHəZəy+g n2v u2+v2H1/3=0(5)式中:x㊁y㊁z为笛卡尔坐标系;H为水深,m;Z为水位,m;q为连续方程中的源汇项;M㊁N分别为x㊁y 方面的单宽流量,m3/s;u㊁v为x㊁y方向的垂线平均8郭敏鹏,王剑,杨少雄,孙继鑫,杨波,赵博.基于BIM+GIS的水库下游洪水模拟与可视化方法===============================================流速,m/s;n为曼宁糙率系数;g为重力加速度取9.8m/s2㊂模型采用单元中心的显式有限体积法离散求解模型方程,保证了水量和动量在计算域内守恒㊂采用非结构三角形网格对研究区域进行离散,更有利于拟合复杂边界线,利用干湿网格判断法处理潮滩移动边界㊂(3)一㊁二维耦合模型本文一㊁二维模型的耦合采用侧向连接方式,实时耦合计算河道洪水漫溢淹没风险㊂侧向连接方式即是通过河道断面标注堤顶等效为堰,堰顶高程及堰宽以该处断面左右堤顶高程及宽度为准;沿一维河道边界线在二维区域设定耦合线,确定耦合的网格单元㊂模型通过比较二维网格与相应里程处一维河道内断面水深,利用堰的流量公式计算通过侧向连接的水流,实现一㊁二维水流之间的水量交换计算㊂1.2 BIM+GIS技术建筑信息模型(Building Information Modeling, BIM)通过建立虚拟三维模型,将实际水利工程的空间几何信息以及在不同时间及不同应用场景下的属性信息实时与孪生模型进行交互查询,是水利工程数字孪生孪生场景搭建的基础,并为智慧化模拟提供全方位的技术支撑[25]㊂三维GIS是在传统二维地理系统基础上发展而来的新一代三维空间信息技术㊂通过该技术所构建的三维空间框架,可作为BIM模型㊁遥感影像㊁DEM数据㊁地面传感器等多源数据的融合载体,可实现库区及下游淹没区域属性数据在实际地理基准下的高度映射,具有高度还原的可视化效果和决策分析基础[26]㊂1.3 耦合方法BIM+GIS技术在土木工程建设㊁城市管理㊁水利监测等方面得到广泛应用,其场景真实㊁易于耦合开发,适用于洪水演进过程的三维可视化㊂本文将一㊁二维洪水推演模拟结果与构建的BIM模型基于GIS平台进行三维可视化耦合,从而在保证模拟精度的前提下,将平面洪水演进过程转化为三维实景可视化展示㊂具体融合步骤如下:(1)洪水模拟模型采用基于地理坐标系的非结构网格㊁淹没面积㊁淹没水深㊁演进时间等模拟结果均存储于网格中;(2)洪水可视化时,基于网格地理坐标㊁编号以及拓扑关系,将洪水计算结果加载到基于BIM+GIS 技术构建好的实景场景中,实现洪水模拟模型与BIM+GIS平台的耦合,达到洪水推演模拟的三维可视化效果㊂2 水库下游洪水演进模拟以碾子沟水库为例,利用一㊁二维耦合水动力模型进行不同设计来洪条件下洪水过程的数值模拟,分析水库下游风险区域洪水演进过程以及淹没情况㊂2.1 研究区域概况碾子沟水库位于吉林省永吉县,水库坝址在一拉溪河上游,坝址以上河道平均比降8.7‰,是一座具有综合功能的中型水库㊂大坝主体为粘土心墙坝,右岸为3孔溢洪道,水库下游主要影响一拉溪镇和桦皮厂镇㊂文中所用参数和原始数据为实地测量或参考当地和相关水利标准㊂2.2 建模范围碾子沟水库下游河段一㊁二维耦合计算模型范围包括碾子沟水库~搜登站镇河崴子村河道两岸洪水影响区域,区域面积94.48km2㊂对研究区域河道和两岸区域建立一维和二维水动力模型,并进行耦合连接,建模范围如图1所示㊂图1 碾子沟水库下游一、二维建模范围示意图2.3 河道断面设置与网格剖分2.3.1 河道断面设置河道断面是一维水动力模型的重要基础数据,根据一拉溪㊁鳌龙河地形地貌特征,一维模型构建的河段(碾子沟水库坝下至搜登站镇河崴子村)全长38.2km,共设置12个断面,断面间距变化范围为9西北水电㊃2023年㊃第3期===============================================100~1500m㊂断面形态和河道断面布置分别如图2㊁3所示㊂图2 河道部分大断面示意图图3 河道断面布置示意图2.3.2 网格剖分研究区域计算总面积94.48km 2,网格数36872个㊂碾子沟水库下游淹没区网格布置如图4所示㊂图4 碾子沟水库下游二维模型范围网格剖分图2.4 模型边界设置2.4.1 一维边界一维非恒定流模型的边界条件包括上边界条件㊁下边界条件以及内部边界条件㊂边界条件的选择取决于模拟对象的物理特性和资料条件㊂一维非恒定流模型的上边界条件一般选用流量过程,下边界条件一般选用水位过程或水位流量关系曲线,内部边界根据模型的实际条件给出㊂01郭敏鹏,王剑,杨少雄,孙继鑫,杨波,赵博.基于BIM+GIS 的水库下游洪水模拟与可视化方法=============================================== 河道洪水方案的边界主要分为4类:①上游边界,碾子沟水库坝址,采用其设计洪水过程;②下游边界,搜登站镇河崴子村附近断面水位,采用由下游桦皮厂水文站设计水位推求值;③区间边界,碾子沟水库坝址至汇流口,鳌龙河区间;④集雨面积较大支流点源边界㊂2.4.2 二维边界在本次洪水分析过程中,二维水流模型的边界条件分为两类:①与一维模型耦合处的边界条件,具体包括与碾子沟水库下游河道的侧向连接处边界,此类边界均为动水位边界,由模型自动耦合计算;②模拟区域周边的外边界,由于在确定建模范围时已考虑了河道洪水边界,模型计算范围内区域与区域外不存在水量交换,因此确定为固边界㊂2.5 模型参数确定2.5.1 一维河道水动力模型参数(1)糙率碾子沟水库下游(碾子沟水库~搜登站镇河崴子村)河道糙率值是影响该河道模拟精度的主要参数,参考相关标准,结合河道现状,设定碾子沟水库下游河段河道综合糙率为0.033㊂(2)计算步长为保证模型稳定及运算效率,设定碾子沟水库下游(碾子沟水库~搜登站镇河崴子村)一维计算迭代步长60s㊂(3)初始水深综合碾子沟水库下游(碾子沟水库~搜登站镇河崴子村)实际情况及现场查勘结果,考虑模型稳定及运算效率等多种因素,设定碾子沟水库下游(碾子沟水库~搜登站镇河崴子村)河道一维水动力模型计算初始水深为0.2m㊂2.5.2 二维淹没区水动力模型参数(1)糙率为保证二维模型计算精度,糙率依据土地利用分类进行分区㊂各分区内采用水力学手册中的建议值,下垫面糙率取值见表1㊂(2)计算步长为保证模型稳定及运算效率,设定二维模型最大迭代步长60s,最小迭代步长0.01s㊂表1 洪水风险区域糙率参照表序号下垫面类型糙率1沥青铺面0.0122混凝土铺面0.0143裸土0.024耕地0.035堤㊁路㊁埝0.0456果林0.0657房屋0.108鱼池㊁水池0.0359水田0.0410条田㊁台田0.06511河床㊁渠床0.03512谷场0.0313一般草地0.0414密集草地0.0615菜地0.03516灌木丛0.082.5.3 一㊁二维耦合模型参数利用一维模型和二维模型最小时间步长作为耦合模型的时间步长,实现一维模型和二维模型固定时间步长内的动态耦合,耦合模型计算时间步长为60s㊂2.6 设计洪水在本研究中,通过桦皮厂站流量资料推算碾子沟水库下游不同频率设计洪水峰值,设计洪水过程的推求采用放大典型洪水过程线的方法,桦皮厂水文站2005年6月30日至7月9日的实际洪水过程呈现峰高量大,对工程防洪运用较为不利,同时能够反映碾子沟水库下游大洪水的的洪水特性,因此,选择此次洪水作为典型洪水进行同频率放大㊂根据洪水量级分析,实现20年一遇和50年一遇的设计洪水过程㊂设计洪水过程线如图5所示㊂图5 碾子沟水库下游设计洪水过程线2.7 不同设计洪水条件下水库下游洪水演进模拟基于构建的一㊁二维耦合洪水演进数值模型对碾子沟水库下游不同重现期条件下洪水演进过程进11西北水电㊃2023年㊃第3期===============================================行模拟,当碾子沟水库下游遭遇20年一遇洪水,计算区最大水深分布如图6(a)所示,最大淹没水深为2.91m,最大淹没面积9.21km2,积水量98.88万m3㊂当设计洪水为50年一遇时,研究区域内最大水深分布如图6(b)所示,最大淹没水深为3.93 m,最大淹没面积26km2,积水量135.06m3㊂图6 碾子沟水库下游遭遇不同设计洪水最大水深2.8 模型验证与合理性分析由于碾子沟下游区域针对强降雨后带来的洪水演进和淹没情况,没有完整详细数据记录,因此无法对二维模型进行严格率定和准确验证㊂为保证模型计算结果可靠,本研究在建模时通过对基础数据㊁模型构建和参数选取3个方面进行精细化处理和校核验证以保障模型的可靠性和参数的准确性㊂为更好地说明模型的合理性,下面针对各洪水计算方案,对水量平衡进行定量化分析,来论证计算模型的合理性㊂根据水利部颁布的SL483-2010‘洪水风险图编制导则“中的4.8.7节论述,计算过程中流入和流出计算范围的水量差等于计算范围的蓄水量,两者相对误差(入流水量-出流水量-蒸发量蓄水量)应小于1×10-6㊂计算碾子沟水库下游淹没区内蓄水量相等以验证水量平衡关系,如表2所示㊂由表2可知,碾子沟水库下游遭遇20年一遇洪水时,误差为60.51万m3;碾子沟水库下游段遭遇50年一遇洪水时,误差为41.39万m3;各方案模型计算相对误差均低于10-6数量级,满足水量平衡要求[27]㊂表2 碾子沟水库洪水计算方案的水量平衡对比表洪水方案初始蓄水量/(×104m3)进洪量/(×106m3)出水量/(×106m3)最终蓄水量/(×104m3)水量平衡误差/(×104m3) 20年一遇44.43380.75380.8198.8860.51 50年一遇59.67981.98981.64135.0641.393 基于BIM+GIS技术的水库下游洪水演进三维展示3.1 碾子沟水库BIM模型构建基于无人机机载倾斜摄影技术,通过Context Capture Center构建其三维模型,再采用Auto3Dmax 进行单体的精细化处理得到水库大坝各建筑物精确的BIM模型,BIM模型如图7所示,建模流程如图8所示㊂21郭敏鹏,王剑,杨少雄,孙继鑫,杨波,赵博.基于BIM+GIS的水库下游洪水模拟与可视化方法===============================================图7 碾子沟水库BIM模型图8 碾子沟水库BIM 模型建模流程3.2 水库下游三维场景构建基于无人机航测技术获取水库库区及下游淹没区精细高精度DEM 数据,通过解译及处理得到研究区域内精细的地形模型,同时基于正射影像及利用多旋翼采集到的五视角影像㊁POS 数据㊁像控点数据,通过空三解算㊁密集点云匹配㊁三角网构建㊁贴图等步骤,构建高精度水库下游三维场景㊂三维场景根据低空无人机倾斜摄影技术建模而成,完整展现真实地物状态,模型纹理基于高精度实景影像经过精细化构建而成,三维模型完整,定位准确㊁场景还原度高,弥补了正射影像的不足,能真实地反映地物和纹理信息,且该模型可实现信息交互查询及360°全方位三维漫游和一体化展示㊂模型构建流程如图9所示,居民区三维模型效果如图10所示㊂图9 三维场景构建流程图10 三维模型效果3.3 水库下游洪水演进三维场景基于GIS 引擎,以BIM 模型及构建的三维场景为基础,结合洪水演进数值模型的计算结果,根据其各时刻水深㊁淹没范围等特性进行叠加渲染与三维可视化展示,直观㊁真实的展现水库下游洪水演进过程㊁淹没情况及洪灾损失信息等信息,在洪水风险分析时,三维实景模型的构建相比传统平面地形图评估更加直观准确㊂在此基础上,实现了场景漫游探索㊁信息查询㊁区域量测等信息交互查询功能,可实现医院㊁学校㊁安置点等重点区域洪水信息的实时提取㊁下载等功能,在进行避灾决策时,动态掌握淹没信息,提升决策的准确性和有效性㊂洪水演进过程三维与淹没信息交互查询展示如图11所示㊂31西北水电㊃2023年㊃第3期===============================================图11 洪水演进过程三维与淹没信息交互查询展示4 结 论本文以吉林市碾子沟水库为例,利用BIM㊁GIS㊁倾斜摄影等技术,构建了洪水演进过程三维场景;基于一㊁二维耦合水动力模型,对不同洪水条件下洪水演进过程进行模拟;通过对BIM数据㊁倾斜摄影建模三维数据以及洪水模拟结果进行融合表达,实现了洪水演进过程的快速模拟及全景交互查询分析可视化,结果表明:(1)本文所用模型模拟结果准确,满足实际工程需求;通过对水库不同洪水条件下下游演进过程的模拟及各水力要素的分析发现,随着设计洪水重现期的增大,淹没范围及淹没水深均增大,因此,在面对不同设计洪水条件下,应针对不同淹没范围进行精准施策,进行淹没区避洪转移,最大限度的降低洪灾风险㊂(2)基于BIM+GIS技术与洪水演进水动力模型的耦合,将洪水淹没演进过程进行直观的三维可视化,同时实现了洪水信息的实时交互查询,对水库下游防洪决策具有重要指导意义,有力推动了相关防汛部门智慧水利建设工作㊂参考文献:[1] 黄国如,罗海婉,卢鑫祥,等.城市洪涝灾害风险分析与区划方法综述[J].水资源保护,2020,36(06):1-6,17. [2] 徐宗学,陈浩,任梅芳,等.中国城市洪涝致灾机理与风险评估研究进展[J].水科学进展,2020,31(05):713-724. [3] 张兆安.基于非结构网格GPU加速技术的二维水动力数值模拟[D].西安:西安理工大学,2021.[4] 徐宗学,刘琳,杨晓静.极端气候事件与旱涝灾害研究回顾与展望[J].中国防汛抗旱,2017,27(01):66-74.[5] 张松松,张卫,国林,等.大新水库不同溃坝高度的洪水演进过程模拟研究[J].安全与环境工程,2021,28(06):16-24,30. [6] 刘林,常福宣,肖长伟,等.溃坝洪水研究进展[J].长江科学院院报,2016,33(06):29-35.[7] 文岑,蒋友祥,赵海燕.溃坝问题数值模拟研究综述[J].中国科技信息,2010(21):58-61.[8] 臧文斌,赵雪,李敏,等.城市洪涝模拟技术研究进展及发展趋势[J].中国防汛抗旱,2020,30(11):1-13.[9] 许栋,徐彬,David PAyet,等.基于GPU并行计算的浅水波运动数值模拟[J].计算力学学报,2016,33(01):114-121. [10] 史宏达,刘臻.溃坝水流数值模拟研究进展[J].水科学进展,2006(01):129-135.[11] 程坤,刘锦,巨江.二维溃坝洪水演进数值模拟[J].西北水电,2020(02):97-101.[12] 韩浩,侯精明,金钊.新型流域雨洪过程模拟方法研究[J].西北水电,2022(05):41-46.[13] LIANG QH,XIA XL,HOU JM.Catchment-scale high-resolu⁃tion flash flood simulation using the GPU-based technology[J].Procedia Engineering,2016,154:975-981.[14] Hou Jingming,Liang Qiuhua,Zhang Hongbin,et al.MultislopeMUSCL method applied to solve shallow water equations[J].Computers and Mathematics with Applications,2014,68(12):2012-2027.(下转第20页)41郭敏鹏,王剑,杨少雄,孙继鑫,杨波,赵博.基于BIM+GIS的水库下游洪水模拟与可视化方法===============================================汽输送通道在9月中旬完全消失,转为异常偏北风控制,即水汽输送的来源在9月中旬发生改变,其次,9月中旬唐乃亥以上地区,无论是水汽输送通量还是水汽辐合强度,都要强于6月中旬㊂5 结 论(1)2019年6月中旬及9月中旬,西北太平洋副热带高压和南亚高压势力均异常偏强,位置分别偏西㊁偏东,形成黄河源区唐乃亥水文站两次编号洪水的主要降水天气形势;高纬度低槽加深㊁冷空气南下,与来自低纬副高边缘或印缅槽前的暖湿气流相结合,配合研究区上空高层异常反气旋,加强了区域内低层上升运动的发展,有利于产生持续降水,进而导致两次编号洪水的发生㊂(2)造成两次洪水的大气环流存在较大不同,500hPa 等压面上,6月中旬欧亚中高纬为 两槽一脊”经向型环流,研究区位于巴尔喀什湖大槽前部,9月中旬则转为受平直的西风气流控制,巴尔喀什湖地区对应为浅槽;200hPa 上,6月中旬副热带西风急流偏南,9月中旬则偏北㊂由此产生的低层上升运动表现为6月中旬异常上升运动以西宁为中心,9月中旬则以久治㊁红原为中心,后者位置偏南㊁强度偏强㊂(3)造成两次致洪降水的水汽条件亦不同,6月中旬水汽输送主要依赖于印缅槽前异常偏南风,水汽源地主要为孟加拉湾,而9月中旬的水汽主要来自西太平洋的偏东气流,水汽输送通量及水汽辐合强度均更强,配合研究区更显著的上升运动,在环流形势相对不利的情况下,仍能产生接近6月中旬的降水量级,且较同期偏多幅度最大㊂参考文献:[1] 刘晓燕,常晓辉.黄河源区径流变化研究综述[J].人民黄河,2005,27(02):6-8,14.[2] 高治定,李文家,李海荣,等.黄河流域暴雨洪水与环境变化影响研究[M].郑州:黄河水利出版社,2002.[3] 范国庆,谢文轩,毛利强.黄河河源区洪水时空分布特征统计分析[J].人民黄河,2013,35(06):27-28,31.[4] 李国芳,王迟,王正发,等.黄河源区可能最大洪水研究[J].河海大学学报(自然科学版),2013,41(02):102-107.[5] 楚楚,任立新.黄河源区2018年洪水特性分析[J].人民黄河,2020,42(S2):14-16.[6] 曹瑜,游庆龙,蔡子怡.1961 2019年青藏高原中东部夏季强降水与大尺度环流的关系[J].冰川冻土,2021,43(05):1290-1300.[7] 中国气象局国家气候中心.中国气候公报(2019)[M].北京:气象出版社,2020.[8] 王欢,李栋,蒋元春.1956 2012年黄河源区流量演变的新特征及其成因[J].冰川冻土,2014,36(02):403-412.[9] 刘还珠,赵声蓉,赵翠光,等.2003年夏季异常天气与西太副高和南压高压演变特征的分析[J].高原气象,2006,25(02):169-178.[10] 张宇,李耀辉,王式功,等.中国西北地区旱涝年南亚高压异常特征[J].中国沙漠,2014,34(02):535-541.[11] 许建伟,高艳红,彭保发,等.1979-2016年青藏高原降水的变化特征及成因分析[J].高原气象,2020,39(02):234-244.[12] 朱羿洁,张飞民,杨耀先,等.夏季南亚高压位置与青藏高原降水年际变化的关系研究[J].高原气象,2023,42(01):60-67. (上接第14页)参考文献:[15] Hou Jingming,Liang Qiuhua,Simons Franz,et al.A 2D well-bal⁃anced shallow flow model for unstructured grids with novel slope sourceterm treatment[J].Advances in Water Resources,2013,52:107-131.[16] 王敏,卢金友,姚仕明,等.金沙江白格堰塞湖溃决洪水预报误差与改进[J].人民长江,2019,50(03):34-39.[17] 王俊珲,侯精明,王峰,等.洪涝过程模拟及三维实景展示方法研究[J].自然灾害学报,2020,29(04):149-160.[18] 李政鹏,皇甫英杰,李宜伦,等.基于BIM+GIS 技术的前坪水库溃坝洪水数值模拟[J].人民黄河,2021,43(04):160-164.[19] Yang B,Ma J,Huang G,et al.Development and Application of3D Visualization Platform for Flood Evolution in Le'an River Ba⁃sin of Wuyuan[C]//IOP Conference Series:Earth and Environ⁃mental Science.IOP Publishing,2021,638(1):012053.[20] 宋利祥.基于高稳㊁高速计算的洪水实时分析技术[J].中国防汛抗旱,2019,29(05):6-7.[21] 杨莉玲,宋利祥,邓军涛,等.一㊁二维耦合数学模型在感潮河网洪水风险图编制中的应用[J].长江科学院院报,2017,34(09):36-40.[22] 陈文龙,宋利祥,邢领航,等.一维-二维耦合的防洪保护区洪水演进数学模型[J].水科学进展,2014,25(06):848-855.[23] 宋利祥.HydroMPM 模型及其在地表水环境影响评价中的应用[C]//环境保护部环境工程评估中心.2014年中国环境影响评价研讨会大会报告集.武汉:环境保护部环境工程评估中心,2014:704-743.[24] 孙继鑫,王剑,杨少雄,等.黄河水库下游河段洪水影响规律数值模拟研究[J].西北水电,2022(02):18-26.[25] 刘志明.以BIM 技术促数字赋能推进智慧水利工程建设[J].中国水利,2021(20):6-7.[26] 胡乃勋,吴巨峰,赵训刚,等.基于BIM+GIS 技术的桥梁数字孪生平台研究[J /OL ].土木建筑工程信息技术:1-8.https:// /kcms /detail /detail.aspx?FileName =HJPG201406001029&DbName =CPFD2014.[27] 中华人民共和国水利部.洪水风险图编制导则:SL 483-2010[S].北京:中国水利水电出版社,2017.02王鹏,张利娜,沈延青,祁善胜.22019年黄河干流唐乃亥站两次编号洪水的降水成因分析===============================================。
模拟洪水爆发实验报告研究目的本次实验旨在通过模拟洪水爆发情况,研究洪水对人类社会、建筑物和环境的影响,并探讨相应的应对措施。
实验装置与方法实验装置本次实验使用了一个模拟洪水爆发的实验装置,包括一个模拟洪水的水槽、若干建筑模型、观测仪器以及计时器。
实验方法1. 准备工作:搭建实验装置,确保水槽和建筑物模型的稳定性,安装观测仪器。
2. 实验场景设置:设置模拟洪水的起点、流向和路径,为不同建筑物模型选择合适的位置。
3. 模拟洪水爆发:将水源引入水槽,逐渐增加水位,直到造成洪水爆发。
4. 观测数据记录:记录洪水爆发前、中、后各阶段的水位、流速、建筑物受损情况等数据。
5. 数据分析:根据观测数据分析实验结果,总结洪水对人类社会、建筑物和环境的影响。
6. 提出建议:根据实验结果,提出相应的应对措施和预防措施。
实验结果与分析洪水对人类社会的影响洪水对人类社会的影响主要体现在以下几个方面:1. 居民生命安全:洪水造成的淹没和水流冲击可能导致居民生命安全受到威胁。
2. 城市交通受阻:洪水可能淹没道路、铁路和桥梁等交通设施,使城市交通受阻,影响人员疏散和物资运输。
3. 城市供水中断:洪水可能破坏供水管网,导致城市供水中断,给居民日常生活带来困难。
4. 经济损失:洪水对商业区、工业园区等经济区域造成损失,影响经济发展。
洪水对建筑物的影响洪水对建筑物的影响主要包括以下几个方面:1. 结构破坏:洪水的水流冲击和波浪可能对建筑物的结构造成破坏,如墙体倒塌、房屋倒塌等。
2. 水浸影响:洪水的水位上涨可能导致建筑物内部被淹,对室内设备、家具电器等造成损坏。
3. 地基沉降:洪水可能引起地基沉降,对建筑物整体稳定性产生影响。
4. 污染风险:洪水可能将污水和废物带入建筑物内部,带来卫生和环境污染的风险。
应对措施与建议根据实验结果,我们提出以下应对措施和建议:1. 完善防洪设施:加强城市排水系统建设,增强排水能力,在关键区域建设防洪墙、护岸等设施。
基于水动力模型的城市洪涝过程数值理论概述水动力模型是一种数学模型,用于模拟和分析水流在复杂地形和城市环境中的运动过程。
在城市洪涝过程中,水动力模型可以帮助城市规划者和防洪管理者更好地了解和预测洪水的变化规律,提高城市防洪系统的效率和韧性。
水动力模型基于一系列物理方程和数学模型,描述水流在流域中的运动过程。
这些方程包括质量守恒方程、动量守恒方程、瞬时流速方程等,以及河流和城市水系的几何特征和地形特征。
通过求解这些方程,可以模拟不同条件下水流的波动、流速、水深等参数的变化过程。
在城市洪涝过程中,水动力模型通常采用二维或三维数值方法来模拟城市区域内水流的运动过程。
其中,二维模型考虑水流在水平平面上的运动,适用于城市区域较为平坦的情况;而三维模型则考虑了水流在垂直方向上的运动,可以更好地模拟城市区域复杂的地形和建筑物影响。
水动力模型的数值方法通常包括有限差分法、有限元法和边界元法等。
这些方法通过将城市区域划分为离散的网格单元,将物理方程离散化和数值化求解,以模拟城市洪涝过程中水流的运动态势和水位变化。
城市洪涝过程的数值模拟通常包括以下步骤:1.地形数据准备:通过高程数据和数字地图,构建城市区域的数字地形模型,包括地势高低和水系网络。
2.参数设定:设置水动力模型的参数,如水流动力学粘度系数、摩擦阻力系数、初始条件、边界条件等。
3.网格划分:将城市区域划分为离散的网格单元,确定网格大小和分辨率,以便计算和模拟水流的运动过程。
4.数值求解:采用水动力模型的数值方法,对城市区域内水流的运动过程进行离散化求解,计算水流的速度、流量、水位等参数随时间的变化。
5.模拟结果分析:分析模拟结果,包括水位变化、水深分布、洪水范围、水流速度等,评估城市区域内洪水的可能影响和危害程度。
通过水动力模型的数值模拟,可以对城市洪涝过程的发展趋势和潜在风险进行预测和评估,为城市规划和防洪管理提供科学依据和决策支持。
同时,水动力模型也可以用于设计城市防洪设施和水工结构,优化城市洪涝防治措施,提高城市洪水的防范和应对能力。
城市内涝洪水数值模拟及三维场景构建研究目录一、内容综述 (2)1.1 研究背景 (2)1.2 研究目的与意义 (3)1.3 研究内容与方法 (4)二、理论基础与文献综述 (5)2.1 城市内涝洪水形成机理 (8)2.2 数值模拟技术及其应用 (9)2.3 三维场景构建技术及其在防洪中的应用 (10)2.4 国内外研究现状及发展趋势 (11)三、城市内涝洪水数值模拟 (12)3.1 模拟方法选择 (13)3.2 模拟算子与离散化方法 (14)3.3 模拟过程与参数设置 (16)3.4 模拟结果分析与验证 (17)四、城市内涝洪水三维场景构建 (18)4.1 三维场景建模方法 (20)4.2 地形地貌建模 (20)4.3 水文气象要素建模 (22)4.4 模拟场景生成与可视化 (23)五、城市内涝洪水风险评估与管理 (24)5.1 风险评估指标体系构建 (25)5.2 风险评估模型建立与求解 (26)5.3 防洪措施与应急预案制定 (27)六、案例分析 (28)6.1 实际城市案例选择 (29)6.2 模拟结果分析与对比 (30)6.3 防洪措施实施效果评估 (32)七、结论与展望 (33)7.1 主要研究成果总结 (34)7.2 存在问题与改进方向 (35)7.3 未来研究与发展趋势 (36)一、内容综述随着城市化进程的加快,城市内涝问题日益严重,对城市基础设施和人民生活造成了极大的影响。
为了更好地了解城市内涝洪水的特点及其对城市的影响,本文对城市内涝洪水数值模拟及三维场景构建进行了研究。
本文对城市内涝的概念进行了界定,分析了城市内涝的形成机制和发展过程。
本文介绍了城市内涝洪水数值模拟的方法和技术,包括水文模型、降水模型、径流模型等,并结合实际案例对这些方法和技术进行了详细的阐述。
本文探讨了基于三维场景构建的城市内涝洪水仿真系统的设计和实现,包括数据采集、模型建立、可视化展示等方面的内容。
通过对城市内涝洪水数值模拟及三维场景构建的研究,本文旨在为城市规划和管理提供科学依据,以期减轻城市内涝带来的负面影响,提高城市的可持续发展能力。
ArcGIS教程之DEM应用——水文分析DEM(数字高程模型)是一种地理信息系统(GIS)中常用的数据模型,它表示了地表的高程信息。
DEM数据可应用于水文分析中,用于了解地形变化,确定流域边界,计算高程梯度和流量以及生成洪水模型等。
首先,使用DEM数据可以帮助我们了解地形变化。
通过DEM数据,可以直观地显示出地表高程的变化情况,包括山脉、河谷和平原等。
通过分析DEM数据,可以揭示出地表的坡度、高程和凹凸等特征,从而帮助我们理解地势状况,为水文分析提供基础。
其次,DEM数据还可以用于确定流域边界。
流域是指一个水系集合区域,包括了这个区域内所有的河流和支流。
通过DEM数据,我们可以提取出流域的边界,确定流域的大小和范围。
这对于水文分析非常重要,因为流域的大小和范围会直接影响水文过程和水资源管理。
此外,DEM数据还可以用于计算高程梯度和流量。
高程梯度指的是地表高程变化的速率,通过计算DEM数据中相邻单元格之间的高程差,可以得到各个区域的高程梯度。
高程梯度的大小可以用来评估地表坡度的陡峻程度,对于水文分析中的洪水预测和土壤侵蚀等有重要作用。
而流量是指单位时间内流过其中一点的水的体积,通过计算DEM数据中各个单元格的高程和相邻单元格之间的高程差,可以估算出流量的大小,有助于相关水文过程的分析和模拟。
最后,DEM数据还可以用于生成洪水模型。
洪水模型是一种基于地理信息的模拟模型,通过模拟区域内降雨过程、地表径流和河流洪水来预测洪水的发生和扩展情况。
DEM数据是洪水模型中必不可少的输入数据,通过DEM数据可以确定地势状况、流域范围和河道网络等信息,从而建立准确的洪水模型,并进行相关的洪水分析和预测。
GIS洪水淹没模拟及灾害评估中的应用导读:洪水灾害是最频发的自然灾害,严重影响国民经济发展危害人民生命财产安全,破坏生态环境。
近几年来,将GIS技术与RS技术相结合,根据数字高程模型DEM提供的三维数据和遥感影象数据来预测、模拟显示洪水淹没场景,并进行洪水灾害评估,已成为GIS在洪水方面主要研究领域。
1.前言洪水灾害是最频发的自然灾害,严重影响国民经济发展危害人民生命财产安全,破坏生态环境。
随着现代经济的高速发展和水利工程的增加,洪水灾害对人类的危害仍在加重。
因此,快速、准确、科学地模拟、预测洪水淹没范围,对防洪减灾具有重要意义。
特别是对于一些重点防洪城市和行蓄洪区,如果能够预先获知洪水的淹没范围和水深的分布情况,对于预先转移受灾区的生命财产,减少损失具有非常重要的价值,而且对于洪水造成的灾害损失进行评估也是非常有用的。
近几年来,将GIS技术与RS技术相结合,根据数字高程模型DEM提供的三维数据和遥感影象数据来预测、模拟显示洪水淹没场景,并进行洪水灾害评估,已成为GIS在洪水方面主要研究领域。
本研究以数字高程模型DEM和RS影象为基础,运用GIS的空间分析功能,研究试验区洪水河流域的洪水淹没情况。
2.研究区域及数据简介2.1 研究区域地理概括红水河是珠江流域西江水系的中上游河段,发源于云南省沾益县马雄山,流经滇、黔、桂三省(区),上游主流称南盘江,流至庶香双江口与北盘江汇合后称红水河,到广西三江口与柳江相汇合后称黔江。
红水河流域位于东经102°20′-109°30′,北纬23°04′-26°50′之间,流域四周为群山环绕,整个地势自西北向东南倾斜,平均海拔高程1450m。
本次实验重点研究范围为红水河流域中的整个龙滩流域及其六个子流域(甲板、平腊、八茂、蔗香、这洞、高车)。
2.2 实验数据本研究采用的基本数据分为空间数据和水文数据以及其他辅助数据。
其中空间数据包括龙滩流域的DEM底图、modis遥感影象底图、省市县行政边界、城市分布图、站点分布图、河网、龙滩流域及其子流域分布图等。
洪水海啸模拟实验报告实验目的:本实验旨在模拟洪水海啸的发生过程,并通过实验观察其造成的破坏和影响,以加深对洪水海啸的认识和理解。
实验材料:1. 土地模型:用沙子和泥浆搭建的实验用土地模型。
2. 水槽:用来容纳水和模拟洪水海啸过程的大型水槽。
3. 模拟水:用混合水和食用色素的水来模拟海水,以在实验中形成洪水海啸的效果。
4. 障壁:用塑料板、木板等材料制作的障壁,用于模拟海岸线和防护设施。
5. 测量工具:尺子、计时器、温度计等工具,用于测量实验中的相关参数。
实验步骤:1. 准备土地模型:在水槽内部的底部铺设一层沙子和泥浆,利用塑料板等材料构建模拟海岸线和防护设施。
确保土地模型具有一定的地形和地貌特征。
2. 模拟水流入:将模拟水缓慢地注入水槽中,以使水位逐渐上升,模拟洪水的开始阶段。
同时观察水的流动和对土地模型的影响。
3. 模拟海啸:通过快速注入一定量的模拟水,产生冲击波,模拟洪水海啸的发生过程。
记录并观察海啸对土地模型的冲击力和破坏效果。
4. 测量数据:使用尺子测量洪水海啸到达的高度、冲击力的大小等参数,并记录数据。
还可以使用计时器测量洪水海啸的持续时间。
5. 分析结果:根据实验数据,分析洪水海啸的破坏程度和影响范围,以及防护设施的有效性等问题。
实验结果:通过实验观察和数据测量,我们可以得出洪水海啸的以下结果:1. 洪水海啸带来的水位上升非常迅速,具有强大的冲击力,容易引发破坏和伤害。
2. 防护设施的高度对减缓洪水海啸的冲击起到重要作用,高度不足的防护设施容易被冲垮,失去效果。
3. 居住区等人口密集地区的洪水海啸影响更加严重,因为人口和财产密集,防护设施建设和紧急疏散措施的重要性不言而喻。
结论:洪水海啸是自然灾害中一种十分危险且破坏性极大的事件。
通过本次实验,我们深入了解了洪水海啸的形成过程、影响范围和防护措施的重要性。
这将有助于加强对洪水海啸的认识,提高灾害防范意识,并为相关防护设施的建设和应急措施的制定提供参考与借鉴。
如何绘制洪水淹没区域图洪水是一种自然灾害,常常给人们的生活带来巨大的破坏和困扰。
在灾害管理和防灾规划中,了解洪水淹没区域是非常重要的。
绘制洪水淹没区域图可以帮助决策者和公众更好地理解洪水的威力和影响范围,从而采取相应的防护措施并做好应对准备。
首先,在绘制洪水淹没区域图之前,我们需要收集和整理相关的数据和信息。
这些信息包括历史洪水的数据记录、地形地貌的数据、降雨量、水位和河流流量等。
这些数据可以从气象部门、水利部门和其他科研机构中获取。
同时,我们还需要使用地理信息系统(GIS)软件来处理和分析这些数据。
其次,选择适当的模型和方法来绘制洪水淹没区域图。
有多种数学模型可以用于洪水预测和洪水淹没区域模拟,例如简化模型、概念模型和数值模型等。
在选择适当的模型时,需要考虑到模型的精度、计算效率和数据需求等方面。
然后,进行模型的参数设定和校准。
模型的参数设定直接影响到模型的准确性,因此需要根据具体情况进行合理的设定。
而校准是通过将模型预测的结果与实际观测数据进行对比来调整模型参数,从而提高模型的准确性和可靠性。
接下来,使用模型进行洪水淹没区域的模拟和预测。
根据收集到的数据和参数设定,可以利用地理信息系统软件将模型应用到具体的地理空间中,从而得到洪水淹没区域的模拟结果。
这些结果可以绘制成淹没区域图,展示洪水可能影响到的地理范围。
最后,对洪水淹没区域图进行结果验证和灾害风险评估。
绘制的洪水淹没区域图需要与实际情况进行对比验证,以评估模型的准确性和可信度。
同时,还可以基于淹没区域图进行灾害风险评估,分析可能受到洪水影响的人口、房屋、基础设施等,并制定相应的应对措施。
绘制洪水淹没区域图不仅有助于了解洪水的威力和影响范围,还可以为防洪准备和应对方案的制定提供科学依据。
然而,需要注意的是,洪水淹没区域图只是预测结果,实际情况可能因地形、降雨和水流等因素的变化而发生变化。
因此,在使用这些图表时,仍需要结合实际情况进行判断和决策。
dem在地理学中的应用
dem(Digital Elevation Model)在地理学中被广泛应用。
DEM
通过测量和空间分析形成地表高程模型,这种模型对于地质、地形、水文和地形分析等研究具有重要意义。
1. 地形分析:DEM是地形分析的重要工具,可用于确定地势
起伏、坡度、坡向、流域特征等。
DEM可以用于确定地表形态、地表的绝对高程和相对高程差异,为地质地貌和土地利用规划等提供重要的参考依据。
2. 3D地图制作:DEM可以用于生成三维地图,实现对地理空
间的可视化呈现。
通过DEM,可以制作逼真的3D地图,以
便更好地理解地形特征、地貌变化和地理过程。
3. 水文分析:DEM可以用于研究河流、湖泊、水文分区、洪
水模拟等水文过程。
通过DEM,可以计算和分析流域面积、
水流路径、河网特征以及地表径流等。
4. 土地利用规划:DEM可以用于土地评估、土地分类和土地
利用规划。
通过DEM的高程数据,可以对土地资源进行评估,确定适宜的土地利用类型,如农业、城市建设、保护区域等。
5. 自然灾害研究:DEM可以用于预测和模拟自然灾害,如洪水、山体滑坡和地震等。
DEM可以帮助解释自然灾害风险的
分布和影响范围,为防灾减灾提供科学依据。
总之,DEM在地理学中的应用十分广泛,可以用于地形分析、
3D地图制作、水文分析、土地利用规划和自然灾害研究等领域。
它提供了对地表形态和地理过程的定量和空间分析,为地理学研究提供了重要的数据基础。