医用SAS统计分析三
- 格式:pptx
- 大小:246.10 KB
- 文档页数:54
如何用SAS软件正确分析生物医学科研资料XX. R × C列联表资料的统计分析与SAS软件实现(三)王琪;胡良平;柳伟伟【期刊名称】《中国医药生物技术》【年(卷),期】2012(000)006【摘要】生物统计学是生物学领域科学研究和实际工作中必不可少的工具,在分子生物学迅速发展的今天,生物统计学更显示出了它的重要性。
实验设计与数据统计分析是现代生物学的基石,是生物学研究者检验假说、寻找模式、建立生物学理论的有利工具,也是生物学研究者探索微观和宏观生物世界的必备基础知识。
对于每天甚至是每时每刻涌现的大量的、以天文数字计量的分子遗传数据,必须借助统计学知识加以分析处理,才能从中获得有意义的信息。
“生物多样性数据分析”是开展生物多样性研究的一个重要方面,数据分析能力的高低极大地影响着我们对各种生态学现象认识的深度和广度。
现在,电子计算机的普及使得生物统计分析过程大大简化,生物统计分析软件包的普及将生物统计学从统计学家的书本里解放了出来,简化了生物统计分析过程,使之成为生物学研究者的常用工具。
本刊特邀军事医学科学院生物医学统计学咨询中心主任胡良平教授,以“如何用 SAS 软件正确分析生物医学科研资料”为题,撰写系列统计学讲座,希望该系列讲座能对生物医学科研工作者有所帮助。
【总页数】3页(P469-471)【作者】王琪;胡良平;柳伟伟【作者单位】100850 北京,军事医学科学院生物医学统计学咨询中心;100850 北京,军事医学科学院生物医学统计学咨询中心;100850 北京,军事医学科学院生物医学统计学咨询中心【正文语种】中文【相关文献】1.如何用SAS软件正确分析生物医学科研资料ⅩⅪ.结果变量为二值变量的高维列联表资料的统计分析与SAS软件实现(一) [J], 王琪;胡良平2.如何用SAS软件正确分析生物医学科研资料ⅩⅩⅡ.结果变量为二值变量的高维列联表资料的统计分析与SAS软件实现(二) [J], 鲍晓蕾;胡良平3.如何用SAS软件正确分析生物医学科研资料ⅩⅩⅢ.结果变量为多值有序变量的高维列联表资料的统计分析与SAS软件实现(一) [J], 鲍晓蕾;王璐;胡良平4.如何用 SAS 软件正确分析生物医学科研资料XXIV.结果变量为多值有序变量的高维列联表资料的统计分析与 SAS 软件实现(二) [J], 鲍晓蕾;王小利;胡良平5.如何用SAS软件正确分析生物医学科研资料XVII.R×2列联表与2×C列联表资料的统计分析与SAS实现 [J], 关雪;胡良平;王琪因版权原因,仅展示原文概要,查看原文内容请购买。
医用SAS统计分析课程设计
一、背景介绍
SAS(全称:Statistical Analysis System)是一种管理和分析数据的软件系统,通常用于统计分析和数据挖掘。
在医学领域,SAS也广泛应用于临床研究、药
物开发、医院管理等方面。
本课程设计以医用SAS统计分析为主题,旨在通过实践操作加深学生对SAS软件的理解与应用。
二、课程目标
本课旨在通过医学数据的实际操作,培养学生的综合能力和自主学习能力,掌
握以下技能:
1.掌握SAS软件的基本操作;
2.熟悉SAS语言的基本语法;
3.能够对医学数据进行数据清洗和数据整理;
4.能够用SAS进行基本的数据分析和统计分析;
5.能够根据数据分析结果,进一步进行数据可视化和报告生成。
三、课程内容
本课程分为基础课和实践课两部分。
基础课包括以下内容:
1.SAS软件介绍:包括SAS软件的下载和安装、SAS工作环境的介绍等;
2.SAS语言基础:包括SAS程序结构、数据步和过程步的介绍等;
3.SAS数据管理:包括数据读取、数据清洗、数据整理等;
4.SAS数据统计分析:包括描述统计学、生存分析等;
5.SAS数据可视化:包括SAS图表绘制等;
6.SAS报告生成:包括SAS报告的生成和导出等。
1。
对定量结果进行差异性分析1.单因素设计一元定量资料差异性分析1.1.单因素设计一元定量资料t检验与符号秩和检验T检验前提条件:定量资料满足独立性和正态分布,若不满足则进行单因素设计一元定量资料符号秩和检验。
1.2.配对设计一元定量资料t检验与符号秩和检验配对设计:整个资料涉及一个试验因素的两个水平,并且在这两个水平作用下获得的相同指标是成对出现的,每一对中的两个数据来自于同一个个体或条件相近的两个个体。
1.3.成组设计一元定量资料t检验成组设计定义:设试验因素A有A1,A2个水平,将全部n(n最好是偶数)个受试对象随机地均分成2组,分别接受A1,A2,2种处理。
再设每种处理下观测的定量指标数为k,当k=1时,属于一元分析的问题;当k≥2时,属于多元分析的问题。
在成组设计中,因2组受试对象之间未按重要的非处理因素进行两两配对,无法消除个体差异对观测结果的影响,因此,其试验效率低于配对设计。
T检验分析前提条件:独立性、正态性和方差齐性。
1.4.成组设计一元定量资料Wilcoxon秩和检验不符合参数检验的前提条件,故选用非参数检验法,即秩和检验。
1.5.单因素k(k>=3)水平设计定量资料一元方差分析方差分析是用来研究一个控制变量的不同水平是否对观测变量产生了显著影响。
这里,由于仅研究单个因素对观测变量的影响,因此称为单因素方差分析。
方差分析的假定条件为:(1)各处理条件下的样本是随机的。
(2)各处理条件下的样本是相互独立的,否则可能出现无法解析的输出结果。
(3)各处理条件下的样本分别来自正态分布总体,否则使用非参数分析。
(4)各处理条件下的样本方差相同,即具有齐效性。
1.6.单因素k(k>=3)水平设计定量资料一元协方差分析协方差分析(Analysis of Covariance)是将回归分析与方差分析结合起来使用的一种分析方法。
在这种分析中,先将定量的影响因素(即难以控制的因素)看作自变量,或称为协变量(Covariate),建立因变量随自变量变化的回归方程,这样就可以利用回归方程把因变量的变化中受不易控制的定量因素的影响扣除掉,从而,能够较合理地比较定性的影响因素处在不同水平下,经过回归分析手段修正以后的因变量的样本均数之间的差别是否有统计学意义,这就是协方差分析解决问题的基本计算原理。
如何用SAS进行统计分析SAS(统计分析系统)是一种用于数据分析和统计建模的软件工具。
它提供了一系列功能和程序,用于数据处理、统计分析、预测建模、图形展示和报告生成等。
本文将介绍如何使用SAS进行统计分析,涵盖数据导入、数据清洗、描述性统计分析、假设检验、回归分析和聚类分析等内容。
1. 数据导入和数据清洗在使用SAS进行统计分析之前,你需要将待分析的数据导入到SAS软件中。
SAS支持多种数据格式,包括CSV、Excel、Access等。
你可以使用SAS提供的PROC IMPORT过程将数据导入到SAS的数据集中。
导入数据后,你需要对数据进行清洗。
数据清洗的目的是去除数据中的错误、缺失或异常值,以确保数据的质量。
你可以使用SAS的数据步骤(DATA STEP)来处理数据,例如删除缺失值、填补缺失值、去除异常值等。
2. 描述性统计分析描述性统计分析是对数据进行总结和描述的过程。
它包括计算数据的中心趋势(均值、中位数、众数)、数据的离散程度(标准差、方差、极差)、数据的分布形态(偏度、峰度)等。
在SAS中,你可以使用PROC MEANS过程进行描述性统计分析。
该过程可以计算多个变量的均值、标准差、最小值、最大值、中位数等统计指标。
此外,你还可以使用PROC UNIVARIATE过程计算数据的偏度、峰度等统计值,并绘制直方图和箱线图来展示数据的分布情况。
3. 假设检验假设检验是对样本数据进行推断性统计分析的一种方法。
它用于判断观察到的样本差异是否显著,从而对总体参数进行推断。
在SAS中,你可以使用PROC TTEST过程进行双样本t检验、单样本t检验和相关样本t检验等。
此外,PROC ANOVA过程可以用于方差分析,PROC FREQ过程可以用于卡方检验。
4. 回归分析回归分析是研究因变量与自变量之间关系的一种统计分析方法。
它用于预测和解释因变量的变化,并评估自变量对因变量的影响程度。
在SAS中,你可以使用PROC REG过程进行简单线性回归分析和多元线性回归分析。
SAS统计分析教程方法总结SAS(Statistical Analysis System)是一种流行的统计分析软件,被广泛应用于各个领域的数据分析和决策支持中。
本文将总结SAS统计分析教程的方法,以帮助读者更好地理解和应用SAS软件。
1.数据导入与数据清洗:在进行统计分析之前,首先需要将数据导入SAS软件中。
SAS支持多种数据格式,如Excel、CSV等。
可以使用INFILE和INPUT语句读取数据,并使用DATA步骤定义变量。
在导入数据后,通常需要对数据进行清洗,包括处理缺失值、异常值等。
SAS提供了多种数据处理函数,如MEAN、SUM等,可以帮助完成数据清洗和处理工作。
2.描述性统计分析:描述性统计分析可以了解数据的特征和分布情况。
例如,可以使用PROCMEANS计算数据的均值、标准差、最小值、最大值等;使用PROCFREQ计算离散变量的频数和频率等。
此外,SAS还提供了PROCUNIVARIATE、PROCSUMMARY等过程,可以方便地进行更加复杂的描述性统计分析。
3.统计图表绘制:统计图表是数据分析中常用的可视化工具,能够直观地展示数据的特征和趋势。
SAS提供了PROC SGPLOT和PROC GPLOT等过程,可以绘制各种类型的统计图表,如直方图、散点图、柱状图等。
通过调整图形参数,可以使图表更加美观和易读。
此外,SAS还支持使用ODS(OutputDelivery System)输出图表到不同的输出格式中。
4.假设检验与推断统计:假设检验是统计分析中常用的方法,可以用来判断数据之间是否存在显著差异。
在SAS中,可以使用PROCTTEST、PROCANOVA等过程进行单样本、双样本和多样本假设检验。
此外,SAS还支持非参数检验方法,如PROCNPAR1WAY等。
除了假设检验,推断统计也是重要的统计分析方法,用于对总体参数进行估计和推断。
在SAS中,可以使用PROCMEANS、PROCREG等过程进行点估计和区间估计。