高分子聚合物的拉伸性能研究
- 格式:pdf
- 大小:131.71 KB
- 文档页数:2
高分子物理高分子的力学性能引言高分子是由大量重复单元组成的长链聚合物,具有广泛的应用领域。
高分子材料的力学性能是评估其性能和应用范围的重要指标之一。
本文将重点介绍高分子物理高分子的力学性能,包括拉伸性能、弯曲性能和压缩性能。
拉伸性能拉伸性能是衡量高分子材料抵抗拉伸变形的能力。
引伸模量是评估高分子材料刚度的指标,反映了材料在受力下沿着拉伸方向的抗弯刚度。
拉伸模量越大,材料刚度越高,说明材料越难被拉伸变形。
另一个重要的指标是断裂伸长率,即材料在断裂前所能延伸的长度与原始长度之比。
断裂伸长率越大,材料的延展性越好,能够在受力下更好地承受高应变。
弯曲性能弯曲性能是评估高分子材料在受力下的弯曲变形能力。
弯曲模量是衡量材料刚度和弯曲抗弯能力的指标,它反映了材料在弯曲过程中所需的力和弯曲程度之间的关系。
弯曲模量越大,材料的刚度越好,弯曲变形能力越低。
另一个重要的指标是弯曲强度,即材料在抵抗内部应力下断裂弯曲的能力。
弯曲强度越高,材料越能够承受弯曲应力而不断裂。
压缩性能压缩性能是评估高分子材料在受力下的抗压能力。
压缩模量是衡量材料在受压过程中抗弯刚度的指标,它反映了材料在压缩过程中所需的力和压缩程度之间的关系。
压缩模量越大,材料的刚度越高,抗压变形能力越低。
另一个重要的指标是压缩强度,即材料在抵抗内部应力下断裂压缩的能力。
压缩强度越高,材料越能够承受压缩应力而不断裂。
影响高分子材料力学性能的因素高分子材料的力学性能受多种因素影响。
其中,聚合度是一个重要的因素,即聚合物链的长度。
聚合度越高,链段之间的力学相互作用越多,因此材料的力学性能越好。
另一个重要因素是材料的结晶度。
高结晶度的材料通常具有更好的力学性能,因为结晶区域可以提供更多的强度和刚度。
此外,材料的处理方式和加工工艺也会对力学性能产生影响。
高分子物理高分子的力学性能是评估其应用潜力和性能表现的关键指标。
拉伸性能、弯曲性能和压缩性能是评估高分子材料力学性能的重要指标。
高分子材料性能测试实验报告一、实验目的本实验旨在对常见的高分子材料进行性能测试,以深入了解其物理、化学和机械性能,为材料的选择和应用提供科学依据。
二、实验材料与设备1、实验材料聚乙烯(PE)聚丙烯(PP)聚苯乙烯(PS)聚氯乙烯(PVC)2、实验设备电子万能试验机热重分析仪(TGA)差示扫描量热仪(DSC)硬度计冲击试验机三、实验原理1、拉伸性能测试高分子材料在受到拉伸力作用时,会发生形变。
通过测量材料在拉伸过程中的应力应变曲线,可以得到材料的拉伸强度、断裂伸长率等性能指标。
2、热性能测试TGA 用于测量材料在加热过程中的质量损失,从而分析材料的热稳定性和组成成分。
DSC 则可以测量材料在加热或冷却过程中的热量变化,用于研究材料的相变温度、玻璃化转变温度等。
3、硬度测试硬度是衡量材料抵抗局部变形的能力。
硬度计通过压入材料表面一定深度,测量所施加的力来确定材料的硬度值。
4、冲击性能测试冲击试验机通过施加冲击载荷,测量材料在冲击作用下的吸收能量,评估材料的抗冲击性能。
四、实验步骤1、拉伸性能测试将高分子材料制成标准哑铃状试样。
安装试样到电子万能试验机上,设置拉伸速度和测试温度。
启动试验机,记录应力应变曲线。
2、热性能测试称取一定量的高分子材料样品,放入 TGA 和 DSC 仪器的样品盘中。
设置升温程序和气氛条件,进行测试。
3、硬度测试将试样平稳放置在硬度计工作台上。
选择合适的压头和试验力,进行硬度测量。
4、冲击性能测试制备标准冲击试样。
将试样安装在冲击试验机上,进行冲击试验。
五、实验结果与分析1、拉伸性能聚乙烯(PE):拉伸强度较低,断裂伸长率较高,表现出较好的柔韧性。
聚丙烯(PP):拉伸强度较高,断裂伸长率适中,具有一定的刚性和韧性。
聚苯乙烯(PS):拉伸强度较高,但断裂伸长率较低,脆性较大。
聚氯乙烯(PVC):拉伸强度和断裂伸长率因配方不同而有所差异。
2、热性能TGA 结果显示,不同高分子材料的热分解温度和分解过程有所不同。
高分子材料拉伸性能的测定
一、实验目的
掌握高分子材料的拉伸实验方法。
二、实验原理
拉伸实验原理
本实验是在规定的实验温度、湿度及不同的拉伸速度下,于试样上沿纵轴方向施加静态拉伸载荷,直至断裂前试样承受的最大载荷与试样横截面的比值。
通过拉伸实验,可以比较不同的塑料材料,哪些是属于韧性的,韧性大小。
万能材料试验机实验是常用的测定拉伸强度的实验仪器,它所测的拉伸强度数据是指试样断裂/或指定伸长率时单位面积上所消耗的能量。
三、实验设备及试样
(1)设备
万能材料试验机一台,游标卡尺一把。
(2)试样
标准哑铃试条3个,要求表面平整,无气泡、裂纹、分层、伤痕等缺陷。
四、实验步骤
1、拉伸实验
(1)熟悉万能材料试验机的结构,操作规程和注意事项。
(2)用游标卡尺测量试件中部左、中、右三点的宽与厚,精确至0.02 mm,取平均值。
(3)实验
接通电源,预热仪器,开动机器,选择实验项目,设置实验参数和条件,输入所测试样条尺寸,安装试样,力值清零,最后按下电钮进行拉伸实验,直到试样断裂为止,停机。
重复做完其它试样。
记录读数。
按公式计算每个试样的拉伸强度。
五、实验报告要求
拉伸实验
(1)简述实验原理。
(2)操作步骤。
(3)做好原始记录。
(4)详细记录拉伸过程中观察到的现象。
六、实验注意事项
拉伸实验
操作万能材料试验机时,要精力集中,认真负责。
实验时注意避免样条碎块伤人。
每一试样测试完成后及时停止,避免超过量程,损害仪器。
实验六聚合物材料拉伸性能的测试一、实验目的:1、通过实验了解聚合物材料拉伸强度及断裂伸长率的意义。
2、熟悉它们的测试方法3、通过测试应力—应变曲线来判断聚合物材料的力学性能。
二、实验原理:为了评价聚合物材料的力学性能。
通常用等速施力下所获得的应力—应变曲线来进行描述。
这里所谓应力是指拉伸力引起的在试样内部单位截面上产生的内应力而应变是指试样在外力作用下发生形变时,相对其原尺寸的相对形变量。
材料的组成、化学结构及聚态结构都会对应力与应变产生影响。
应力—应变实验所得的数据也与温度、湿度、拉伸速度有关,因此应规定一定的测试条件。
三、主要仪器设备及原料:1、主要仪器设备:万能试验机2、主要原料:各种高分子试样四、操作方法和实验步骤:1、试样制备拉伸实验中所用的试样依据不同材料加工成不同形状和尺寸。
每组试样应不少于5个。
试验前需对试样的外观进行检查试样,表面平整无气泡、裂纹、分层和机械损伤等缺陷。
另外为了减小环境对试样性能的影响,应在测试前将试样在测试环境中放置一定时间,使试样与测试环境达到平衡。
一般试样越厚,放置时间应越长。
具体按国家标准规定。
2、拉伸性能的测试①将合格试样编号并在试样平行部分划二标线,即标距。
测量试样工作段任意三处宽度和厚度,取其平均值。
②安装拉伸试验用夹具。
③调整引伸计标距至规定值。
④装夹试样,要使试样纵轴与上下夹头的中心线重合。
⑤在工作段装夹大变形引伸计,使引伸计中心线与上下夹头的中心线重合。
⑥录入试样信息并按照标准设置试验条件。
⑦联机。
检查屏幕显示的试验信息是否正确,如有不适之处进行修改,然后对负荷清零、轴向变形清零、位移清零。
按“试验开始”键进行试验。
⑦横梁以设定的速度开始移动,同时屏幕显示出试验曲线,根据需要可随时打开想要观察的曲线。
如应力—应变曲线、负荷—变形曲线等多种曲线⑧观察试样直到被拉断为止,按“试验结束”键结束试验。
按“数据管理”键查看试验结果。
五、实验报告:1、简述实验原理。
高分子材料的结构与力学性能研究高分子材料是一类重要的工程材料,具有广泛的应用领域。
它们的性能很大程度上取决于其结构与力学性能之间的关系。
因此,对高分子材料的结构与力学性能进行深入研究是十分必要的。
一、高分子材料的结构高分子材料的结构是指其中分子的组成和排列方式。
其主要由聚合物链的排列方式、分子量分布以及分子内外力结构等因素决定。
首先,聚合物链的排列方式对高分子材料的性能有显著影响。
一种常见的排列方式是线性结构,即聚合物链呈直线排列。
这种结构能够使高分子材料更加柔软、可拉伸,并具有较高的延展性。
相反,如果聚合物链呈无规则状或高度交织状排列,则高分子材料的强度和硬度会明显提升。
其次,分子量分布也是高分子结构的重要方面。
分子量分布越广,高分子材料的性能越稳定。
这是因为分子量越大,高分子材料的强度和硬度越高。
然而,如果分子量分布过窄,容易导致性能不均匀,从而影响材料的应用。
最后,分子内外力结构对高分子材料的结构和性能同样起着关键作用。
分子内的键长、键角和二面角等结构参数决定了高分子材料的刚性和柔软性。
而分子之间的力结构包括范德华力、静电力和氢键等,可以影响材料的粘合性和熔融性。
二、高分子材料的力学性能高分子材料的力学性能包括强度、硬度、韧性以及流变性等方面。
这些性能与材料的结构密切相关。
首先,强度是衡量材料抵抗外力破坏能力的重要指标。
高分子材料的强度主要取决于其内部的结构以及分子内外的各种力作用。
一般来说,高分子材料强度较低,但具有较好的拉伸性能和延展性。
其次,硬度是衡量材料抵抗表面刮擦、磨损和压缩的能力。
高分子材料的硬度主要由分子链的排列方式和分子量分布来决定。
线性排列和较窄的分子量分布会导致高分子材料较好的硬度。
韧性是衡量材料断裂前出现塑性变形的能力。
高分子材料的韧性与其延展性有关,而延展性又与聚合物链的排列方式和分子结构有关。
流变性是指高分子材料在外力作用下的变形行为。
它与材料的粘弹性和塑性变形有关。
实验1 高分子材料拉伸强度及断裂伸长率测定一、实验目的通过实验了解聚合物材料应力—应变曲线特点、试验速度对应力—应变曲线的影响、拉伸强度及断裂伸长率的意义,熟悉它们的测试方法;并通过测试应力—应变曲线来判断不同聚合物的力学性能。
二、实验原理为了评价聚合物材料的力学性能,通常用等速施力下所获得的应力—应变曲线来进行描述。
所谓应力是指拉伸力引起的在试样内部单位截面上产生的内力;而应变是指试样在外力作用下发生形变时,相对其原尺寸的相对形变量。
不同种类聚合物有不同的应力—应变曲线。
等速条件下,无定形聚合物典型的应力—应变曲线如图1所示。
图中的α点为弹性极限,σα为弹性(比例)极限强度,εα为弹性极限伸长。
在α点前,应力—应变服从虎克定律:σ=Έε式中σ——应力,MPa;ε——应变,%;Ε——弹性(杨氏)模量(曲线的斜率),MP 。
曲线斜率E反映材料的硬性。
Y称屈服点,对应的σy和εy称屈服强度和屈服伸长。
材料屈服后,可在t点处,也可在t′点处断裂。
因而视情况,材料断裂强度可大于或小于屈服强度。
εt(或εt′)称断裂伸长率,反映材料的延伸性。
从曲线的形状以及σt和εt的大小,可以看出材料的性能,并借以判断它的应用范围。
如从σt的大小,可以判断材料的强与弱;而从εt的大小,更正确地讲是从曲线下的面积大小,可判断材料的脆性与韧性。
从微观结构看,在外力的作用下,聚合物产生大分子链的运动,包括分子内的键长、键角变化,分子链段的运动,以及分子间的相对位移。
沿力方向的整体运动(伸长)是通过上述各种运动来达到的。
由键长、键角产生的形变较小(普弹形变),而链段运动和分子间的相对位移(塑性流动)产生的形变较大。
材料在拉伸到破坏时,链段运动或分子位移基本上仍不能发生,或只是很小,此时材料就脆。
若达到一定负荷,可以克服链段运动及分子位移所需要的能量,这些运动就能发生,形变就大,材料就韧。
如果要使材料产生链段运动用分子位移所需要的负荷较大,材料就较强及硬。
高分子材料的力学性能测试及其应用研究高分子材料是一类重要的工程材料,主要用于纺织、建筑、电子、医药等领域。
高分子材料具有轻量、高强、高韧性、耐磨损、耐腐蚀等特点,因此广泛应用于各种领域。
在使用高分子材料的过程中,需要了解其力学性能,以便更好地设计、制造和使用。
本文将介绍高分子材料的力学性能测试方法和应用研究。
一、高分子材料的力学性能高分子材料的力学性能包括弹性性能、塑性性能和破坏性能。
其中弹性性能是指材料在受力后恢复原状的能力,主要包括弹性模量和泊松比。
塑性性能是指材料在受力后能够发生变形的能力,主要包括屈服强度和延伸率。
破坏性能是指材料在受到足够大的载荷后会发生破坏的能力,主要包括断裂韧性和破坏模式。
二、高分子材料的力学性能测试方法1、拉伸试验拉伸试验是最常用的高分子材料力学性能测试方法之一。
通过将试样拉伸至断裂点,测量其载荷与变形量的关系,可以得到材料的应力-应变曲线。
从应力-应变曲线中,可以计算出材料的弹性模量、屈服强度、断裂强度和断裂伸长率等重要参数。
拉伸试验可以使用单轴拉伸机、万能试验机等设备进行。
2、压缩试验压缩试验是评估材料抗压能力的一种方法。
该试验通常以轴向载荷进行,压缩试验结果可以用于确定材料的体积模量或多轴应力状态下的应变量。
根据材料应变分布的不同,可以得到不同的应力-应变曲线,从而得到压缩弹性模量和屈服应力等参数。
3、剪切试验剪切试验可以评估材料的剪切性能,通常使用剪切试验机进行。
在剪切试验中,试样被植入两个夹具中,夹具沿着对称面施加力,使试样发生沿切平面的剪切变形。
通过测量必要的载荷和位移,可以获得材料剪切应力和剪切应变,并从中得出剪切模量和剪切强度等重要参数。
4、冲击试验冲击试验是评估材料耐冲击能力的一种方法。
通常在低温下进行,使用冲击试验机施加冲击载荷,在断裂前测量材料的冲击强度和断裂韧性等参数。
这种试验可以评估大多数高分子材料的耐冲击性和脆性,在材料开发和制造中具有重要的应用价值。
聚合物拉伸强度和断裂伸长率的测定实验报告1. 实验目的(1)熟悉高分子材料拉伸性能测试标准条件和测试原理。
(2)掌握测定聚合物拉伸强度和断裂伸长率的测定方法。
(3)考察拉伸速度对聚合物力学性能的影响。
2. 实验原理拉伸试验是在规定的试验温度、试验速度和湿度条件下,对标准试样沿其纵轴方向施加拉伸载荷,直到试样被拉断为止。
基本公式:00L L L -=ε (2-1) 0A F=σ (2-2) )(000L L A FL E -==εσ (2-3) 式中,ε伸长率即应变;σ为应力;L 为样品某时刻的伸长;0L 为初始长度;0A 为初始横截面积;F 为拉伸力;E 为拉伸模量。
3. 拉伸样条试样形状拉伸试样共有4种类型:Ⅰ型试验样(双铲型),见图2-1(a ),II 型试样(哑铃型),见图2-1(b),III 型试样(8字型),见图2-1(c),IV 型试样(长条型),见图2-1(d)。
图2-1(a) I 型试样 图2-1(b) II 型试样图2-1(c) III 型试样图2-(d) IV型试样不同类型的试样有不同的尺寸公差,具体见表2-1、表2-2、表2-3和表2-4。
表2-1 I型试样公差尺寸物理量名称尺寸/mm 公差/mmL 总长度(最小)150 -H 夹具间距离115 ±5.0C 中间平行部分长度60 ±0.5G0 标距(或有效部分)50 ±0.5W 端部宽度20 ±0.2D 厚度 4 -B 中间平行部分宽度10 ±0.2R 半径(最小)60 -表2-2 II型试样公差尺寸物理量名称尺寸/mm 公差/mmL 总长度(最小)110 -C 中间平行部分长度9.5 ±2.0d0 中间平行部分厚度 3.2d1 端部厚度 6.5W 端部宽度45 -b 中间平行部分宽度25 ±0.4R0 端部半径 6.5 ±1.0R1 表面半径75 ±2.0R2 侧面半径75 ±2.0表2-3 III型试样公差尺寸物理量名称尺寸/mm 公差/mmL 总长度(最小)115 -H 夹具间距离80 ±5.0C 中间平行部分长度33 ±2.0G0 标距(或有效部分)25 ±0.2W 端部宽度25 ±0.2d 厚度 2 -b 中间平行部分宽度 6 ±0.2R0 小半径14 ±0.2R1 大半径25 ±0.2表2-4 IV型试样公差尺寸物理量名称尺寸/mm 公差/mmL 总长度(最小)250 -H 夹具间距离170 ±5.0G0 标距(或有效部分)100 ±0.5W 宽度25 ±0.5L1 加强片间长度150 ±5.0L2 加强片最小长度50 -d0 厚度2~10 -d1 加强片厚度3~10 -D2 加强片5o~30o -θ加强片角度- -聚合物的拉伸性能可通过其应力-应变曲线来分析,典型的聚合物拉伸应力-应变曲线如图2-1(左)所示。
有机化学中的聚合物的性能与性能测试聚合物是由许多重复单元组成的高分子化合物,它们在有机化学领域扮演着重要的角色。
聚合物的性能对于其应用领域具有决定性的影响。
因此,准确评估聚合物的性能并进行性能测试对于研究和应用有机化学至关重要。
聚合物的性能包括力学性能、热性能、电学性能等多个方面。
力学性能是指聚合物的强度、硬度和柔韧性等特性。
热性能则关注聚合物在高温和低温下的稳定性和可用温度范围。
电学性能涉及到聚合物的导电性、介电性和电子输运性能等。
下面将分别介绍聚合物在这些性能方面的测试方法。
一、力学性能测试1. 抗拉强度和伸长率测试力学性能中最基本的指标是聚合物的抗拉强度和伸长率。
这些指标可以通过拉伸试验来测量。
拉伸试验使用一个拉伸机,将聚合物样品拉伸,测量拉伸前后的变形,从而计算出抗拉强度和伸长率。
2. 硬度测试硬度是聚合物抵抗局部永久形变的能力。
常用的硬度测试方法包括洛氏硬度测试和巴氏硬度测试。
这些测试方法通过测量在一定加载下产生的印痕大小来评估聚合物的硬度。
3. 冲击强度测试聚合物的冲击强度是评估其耐冲击性能的指标。
冲击强度测试常用的方法有Charpy冲击试验和Izod冲击试验。
这些试验使用标准冲击试验机,将标准形状的试样进行冲击,测量所产生的断裂面积来评估聚合物的冲击强度。
二、热性能测试1. 热分解温度测试热分解温度是指聚合物在高温下开始分解的温度。
热分解温度测试可以使用热重分析仪进行。
该仪器通过加热聚合物样品,并同时测量其质量的变化,从而确定热分解温度。
2. 玻璃化转变温度测试玻璃化转变温度是指聚合物在温度下从玻璃态转变为橡胶态的温度。
玻璃化转变温度测试可以使用差示扫描量热仪进行。
该仪器通过测量样品在加热和冷却过程中的热流量差异,从而确定玻璃化转变温度。
三、电学性能测试1. 电导率测试电导率是衡量聚合物导电性能的指标。
电导率测试可以使用四探针电阻率计进行。
该仪器利用四根探针对聚合物样品施加电流,测量电压差来计算电导率。
高分子材料的力学性能研究在现代科技的快速发展中,高分子材料因其独特的性能和广泛的应用而备受关注。
高分子材料的力学性能是其在实际应用中表现出的重要特性,直接影响着材料的使用效果和寿命。
本文将对高分子材料的力学性能进行深入研究,探讨其影响因素、测试方法以及在不同领域的应用。
一、高分子材料力学性能的基本概念高分子材料的力学性能主要包括强度、刚度、韧性、弹性、塑性等。
强度是指材料抵抗外力破坏的能力,通常用拉伸强度、压缩强度、弯曲强度等来衡量。
刚度则反映了材料抵抗变形的能力,弹性模量是表征刚度的重要参数。
韧性表示材料在断裂前吸收能量的能力,而塑性则是指材料在受力时产生永久变形而不破坏的性质。
二、影响高分子材料力学性能的因素1、分子结构高分子的化学结构对力学性能有着至关重要的影响。
例如,分子链的长度、分子量分布、分子链的规整性等都会改变材料的力学性能。
一般来说,分子量越大,材料的强度和韧性通常会提高;分子链规整性好的高分子材料,其结晶度往往较高,从而具有更好的力学性能。
2、聚集态结构高分子材料的聚集态结构包括晶态、非晶态和取向态等。
结晶度的高低会显著影响材料的强度和刚度。
结晶度高的高分子材料,其强度和刚度较大,但韧性可能会有所降低。
此外,分子链的取向也能大大提高材料在取向方向上的力学性能。
3、添加剂在高分子材料的制备过程中,常常会添加各种添加剂,如增塑剂、增强剂、填充剂等。
增塑剂可以增加材料的塑性和韧性,但会降低强度和刚度。
增强剂如玻璃纤维、碳纤维等能显著提高材料的强度和刚度。
填充剂则可以降低成本,同时在一定程度上改善材料的力学性能。
4、环境因素温度、湿度、加载速率等环境因素也会对高分子材料的力学性能产生影响。
一般来说,温度升高会使材料的强度降低,韧性增加;湿度增大可能导致材料的性能下降,尤其是对吸水性较强的高分子材料;加载速率越快,材料表现出的强度越高。
三、高分子材料力学性能的测试方法1、拉伸试验拉伸试验是最常见的力学性能测试方法之一。
1、高分子聚合物的拉伸性能。
作为材料使用时要求高分子聚合物具有必要的力学性能。
可以说,对于高分子聚合物的大部分应用而言,力学性能比其他物理性能显得更为重要。
高分子聚合物具有所有已知材料中可变性范围最宽的力学性质,这是由于高聚物由长链分子组成,分子运动具有明显的松弛特性的缘故。
如高聚物材料具有相当高的伸长率,一般PE的断裂伸长率在90%~950%(其中线性低密度聚乙烯LLDPE的伸长率较高),通过特殊的制作工艺,部分材料的伸长率可在1000%之上,而普通高聚物材料的断裂伸长率也多在50%~100%之间。
通常对材料的拉伸性能要求较高的有热收缩膜以及拉伸膜等。
2、拉伸试验。
拉伸试验(应力-应变试验)一般是将材料试样两端分别夹在两个间隔一定距离的夹具上,两夹具以一定的速度分离并拉伸试样,测定试样上的应力变化,直到试样破坏为止。
拉伸试验是研究材料力学强度最广泛使用的方法之一,需要使用恒速运动的拉力试验机。
按载荷测定方式的不同,拉力试验机大体可以分为摆锤式拉力试验机和电子拉力试验机两类,目前使用较多的是电子拉力试验机。
3、电子拉力试验机选择指标。
由于软包装材料主要是高分子聚合物或它的相关材料,如前所述高聚物材料的伸长率远远优于金属、纤维、木材、板材等材料,因此检测高分子聚合物的拉力机就与通常的材料拉伸性能检测拉力机有一定的差别,尤其需要注意的是电子拉力机的有效行程以及试样夹具两方面。
3.1 有效行程。
在进行拉伸试验时,所用试样的尺寸虽然小,但材料的伸长率普遍比较高,因此用于检测软包装材料的拉伸性能需要配备行程较大的拉力机,否则夹具运行可能会超过行程的使用极限、造成设备的损坏。
GB13022-91《塑料薄膜拉伸性能试验方法》中给出的断裂伸长率或屈服伸长率(εt,单位是%)的计算公式如下:式中:εt是断裂伸长率或是屈服伸长率;L是试样断裂时或屈服时标线间的距离;L0是标线间的距离。
需要注意的是在伸长率的计算中,我们仅采集试样上两条标线间的伸长量。
(完整版)高分子材料的拉伸性能.doc《高分子材料的拉伸性能测试》实验指导书一、实验目的1、测试热塑性塑料拉伸性能。
2、掌握高分子材料的应力—应变曲线的绘制。
4、了解塑料抗张强度的实验操作。
二、实验原理拉伸试验是材料最基本的一种力学性能试验方法,可以得到材料的各种拉伸性能,包括拉伸强度、弹性模量、泊松比、伸长率、应力 -应变曲线等。
拉伸试验是指在规定的温度、湿度和试验速度下,在试样上沿纵轴方向施加拉伸载荷使其破坏,此时材料的性能指标如下:1.拉伸强度为:(1)式中σ -- 拉伸强度, MPa;P--- 破坏载荷(或最大载荷),N;b--- 试样宽度, cm;h--- 试样厚度, cm.2. 拉伸破坏 ( 或最大载荷处 ) 的伸长率为:(2)式中ε ---试样拉伸破坏(或最大载荷处)伸长率,%;L0- 破坏时标距内伸长量, cm;L0--- 测量的标距,cm,3.拉伸弹性模量为:(3)式中E t---拉伸弹性模量,MPa;P—荷载-变形曲线上初始直线段部分载荷量,N;L0—与载荷增量对应的标距内变形量,cm。
4. 拉伸应力- 应变曲线如果材料是理想弹性体,抗张应力与抗张应变之间的关系服从胡克定律,即:σ= E ε式中: E-杨氏模量或拉伸模量;σ-应力;ε-应变聚合物材料由干本身长链分子的大分子结构持点,使其具有多重的运动单元,因此不是理想的弹性体,在外力作用下的力学行为是一个松弛过程,具有明显的粘弹性质。
拉伸试验时因试验条件的不同,其拉伸行为有很大差别。
起始时,应力增加,应变也增加,在A 点之前应力与应变成正比关系,符合胡克定律,呈理想弹性体。
A点叫做比例极限点。
超过A点后的一段,应力增大,应变仍增加,但二者不再成正比关系,比值逐渐减小;当达到Y点时,其比值为零。
Y点叫做屈服点。
此时弹性模最近似为零,这是一个重要的材料持征点。
对塑料来说,它是使用的极限。
如果再继续拉伸,应力保持不变甚至还会下降,而应变可以在一个相当大的范围内增加,直至断裂。
实验一聚合物热变形温度、维卡软化点的测定一、实验目的通过实验测定高聚物维卡软化点温度,掌握维卡软化点温度测试仪的使用方法和高聚物维卡软化温度的测试方法。
二、实验原理维卡软化温度是指一个试样被置于所规定的试验条件下,在一定负载的情况下,一个一定规格的针穿透试样1mm深度的温度。
这个方法适用于许多热塑性材料,并且以此方法可用于鉴别比较热塑性软化的性质。
图1. 维卡软化点试验装置图三、实验仪器维卡软化点测试仪主要由浴槽和自动控温系统两大部分组成。
浴槽内又装有导热液体、试样支架、砝码、指示器、温度计等构件,其基本结构见图1。
(1)传热液体:一般常用的矿物油有硅油、甘油等,最常用的是硅油。
本仪器所用传热液体为硅油,它的绝缘性能好,室温下黏度较低,并使用试样在升温时不受影响。
(2)试样支架:支架是由支撑架、负载、指示器、穿透针杆等组成。
都是用同样膨胀系数的材料制成。
+0.05mm的设有毛边的圆形(3)穿透针:常用的针有两种,一种是直径为1-0。
02mm平头针,另一种为正方形平头针。
(4)砝码和指示器:常用的砝码有两种,1kg和5kg;指示器为一百分表,精确度可达0.02mm。
(5)温度计:温度计测温精确度可达0.5℃,使用范围为0~360℃。
(6)等速升温控制器:采用铂电阻作感温元件与可变电压器、恒速电动机构组成。
作不定时等速运动来调整可变电位器的阻值,以达到自动平衡(可变电位器调整阻值的变化即为铂电阻受热后的阻值),电桥输出信号经晶体管放大输出脉冲,推动可控管工作,并控制了加热器工作时间,以(5±0.5)℃/6min的速度来提高浴槽温度。
(7)加热器:一个1000W功率的电炉丝直接加热传热液体。
四、试样与测试条件(1)试样:所用的每种材料的试样最少要有2个。
一般试样的厚度必须大于3mm,面积必须大于10mm×10mm 。
(2)测试条件:保持连续升温速度为(5±0.5)℃/min,并且穿透针必须垂直地压入试样,压入载荷为5kg。