流体力学与传热:第3章-流体力学理论基础
- 格式:ppt
- 大小:1.57 MB
- 文档页数:113
流体力学第三章课后习题答案流体力学第三章课后习题答案流体力学是研究流体运动和流体力学性质的学科。
在学习流体力学的过程中,课后习题是巩固知识和提高理解能力的重要环节。
本文将为大家提供流体力学第三章的课后习题答案,帮助读者更好地掌握流体力学的相关知识。
1. 一个液体的密度为1000 kg/m³,重力加速度为9.8 m/s²,求其比重。
解答:比重定义为物体的密度与水的密度之比。
水的密度为1000 kg/m³,所以比重为1。
因此,该液体的比重也为1。
2. 一个物体在液体中的浮力与物体的重力相等,求物体在液体中的浸没深度。
解答:根据阿基米德原理,物体在液体中的浮力等于物体所排除液体的重量。
浮力的大小等于液体的密度乘以物体的体积乘以重力加速度。
物体的重力等于物体的质量乘以重力加速度。
根据题目条件,浮力等于重力,所以液体的密度乘以物体的体积等于物体的质量。
浸没深度可以通过浸没体积与物体的底面积之比来计算。
3. 一个圆柱形容器中盛有液体,容器的高度为10 cm,直径为5 cm,液体的密度为800 kg/m³,求液体的压强。
解答:液体的压强等于液体的密度乘以重力加速度乘以液体的深度。
容器的高度为10 cm,所以液体的深度为10 cm。
重力加速度为9.8 m/s²,所以液体的压强为800 kg/m³乘以9.8 m/s²乘以0.1 m,即784 Pa。
4. 一个水龙头的出水口半径为2 cm,水流速度为10 m/s,求水龙头出水口附近的压强。
解答:根据质量守恒定律,水流速度越大,压强越小。
根据伯努利定律,水流速度越大,压强越小。
因此,水龙头出水口附近的压强较小。
5. 在一个垂直于水平面的圆柱形容器中,盛有密度为900 kg/m³的液体。
容器的半径为10 cm,液体的高度为20 cm。
求液体对容器底部的压力。
解答:液体对容器底部的压力等于液体的密度乘以重力加速度乘以液体的高度。
第三章 流体运动学基础§3—1研究流体流动的方法一、基本概念场-设在空间的某个区域内定义了标量函数或矢量函数,则称定义了相应函数的空间区域为场。
如果研究的是标量函数则称此场为标量场;如果研究的是矢量函数,则称之为矢量场;如果同一时刻场内各点函数的值都相等,则称此场为均匀场,反之为不均匀场,如果场内函数不依于时间,即不随时间改变,则称此场为定常场,反之称为不定常场。
场的分类如下:⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎩⎨⎧密度场压力场标量场力场速度场矢量场 流场―充满运动流体的场称为流场。
二、研究流体运动的欧拉法欧拉法―欧拉法是通过下列两个方面来描述整个流场情况的:(1)在空间固定点上流体的各种物理量(如速度、压力)随时间的变化。
(2)在相邻的空间点上这些物理量的变化 1、速度表示法欧拉法是以流场中每一空间位置作为描述对象,描述在这些位置上流体的物理参数随时间的变化。
显然,同一时刻,流体内部各空间点上流体质点的速度可以是不同的,即V是(x, y, z )的函数。
同一空间点上,不同时刻,流体质点的速度也是不同的。
即V又是t 的函数。
另一方面x , y , z 又可以看作是流体质点的坐标,而流体质点的坐标又是时间的函数。
因此: x = x ( t ) y = y ( t ) z = z ( t )),,,(),,,(),,,(t z y x w w t z y x t z y x u u ===υυ故:V =V(x , y , z, t )同理:),,,(t z y x p p =),,,(t z y x ρρ=2、流体质点的加速度流体质点的加速度为:tVa d d =则:z u w y u x u u t u t z z u t y y u t x x u t u t u a x ∂∂+∂∂+∂∂+∂∂=∂∂⋅∂∂+∂∂⋅∂∂+∂∂⋅∂∂+∂∂==υd d z w y x u t t a y ∂∂+∂∂+∂∂+∂∂==υυυυυυd d zw w y w x w u t w t w a z ∂∂+∂∂+∂∂+∂∂==υd d 用矢量表示为: V V tVt V a)(d d ∇⋅+∂∂==其中yk y j x i ∂∂+∂∂+∂∂=∇ 为哈密顿算式。
第3章 流体动力学基础教学提示:流体力学是研究流体机械运动的一门学科,与理论力学中分析刚体运动的情况相似。
如研究的范围只限于流体运动的方式和状态,则属于流体运动学的范围。
如研究的范围除了流体运动的方式和状态以外,还联系到流体发生运动的条件,则属于流体动力学的范围。
前者研究流体运动的方式和速度、加速度、位移等随空间与时间的变化,后者研究引起运动的原因和流体作用力、力矩、动量和能量的方法。
如前所述,流体力学的研究方法是基于连续介质体系的,重点研究由流体质点所组成的连续介质体系运动所产生的宏观效果,而不讨论流体分子的运动。
与处于相对平衡状态下的情况不同,处于相对运动状态下的实际流体,粘滞性将发生作用。
由于流体具有易流动性和粘滞性的影响,因此流体力学的研究方法与固体力学有明显的区别。
教学要求:流体运动的形式虽然多种多样的,但从普遍规律来讲,都要服从质量守恒定律、动能定律和动量定律这些基本原理。
在本章中,我们将阐述研究流体流动的一些基本方法,讨论流体运动学方面的一些基本概念,应用质量守恒定律、牛顿第二运动定律、动量定理和动量矩定理等推导出理想流体动力学中的几个重要的基本方程:连续性方程、欧拉方程、伯努利方程、动量方程、动量矩方程等,并举例说明它们的应用。
3.1 流体运动的描述方法要研究流体运动的规律,就要建立描述流体运动的方法。
在流体力学中,表达流体的运动形态和方式有两种不同的基本方法:拉格朗日法和欧拉法。
3.1.1 拉格朗日法拉格朗日法是瑞士科学家欧拉首先提出的,法国科学家J. L.拉格朗日作了独立的、完整的表述和具体运用。
该方法着眼于流体内部各质点的运动情况,描述流体的运动形态。
按照这个方法,在连续的流体运动中,任意流体质点的空间位置,将是质点的起始坐标),,(c b a (即当时间t 等于起始值0t 时的坐标)以及时间t 的单值连续函数。
若以r 代表任意选择的质点在任意时间t 的矢径,则: ),,,(t c b a r r = (3-1) 式中,r 在x 、y 、z 轴上的投影为x 、y 、z ;a 、b 、c 称为拉格朗日变量。
流体力学和传热学《流体力学和传热学》第一章流体力学1.1 流体介质流体(Fluid)是指可用来描述物质在物理状态机制上发生变形,具有形状改变能力的物质类型。
它们包括液体(Liquid)和气体(Gas),可以根据它们的性质将它们分为静力学流体( statically fluids)和动力学流体(dynamic fluids)。
1.2 流体流动流体力学研究的基础内容是流体流动,它是物质在物理空间内的连续改变,由于流体分布的不均匀性,会产生流动。
它是由于重力、压力差、粘度和其他因素引起的。
1.3 流体力学基本原理流体力学研究的基本原理,可以归纳为三大要素:物理定律、力学方程和保守定律。
物理定律指的是物理现象的基本准则,如流体的流动、密度、压力、速度、温度等,他们是流体力学研究的基本研究对象。
力学方程涉及的是流体的动力学特性,如流体内的力平衡方程、温度方程以及动量守恒方程等,是探索流体流动的机理的基础。
保守定律指的是流体受到外力的作用时,它的总动量、能量、动量和质量的变化,可从它们的定义和物理定律可以推出。
第二章传热学2.1 传热学的定义传热学(Thermodynamics)是研究物质在物理系统中的能量交换及其特性的学科,它是动力学、能源学以及工程热力学的一部分。
它涉及物体的物理特性、热质的传递机理及传热学定律。
2.2 传热学的基本原理传热学的基本原理,一般可以概括为三大要素:物理特性、热质传递机理和传热学定律。
物理特性是指传热学中有关物质的特性,如密度、温度和物性参数等,而热质传递机理是指它的传热原理,如热对流、热传导及热辐射等。
最后的传热学定律,根据物理原理推出了物体内部的热能的变化,也就是“物体内的热能不会凭空灰飞烟灭,只能够从一处转移到另外一处”这一定律。