泰勒公式及其应用论文)
- 格式:doc
- 大小:733.00 KB
- 文档页数:21
泰勒公式在计算方法中的应用摘要:泰勒公式是高等数学中的一个重要公式,同时它是求解高等数学问题的一个重要工具,在此结合例子简要讨论了泰勒公式在计算方法中的误差分析、函数值估测及近似计算、数值积分、常微分方程的数值解法中的应用。
通过本文的论述,可知泰勒公式可以使数值问题的求解简便。
关键词:泰勒公式;误差分析;近似计算;数值积分§1 引言泰勒公式是高等数学中的一个重要公式,利用泰勒公式能将一些初等函数展成幂级数,进行函数值的计算;而且函数的Taylor 公式是函数无穷小的一种精细分析,也是在无穷小邻域将超越运算转化为整幂运算的手段,从而可将无理函数或超越函数的极限转化为有理式的极限而求解,有效简化计算.泰勒公式作为求解高等数学问题的一个重要工具,在计算方法中有重要的应用。
§2泰勒(Taylor)公式定理 1 设函数()f x 在点0x 处的某邻域内具有1+n 阶导数,则对该邻域内异于0x 的任意点x ,在0x 与x 之间至少存在一点ξ,使得:()20000000()()()()()()()()()2!n n n f x f x f x f x f x x x x x x x R x '''=+-+-+-+……+n!(1)其中 (1)10()()()(1)!n n n f R x x x n ξ++=-+ (2)公式(1)称为()f x 按0()x x -的幂展开的带有拉格朗日型余项的n 阶泰勒公式,()n R x 的表达式(2)称为拉格朗日型余项.定理2 若函数()f x 在点0x 存在直至n 阶导数,则有()200000000()()()()()()()()(())2!n n n f x f x f x f x f x x x x x x x o x x '''=+-+-+-+-……+n!(3)公式(3)称为()f x 按0()x x -的幂展开的带有佩亚诺型余项的n 阶泰勒公式,形如0(())n o x x -的余项称为佩亚诺型余项.特别地:在泰勒公式(1)中,如果取00x =,则ξ在0与x 之间,因此可令(01),x ξθθ=<<从而泰勒公式就变成比较简单的形式,即所谓带有拉格朗日型余项的麦克劳林(Maclaurm )公式:()()()112(0)(0)()()(0)(0)2!(1)!nn n n f f f x f x f f x x x xn θ++'''=+++++……+n!(01)θ<<(4)在公式(3)中,如果取00x =,则得带有佩亚诺型余项的麦克劳林公式:()2(0)(0)()(0)(0)()2!n nn f f f x f f x x x o x '''=++++……+n!(5)§3 泰勒公式的求法(1)带佩亚诺余项的泰勒公式的求法只要知道()f x 在x =0x 处n 阶可导,就存在x =0x 带佩亚诺余项的n 阶泰勒公式。
泰勒公式的应用范文泰勒公式是一种在微积分中用来近似计算函数值的方法。
它将一个函数表示为一个无穷级数的形式,使得我们可以通过计算级数中的有限项来近似计算函数的值。
泰勒公式广泛应用于数学、物理学、工程学和计算机科学等领域,并对数值计算和数学建模等重要任务具有重要意义。
以下将介绍泰勒公式在这些领域的一些应用。
一、在数学领域的应用:1.函数近似:泰勒公式可用于近似计算一个函数在其中一点的函数值,特别是在点附近的小区间内。
这对于无法直接计算的复杂函数或含有未知变量的函数是非常有用的。
2.导数和高阶导数的计算:泰勒公式可以通过计算级数中的有限项来近似计算一个函数在其中一点的导数。
这对于无法直接计算导数或高阶导数的函数是非常有用的。
3.极限计算:泰勒公式提供了一种计算函数在一个点的极限的方法,特别是对于无法直接计算的函数或复杂函数而言。
二、在物理学领域的应用:1.运动学和动力学:泰勒公式可用于近似计算运动学和动力学中各种物理量的变化率,如速度、加速度和力。
2.波动学:泰勒公式可以近似计算波函数随时间和位置的变化,从而帮助解决波动学相关的问题,如声波、光波和电磁波等。
3.热力学:泰勒公式可用于计算物体在热力学过程中的温度、能量和熵等的变化。
三、在工程学领域的应用:1.信号处理:泰勒公式可以用于近似表示信号在时间域和频域中的变化,从而帮助处理和分析各种类型的信号。
2.控制理论:泰勒公式可用于近似表示控制系统中各种变量的变化,从而帮助设计和优化控制器,以实现稳定和可靠的系统性能。
3.电路分析:泰勒公式可用于近似计算电路中各种元件的电压、电流和功率等的变化,特别是在非线性电路和非稳态电路的分析中。
四、在计算机科学领域的应用:1.数值计算:泰勒公式可用于近似计算各种数学函数的值,从而帮助实现高效和准确的数值计算方法,如数值积分、数值微分和数值优化等。
2.图像处理:泰勒公式可以用于近似表示图像中各个像素值的变化,从而帮助实现图像增强、图像压缩和图像恢复等处理算法。
泰勒公式的应用论文泰勒公式是一个非常重要的数学工具,在物理、工程和其他科学领域都有广泛的应用。
本文将介绍一篇关于泰勒公式应用的论文,通过该论文的介绍,读者可以了解泰勒公式的具体应用以及其在该领域的重要性。
题目:《利用泰勒公式对非线性方程进行求解的数值方法研究》摘要:本文研究了一种利用泰勒公式对非线性方程进行求解的数值方法。
通过将非线性方程展开成泰勒级数的形式,可以近似地求解非线性方程,并得到更加精确的解。
本文通过对该数值方法进行理论推导和实验证明,证明了该方法的有效性和准确性。
引言:非线性方程是很多科学问题中常见的数学模型,然而求解非线性方程通常比线性方程复杂得多。
泰勒公式是一种在求解非线性方程时常用的近似方法。
通过将非线性方程进行泰勒级数展开,可以将非线性方程转化为线性方程或更简单的形式,从而得到近似的解。
方法:本文首先对泰勒公式进行了简要的介绍和推导。
然后,根据泰勒公式的展开形式,将非线性方程的各阶导数代入泰勒级数中,得到更简单的形式。
接下来,研究了如何选取适当的展开点和截断误差来提高近似解的精确性。
最后,利用MATLAB编写了求解非线性方程的数值算法,并通过多个实例进行了验证。
结果与讨论:通过对多个不同类型的非线性方程进行求解,得到了较好的结果。
与传统的数值方法相比,利用泰勒公式进行求解的方法具有更高的精确性和更快的收敛速度。
此外,通过调整展开点和增加泰勒级数的项数,还可以进一步提高解的精确度。
结论:本文研究了一种利用泰勒公式求解非线性方程的数值方法,并通过理论推导和实验证明了该方法的有效性和准确性。
该方法可以准确地求解非线性方程,并且具有更高的精确性和更快的收敛速度。
因此,该方法在实际应用中具有很大的潜力,可以应用于物理、工程和其他科学领域中。
展望:虽然本文对利用泰勒公式求解非线性方程的数值方法进行了研究和验证,但仍然有一些问题需要进一步探讨。
例如,如何选择展开点和确定截断误差的更准确方法,以及将该方法应用于更复杂的非线性方程等。
Taylor 公式的发展及其应用摘要:数学中Taylor 公式是分析和探究相关数学问题的有力工具。
本文将简要介绍Taylor 公式的概念,发展,基本内容式及其简单的应用。
关键词:Taylor 公式发展余项应用一、基本概念在数学中,泰勒公式是一个用函数在某点的信息描述其附近取值的公式。
如果函数足够平滑的话,在已知函数在某一点的各阶导数值的情况之下,泰勒公式可以用这些导数值做系数构建一个多项式来近似函数在这一点的邻域中的值。
我们在学习导数和微分概念时已经知道,如果函数f(x)在0x 可导,则有)())((')()(0000x x o x x x f x f x f -+-+=即在点0x 附近,用一次多项式))((')()(000x x x f x f x f -+=逼近函数)(x f 时,其误差为)(0x x -的高阶无穷小量。
然而在很多场合,取一次多项式逼近是不够的,往往需要用二次或高于二次的多项式去逼近,并要求误差为n x x o )(0-,其中n 为多项式的次数。
为此,我们考察任一n 次多项式n n n x x a x x a x x a a x p )(.......)()()(02020100-++-+-+=逐次求它在点0x 处的各阶导数,得到00)(a x p n =,10)('a x p n =,20!2)(''a x p n =,……()n n n a n x p !)(0=由此可见,多项式)(0x p n 的各项系数都由其在0x 的各阶到数值唯一确定。
对于一般函数f(x),设它在点0x 存在直到n 阶的导数,有这些导数构造一个n 次多项式n n n x x n x f x x x f x x x f x f T )(!)(........)(!2)('')(!1)(')(00)(200000-++-+-+=称为函数f (x )在点0x 处的Taylor 多项式,)(n x T 的各项系数!)(0)(k x fk (k=1,2……n )称为Taylor 系数。
关于泰勒公式的论文
泰勒公式是一个强大的数学工具,可以用来计算函数在其中一点的极
限或求解微分方程。
它最初由英国数学家约翰·泰勒于1715年发明,已
经被广泛使用了近300年。
从统计学、物理学和控制工程到经济学、医学
研究,泰勒公式都可以起到巨大的作用。
由于泰勒公式的重要性,关于它的研究也越来越多。
从1825年以来,论文和文章就一直在研究该公式和它的应用,以便更好地理解它背后的原理。
今天,有关泰勒公式的文献有数不清,可以用来帮助研究者们更好地
理解该公式。
首先,1825年,英国数学家兼物理学家莱斯利·卡罗尔发表了他的
论文“泰勒公式:一种新的数学理论”,该论文发表在英国物理学家詹姆斯·牛顿的《英国科学院学报》上。
这是关于泰勒公式的最早研究,主要
介绍了泰勒公式的原理,以及如何使用这一理论来解决复杂的数学问题。
随后,1945年,美国数学家蒂姆·麦克法兰发表了他的论文“基于
泰勒公式的信号分析技术”,该论文发表在《应用数学评论》上。
麦克法
兰的论文主要讨论了使用泰勒公式来进行信号分析的新技术,从而为计算
信号波形提供了一种新的方法。
此外,2024年,美国数学家胡安·德鲁伊斯·戈麦斯发表了他的论
文“泰勒公式在理论物理学中的应用”。
泰勒公式的作用范文泰勒公式是一种用于求解函数在一些点的近似值的方法。
它的作用范围非常广泛,可以应用在数学、物理、工程等许多领域中。
下面将详细介绍泰勒公式的作用范围。
首先,泰勒公式在数学中起到了非常重要的作用。
数学中的许多函数无法精确地表示成有限次幂级数表达式,而泰勒公式可以将这些函数近似为无穷级数。
通过泰勒公式,我们可以用有限次幂级数来近似表示复杂函数,这对于研究函数的性质和求解方程都非常有帮助。
例如,在微积分中,我们可以利用泰勒公式来求解复杂函数的导数,从而简化计算过程。
其次,泰勒公式在物理中也有广泛的应用。
物理学中的很多现象可以通过数学函数进行描述,而泰勒公式可以帮助我们近似求解这些函数。
例如,在运动学中,我们可以利用泰勒公式来确定时刻速度和位移的近似值。
在力学中,我们可以应用泰勒公式来计算物体在受力下的运动轨迹。
这些应用使得泰勒公式成为解决物理问题的有力工具。
此外,泰勒公式在工程领域也得到了广泛应用。
在工程设计中,我们常常需要对复杂的函数进行近似计算。
泰勒公式可以帮助工程师们通过有限次幂级数来逼近原函数,从而简化计算过程。
例如,在电路设计中,我们可以通过泰勒公式来近似求解电流和电压的关系。
在机械工程中,我们可以利用泰勒公式来计算物体在力的作用下的变形。
这些应用使得泰勒公式成为工程实践中的重要工具。
此外,在金融领域,泰勒公式也有着广泛的应用。
金融学中的许多模型可以通过数学函数进行描述,而泰勒公式可以帮助金融学家们近似求解这些函数。
例如,在期权定价模型中,我们可以利用泰勒公式来近似计算期权价格。
在风险管理中,我们可以应用泰勒公式来估计资产的价值变动。
这些应用使得泰勒公式成为金融学研究和实践中的重要工具。
总之,泰勒公式在数学、物理、工程和金融等领域都有着广泛的应用。
它可以帮助我们近似求解复杂函数,从而简化计算过程和问题求解。
无论是在理论研究还是在实践应用中,泰勒公式都起到了重要的作用。
对于研究者和工程师们来说,了解和掌握泰勒公式的方法和技巧是非常重要的。
泰勒公式及其应用摘 要 文章主要对泰勒公式在近似计算、求极限、证明不等式、外推、求曲线的渐近线方程和判断级数收敛性,对函数凹凸性及拐点判断、广义积分敛散性中的应用关于界的估计、和泰勒公式展开的唯一性问题做了简单系统的介绍和分析,从而体现泰勒公式式在微分学中占有很重要的地位.关键词 泰勒公式; 佩亚诺余项; 拉格朗日余项; 不等式; 根的唯一存在性; 极值; 近似计算.一.引言近代微积分的蓬勃发展,促使几乎所有的数学大师都致力于相关问题的研究,特别是泰勒,笛卡尔,费马,巴罗,沃利斯等人作出了具有代表性的工作.泰勒公式是18世纪早期英国牛顿学派最优秀代表人物之一的英国数学家泰勒在微积分学中将函数展开成无穷级数而定义出来的.泰勒将函数展开成级数得到泰勒公式,对于一般函数f ,设它在点0x 存在直到n 阶的导数,由这些导数构成一个n 次多项式()20000000()()()()()()()(),1!2!!n n n f x f x f x T x f x x x x x x x n '''=+-+-++-称为函数f 在点0x 处的泰勒多项式,若函数f 在点0x 存在直至n 阶导数,则有0()()(()),n n f x T x x x ο=+-即()200000000()()()()()()()()(()).2!!n n n f x f x f x f x f x x x x x x x x x n ο'''=+-+-++-+-称为泰勒公式.我们都知道,泰勒公式是数学分析中非常重要的内容,它的理论方法已经成为研究函数极限和估计误差等方面不可缺少的数学工具,集中体现了微积分“逼近法”的精髓。
在近似计算上有着独特的优势,利用它可以将非线性问题化为线性问题,并能满足很高的精确度要求,在微积分的各个方面都有重要的应用. 泰勒公式在分析和研究数学问题中有着重要作用,它可以应用于求极限、判断函数极值、求高阶导数在某些点的数值、判断广义积分收敛性、近似计算、不等式证明等方面.这篇主要在于探索泰勒公式及其应用的新方法,借助泰勒公式的广泛应用,将泰勒公式的知识应用到数学解题的各个方面和领域中去,得出泰勒公式在数学各方面的应用和解求方法的简便性.二.预备知识2.1泰勒公式的定义定义2.1]1[ 若函数()f x 在0x 存在n 阶导数,则有'''200000()()()()()()1!2!f x f x f x f x x x x x =+-+-+()00()()(),!n n n f x x x r x n +-+ (1)其中 0()()(())n n n r x r x o x x =-满足 上述公式称为()f x 在点0x x =处带有佩亚诺余项的的泰勒公式.当0x =0时,(1)式变成)(!)0(!2)0(!1)0()0()()(2'''n nn x o x n f x f x f f x f +++++= ,称此式为(带有佩亚诺余项的)麦克劳林公式.定义2.2]2[ 若函数 ()f x 在0x 某邻域内为存在直至 1+n 阶的连续导数,则''()'20000000()()()()()()()...()()2!!n n n f x f x f x f x f x x x x x x x r x n =+-+-++-+, (2)这里()n r x 为拉格朗日余项(1)10()()()(1)!n n n f r x x x n ξ++=-+,其中ξ在x 与0x 之间,称(2)为f 在0x 的泰勒公式.当0x =0时,(2)式变成''()'2(0)(0)()(0)(0)...()2!!n nn f f f x f f x x x r x n =+++++ 称此式为(带有拉格朗日余项的)麦克劳林公式.常见函数的展开式:12)!1(!!21+++++++=n xn xx n e n x x x e θ .)()!12()1(!5!3sin 221253++++-+-+-=n n n x o n x x x x x . 24622cos 1(1)()2!4!6!(2)!nnn x x x x x o x n =-+-++-+.2311ln(1)(1)()231n nn x x x x x o x n +++=-+-+-++.)(1112n n x o x x x x+++++=- , +-++=+2!2)1(1)1(x m m mx x m 定理 2.1]3[(介值定理) 设函数 f 在闭区间 ],[b a 上连续,且 )()(b f a f ≠,若0μ为介于 )(a f 与)(b f 之间的任何实数,则至少存在一点0x ),(b a ∈,使得00)(μ=x f .2.2泰勒公式的意义泰勒公式的意义是,用一个n 次多项式来逼近函数()f x .而多项式具有形式简单,易于计算等优点.泰勒公式由()f x 的n 次泰勒多项式()n P x 和余项0()(())n n R x o x x =-组成,我们来详细讨论它们.当n =1时,有 1000()()()()P x f x f x x x '=+-,是()y f x =的曲线在点00(,())x f x 处的切线(方程),称为曲线()y f x =在点00(,())x f x 的一次密切,显然,切线与曲线的差异是较大的,只是曲线的近似. 当n =2时,有2020000()()()()()()2!f x P x f x f x x x x x '''=+-+-, 是曲线()y f x =在点00(,())x f x 的“二次切线”,也称曲线()y f x =在点00(,())x f x 的二次密切.可以看出,二次切线与曲线的接近程度比切线要好.当次数越来越高时,接近程度越来越密切,近似程度也越来越高. 2.3泰勒公式余项的类型泰勒公式的余项分为两类,一类佩亚诺型余项0(())n o x x -,一类是拉格朗日型余项(1)101()()(1)!n n f x x n ξ++-+,它们的本质相同,但性质各异.佩亚诺型余项0(())n o x x -是定性的余项,仅表示余项是比0()n x x -(当0x x →时)高阶的无穷小.如33sin ()6x x x o x =-+,表示当0x →时,sin x 用36x x -近似,误差(余项)是比3x 高阶的无穷小.拉格朗日型余项(1)101()()(1)!n n f x x n ξ++-+是定量的余项(ξ也可以写成00()x x x θ+-).定量的余项一般用于函数值的计算与函数形态的研究.三.泰勒公式的应用3.1 .利用泰勒公式求极限简化极限运算,就可用某项的泰勒展开式来代替该项,使得原来函数的极限转化为类似多项式有理式的极限.例1. 求极限sin 2lim sin cos x x xe x xx x x →0-1--- .分析 : 此为00型极限,若用罗比达法求解,则很麻烦,这时可将cos x 和sin x , xe 分别用泰勒展开式代替,则可简化此比式.解: 由1sin 2xx e x x ---=233331()())2626x x x x x o x x x o x ++++-1--(-+=34333()()6126x x x o x o x ++=+, 3233sin cos ()(1())62x x x x x x o x x o x -=-+--+=33()3x o x + 于是1sin 2lim sin cos xx x e x x x x x →0----3333()162()3x o x x o x +==+,3. 2 利用泰勒公式证明不等式当所要证明的不等式是含有多项式和初等函数的混合物,不妨作一个辅助函数并用泰勒公式代替,往往使证明方便简捷.例1. 当0x ≥时,证明31sin 6x x x ≥-.证明 取31()sin 6f x x x x =-+,00x =,则 '''''''''(0)0,(0)0,(0)0,()1cos ,(0)0.f f f f x x f ====-≥带入泰勒公式,其中n =3,得31cos ()0003!x f x x θ-=+++,其中10<<θ. 故当0x ≥时,31sin 6x x x ≥-.例2. 设()f x 在[0,1]二次可导,而且(0)(1)0f f ==,01lim ()1x f x ≤≤=-,试求存在(0,1)ξ∈,使()8f ξ''≥.证: 由于()f x 在[0,1]的最小值不等于在区间端点的值,故在[0,1]内存在1x ,使1()1f x =-,由费马定理知,1()0f x '=. 又21111()()()()()()2!f f x f x f x x x x x η'''=+-+- 21()1()2!f x x η''=-+-,(η介于x 与1x 之间) 由于(0)(1)0f f ==,不令0x =和1x =,有211()0(0)1(0)2f f x ξ''==-+-, 所以21112()2(1)(1)f x x ξξ-''=-<<,当1112x <≤时,2128x -≥,而当1112x <<时,212(1)8x --≥,可见1()f ξ''与2()f ξ''中必有一个大于或等于8.3.3 利用泰勒公式判断广义积分的敛散性当级数的通项表达式是由不同类型函数式构成的繁难形式时,就可以利用泰勒公式将级数通项简化成统一形式,以便利用判敛准则.在判定广义积()a f x dx +∞⎰敛散性时, 通常选取广义积分1(0)p a dx p x +∞>⎰进行比较, 在此通过研究无穷小量()()f x x →+∞的阶来有效地选1pa dx x +∞⎰中的p 值,从而简单地判定()af x dx +∞⎰的敛散性(注意到:如果()af x dx +∞⎰得收敛,则()af x dx +∞⎰得收敛). 例 1.研究广义积分4dx +∞⎰的敛散性. 解 : 22(1)(1)1()2!x x x o x αααα-+=+++()f x =112233)(1)2x x=++--22223191131911())(1())22828o o x x x x x x =+⋅-⋅++-⋅-⋅+-3/23/2911()4o x x=-⋅+ ,因此,3/2()9lim14x f x x →+∞=,即()0f x →是1()x x →+∞的32阶,而3/241dx x +∞⎰收敛,故4()f x dx +∞⎰收敛,从而4dx +∞⎰.例2.讨论级数1n∞=∑的敛散性.注意到11ln ln(1)nn n+=+,若将其泰勒展开为1n的幂的形式,开二次方后恰与,会使判敛易进行.解:因为2341111111ln ln(1)234nn nn n n n n+=+=-+-+<,所以<所以nu=>,故该级数是正项级数.又因为3212n =>=-,所以332211)22nun n=-=.因为31212n n∞=∑收敛,所以由正项级数比较判别法知原级数收敛.3.4 利用泰勒公式判断函数的凸凹性及拐点例 1. 设()f x 在[a,b]上连续在(a,b)上具有一阶和二阶导数,若在(a,b)内 ()0f x ´´>()f x 在[a,b]上是凹向的. 12x x 证明:设c <d 为[a,b]内任意两点,且[c,d]足够小.<为[c,d]中的任意两点,1202x x =+记x 由定理条件得泰勒公式: 2000000()()()()()()((-))2n x x f x f x f x x x f x o x x ´´´-=+-++!,22102012001002000()()()()()()()()()()()22x x x x f x f x f x f x x x f x x x f x f x ´´´´´´--+=2+-+-++!!221020())())o x x o x x +(-+(-212()n x x x x 因为余项为-的高阶无穷小,[,]又为足够小,202000()()())()2x x f x o x x f x ´´´´-所以泰勒公式中+(-的符号与相同。
泰勒公式及其应用许雁琴【摘要】泰勒公式是高等数学的重要内容,借助它可以解决很多问题。
本文针对泰勒公式的应用讨论了9个问题,即应用泰勒公式定义某些非初等函数,近似计算和误差估计,对某些定积分进行近似计算,求某些复合函数的极限,求高阶导数在某些点的数值,研究函数的极值,证明不等式,利用泰勒公式判断级数的敛散性,求行列式的值。
%Talyor Formula is of great importance in advanced mathematics ,and very helpful to the solutions of many other mathematical problems .This article will discuss some applications of Talyor Formula ,i .e .defining some elementary functions ,approximate calculation and error estimation ,ap‐proximately calculating of some definite integrals ,get ting the limits of some composite functions ,get‐ting the numerical value of some points in higher derivatives ,studying the extremums of functions ,pro‐ving the inequalities ,testing of convergence and divergence of series ,and getting the values of deter mi‐nants .【期刊名称】《河南机电高等专科学校学报》【年(卷),期】2015(023)006【总页数】5页(P11-15)【关键词】泰勒公式;非初等函数;近似计算;极限;导数;积分;不等式;敛散性【作者】许雁琴【作者单位】河南机电高等专科学校,河南新乡 453000【正文语种】中文【中图分类】O174泰勒公式是高等数学中的一个重要内容,但一般教材中仅介绍了泰勒公式和求函数的泰勒展开式,而对泰勒公式在数学问题中的作用并未说明,在教学中学生常因学用脱离而难以理解。
泰勒公式的应用综述首先, 给出常见的泰勒公式.设函数f(x)在区间(a,b)内有n+1阶导数,x0∈(a,b),则对任意x∈(a,b), 有:f(x)=f(x0)+f′(x0)(x−x0)+f′′(x0)2!(x−x0)2+f′′′(x0)3!(x−x0)3+∙∙∙+f(n)(x0)n!(x−x0)n+R n(x).其中Rn(x)为余项, 常见的余项有:(1)佩亚诺型余项: R n(x)=o((x−x0)n);(2)拉格朗日型余项: R n(x)=f(n+1)(x0)(n+1)!(x−x0)n+1;(3)柯西型余项: R n(x)=f(n+1)(ϑ)n!(x−x0)(x−ϑ)n, 其中ϑ在x与x0之间.根据实际的学习情况, 我们知道遇到的大多数有关泰勒公式的问题是, 泰勒公式在x0=0时的特殊形式( 见文献[15]), 即:f(x)=f(0)+f′(0)x+f′′(0)2!x2+f′′′(0)3!x3+∙∙∙+f(n)(0)n!x n+o(x n) (1)f(x)=f(x0)+f′(x0)(x−x0)+f′′(x0)2!(x−x0)2+f′′′(x0)3!(x−x0)3+∙∙∙+f(n)(x0)n!(x−x0)n+f(n+1)(x0)(n+1)!(x−x0)n+1(2)(1)式及(2) 式就是分别带佩亚诺型及拉格朗日型余项的麦克劳林公式. 类似的常见函数的余项不同的麦克劳林公式有:e x=1+x+x22!+∙∙∙+x nn!+o(x n);sin x=x−x33!+x55!+∙∙∙+(−1)m−1x2m−1(2m−1)!+o(x2m);cos x=1−x22!+x44!+∙∙∙+(−1)m x2m(2m)!+o(x2m+1);ln(1+x)=x−x22+x33+∙∙∙+(−1)n−1x nno(x n);(1+x)α=1+αx+α(α−1)2!x2+∙∙∙+α(α−1)∙∙∙(α−n+1)n!x n+o(x n);111−x=1+x+x2+∙∙∙+x n+o(x n).e x=1+x+x22!+∙∙∙+x nn!+eθx(n+1)!x n+1,0<θ<1,x∈(−∞,+∞);sin x=x−x33!+x55!+∙∙∙+(−1)m−1x2m−1(2m−1)!+(−1)m cosθx(2m+1)!x2m+1;cos x=1−x22!+x44!+∙∙∙+(−1)m x2m(2m)!+(−1)m cosθx(2m+1)!x2m+1,0<θ<1,x∈(−∞,+∞);ln(1+x)=x−x22+x33+∙∙∙+(−1)n−1x nn+(−1)n x n+1(n+1)(1+θx)n+1,0<θ<1,x>1;(1+x)α=1+αx+α(α−1)2!x2+∙∙∙+α(α−1)∙∙∙(α−n+1)n!x n+α(α−1)∙∙∙(α−n)(n+1)!(1+θx)α−n−1x n+1,0<θ<1,x>1;1 1−x =1+x+x2+∙∙∙+x n+x n+1(1−θx)n+2,0<θ<1,|x|<1.1.1泰勒公式在数学分析中的应用1.1.1泰勒公式在求极限上的应用求极限limx→0cos x−e−x22x4讨论:观察发现针对于此题, 我们当然可以采用之前学习过的方法进行解答,但是我们发现由于题中出现指数幂的形式, 求解过程较繁琐, 在上面泰勒公式的证明中, 我们知道带有佩亚诺型余项的泰勒公式可以在极限求解中使用, 因此我们不妨一试(见文献[14]).根据前面我们可以写出余弦函数和底数为e的幂指数麦克劳林公式, 并做差有:cos x=1−x22+x224+o(x5);e−x 22=1−x22+x48+o(x5);cos x−e−x 22=−x412+o(x5);故而求得:lim x→0cos x−e−x22x4=limx→0−x412+o(x5)x4=−112.1.1.2泰勒公式在近似计算上的应用2例1: 计算e的值, 使其误差不超过10−6;解一开始我们不妨写出函数f(x)=e x的麦克劳林公式形式, 这个可以由泰勒公式写出, 即: e x=1+x+x22!+∙∙∙+x nn!+o(x n), 紧接着对于把麦克劳林公式, 我们可以直接换写为, 带有拉格朗日型余项的形式. 故由f(n+1)=e x, 得到e x=1+x+x2 2!+∙∙∙+x nn!+eθx(n+1)!x n+1,其中0<θ<1,x∈(−∞,+∞). 故R n(1)=eθ(n+1)!<3(n+1)!, 又n取值为9时, 可得R9(1)<310!=33628800<e−6. 则e的近似值为:e=1+1+12!+13!+∙∙∙+19!≈2.718285.例2:证明e 为无理数.证明常见函数f(x)=e x它的麦克劳林公式, 就是: e x=1+x+x22!+∙∙∙+x nn!+o(x n).写成拉格朗日型余项的时候就有:e x=1+x+x22!+∙∙∙+x nn!+eθx(n+1)!x n+1其中0<θ<1,x∈(−∞,+∞). 当x=1时有:e=1+1+12!+13!+∙∙∙+1n!+eθ(n+1)!(0<θ<1).即由上式得: n!e−(n!+n!+3∙4∙ ∙∙∙ ∙n+ ∙∙∙ +n+1)=e θ(n+1). 倘若e=pq(p,q为正整数), 则当n>q时, n!e为正整数, 从而式子n!e−(n!+n!+3∙4∙ ∙∙∙ ∙n+ ∙∙∙ +n+1)=eθ(n+1)左边是正整数. 且我们可知:一方面e θ(n+1)<e(n+1)<1(n+1), 另一方面n大于等于2时右边不是整数, 故而e是无理数.1.2泰勒公式在数值分析中的应用(见文献[4])1.2.1泰勒公式在数值微分上的应用设步长ℎ>0, 把函数f(x+ℎ), 以及函数f(x+ℎ)在x点泰勒展开, 即:f(x+ℎ)=f(x)+ℎf′(x)+ ∙∙∙+ℎkk!f(k)(x)+ℎk+1(k+1)!f(k+1)(ϑ1)3(1)f(x−ℎ)=f(x)−ℎf′(x)+ ∙∙∙+(−ℎ)kk!f(k)(x)+(−ℎ)k+1(k+1)!f(k+1)(ϑ2)(2)其中x−ℎ<ϑ2<x<ϑ1<x+ℎ.当k=1时, 由(1) 式可得:f′(x)=f(x+ℎ)−f(x)ℎ−ℎ2f′′(ϑ1),所以,一阶导数的向前差分公式近似为: f′(x)≈f(x+ℎ)−f(x)ℎ, 同时−ℎ2f′′(ϑ1)是产生的误差. 即k取值为2时,(1) 式和(2) 式作差可得f′(x)=f(x+ℎ)−f(x−ℎ)2ℎ−ℎ26f′′′(ϑ3).其中ϑ2<ϑ3<ϑ1. 则: f′(x)≈f(x+ℎ)−f(x−ℎ)2ℎ是一阶中心差分公式, 其中−ℎ26f′′′(ϑ3)是误差. 又k取值为3时,(1) 式和(2) 作和可得:f′′(x)=f(x+ℎ)−2f(x)+f(x−ℎ)ℎ−ℎ212f′′′′(ϑ4).其中ϑ2<ϑ3<ϑ1. 则: f′′(x)≈f(x+ℎ)−2f(x)+f(x−ℎ)ℎ是二阶中心差分公式, 其中−ℎ212f′′′′(ϑ4)是误差.除了上述之外, 我们进行近似求导时, 不妨使用积分来实现, 即有:Dℎf(x)=32ℎ3∫f(x−t)dt ℎ−ℎ.对函数f(x+t),t∈[−ℎ,ℎ]. 在x点进行泰勒展开可得:f(x+t)=f(x)+tf′(x)+t22f′′(x)+t36f′′′(ϑ5),并由上式可知: x−ℎ<ϑ5<x+ℎ, 且把(4) 式代入(3) 式有:Dℎf(x)=f′(x)+ℎ210f′′′((ϑ5),即:f′(x)≈32ℎ3∫tf(x+t)dt ℎ−ℎ,且其误差为−ℎ210f′′′((ϑ5).1.2.2泰勒公式在常微分方程数值解上的应用(见文献(4))4考虑一阶常微分方程初值问题:{p′=f(x,p),x∈[a,b],p(a)=p0,的数值解.解首先我们要知道, 数值解就是将一般函数p(x), 在离散的节点上的近似值p n≈p(x n)求解出来.其次考虑在[s,t]上, 建立等距的且离散的节点: s=x0< x1< ∙∙∙ <x N=t, 步长为r,即x n=x0+nr,n=0,1,∙∙∙,N.将p(x)在x n点泰勒展开, 可得(8) 式:p(x n+1)=p(x n)+ℎp′(x n)+ℎ22p′′(x n)+o(ℎ3)=p(x n)+ℎf(x n,p(x n))+ℎ22p′′(x n)+o(ℎ3)即得求解上述问题的欧拉法:p n+1=p n+ℎf(x n,p n),n=0,1,∙∙∙,N−1.假设p n是正确的, 即p n=p(x n), 则(8) 式减(9) 式, 可得局部截断误差(10) 式:p(x n+1)−p n+1=ℎ22p′′(x n)+o(ℎ3)对泰勒公式截断误差, 我们还可以在局部进行分析. 下面, 以辛普森(Simpson) 方法:p n+1=p nℎ3[f(x n,p n)+4f(x n+1,p n+1)+f(x n+2,p n+2)](11)为例, 且当它的近似值是准确值时展开分析, 即:p n+2=p(x n)+ℎ3[p′(x n)+4p′(x n+1)+p′(x n+2)](12)分别将p(x)和p′(x)在x n点泰勒展开, 可得:p(x)=p(x n)+(x−x n)p′(x)+∙∙∙+(x−x n)kk!p(k)(x)+o[(x−x n)k+1]5(13)p′(x)=p′(x n)+(x−x n)p′′(x)+∙∙∙+(x−x n)k−1p(k)(x)+o[(x−x n)k](k−1)!(14)又k取值为5时, 在(13) 式中取x=x n+2, 在(14) 式中分别取x=x n+1和x=x n+2, 代入(12) 式得, 辛普森(Simpson) 公式的局部截断误差:p(x n+2)−p n+2=ℎ5p(5)(x n)+o(ℎ6).906参考文献[1]徐会林, 刘智广, 肖中永. 从多项式逼近函数引出泰勒公式[J]. 高师理科学刊, 2018, 38(02): 57-60.[2]张笛. 罗尔中值定理及其应用[J]. 数学学习与研究, 2014(01): 122-123.[3]李晟威. 泰勒公式的证明及应用[J]. 课程教育研究, 2018(42): 129-130.[4]徐会林. 泰勒公式在数值分析中的应用[J]. 韶关学院学报, 2019, 40(12): 5-8.[5]阙凤珍, 温少挺. 柯西中值定理的应用[J]. 数学学习与研究, 2016(21): 19+21.[6]王建云, 全宏波, 赵育林. 浅谈拉格朗日中值定理的几种证明方法[J]. 数学学习与研究, 2021(07): 150-151.[7]陈天戈. 泰勒的著作与成就[J]. 语数外学习(高中版下旬), 2021(04): 63-64.[8]胡有婧. 向量函数的泰勒公式的不同形式及其证明[J]. 数学学习与研究,2021(29): 140-141.[9]韩树新, 何军, 王钥, 王炜卿. 浅谈拉格朗日对数学的贡献[J]. 教育教学论坛,2020(32): 322-323.[10]何锐, 春光. 数学“ 诗人” ——柯西[J]. 课堂内外(小学智慧数学), 2021(12):24-27.[11]Ian Tweddle. The prickly genius – Colin MacLaurin (1698–1746)[J]. TheMathematical Gazette,1998,82(495).[12]迟炳荣, 王秀红. 用数学归纳法证明泰勒公式[J]. 中学数学杂志, 2008(09):13-14.[13]姚海燕. 带有佩亚诺型余项的泰勒公式的新证明[J]. 教育教学论坛, 2014(20):120.[14]胡汉章. 泰勒公式在数学分析解题中的应用探讨[J]. 教育教学论坛, 2020(52):281-282.7[15]何小芳. 浅谈泰勒(Taylor) 公式的应用[J]. 企业家天地(理论版), 2011(07):192-194.8。
泰勒公式的⼏种证明法及其应⽤-毕业论⽂泰勒公式的⼏种证明法及其应⽤ -毕业论⽂【标题】泰勒公式的⼏种证明法及其应⽤【作者】张廷兵【关键词】泰勒公式构造函数法数学归纳法柯西中值定理应⽤【指导⽼师】陈波涛【专业】数学与应⽤数学【正⽂】1引⾔泰勒公式在分析和研究数学问题⽅⾯有着重要的应⽤。
但是它的证明⼤多数是重复运⽤柯西中值定理来推导,这给初学者从理解到接受有⼀定的困难。
为了给不同层次的学习者理解和接受泰勒公式提供⽅便。
本⽂研究不同的证明⽅法,给学习者提供了选择的余地。
归根结底,使学习者更好运⽤泰勒公式,为此就对泰勒公式的应⽤及技巧的总结。
2 带佩亚诺型余项泰勒公式的证明⽅法在初等函数中,最简单的函数就是多项式,对于数值计算和理论分析都很⽅便。
如果将⼀类复杂的函数⽤多项式来近似表⽰出来,其误差⼜能满⾜⼀定的要求。
那么,我们就可以表⽰出此函数。
若函数是n次多项式令 .于是对任意⼀个函数,只要函数在a点存在n阶导数,我们就可以写出⼀个相应的多项式称为函数在a点的n次泰勒多项式,那么n次泰勒多项式与函数在在点a的邻域上有什么联系呢,下⾯的定理回答了这个问题(定理1[1] 若函数在a点存在n阶导数 ,则其中 ,则上式就为在a点的泰勒公式, 为泰勒公式的余项.2.1⽅法⼀证明:将上式改为,有分⼦是函数 ,分母是函数 .应⽤n-1次柯西中值定理[2]其中其中其中 (⾄此已应⽤了n-1次柯西定理)当根据右导数定义,有同法可证:于是 , 表⽰余项是佩亚诺型. 证毕.2.2⽅法⼆证明在的⼀个邻域内有⼀阶导数,则存在且在处连续,即有则由极限与⽆穷⼩量的关系有:( 是⽆穷⼩量),⼜则 (2—1) 从(2—1)式推出:⽐较⽆穷⼩量与== (因为⼆阶可导) ⼜由极限与⽆穷⼩量的关系有:将上边代⼊(2—1)式:设 .则在处有阶导数,且设当时仍有:+ (2—2)从(2—2)中推出⽐较与 :=则: 即将上述代⼊(2—2)得:即当时, 仍可表⽰的阶多项式与之和,故对⼀切⾃然数n均有:2.3⽅法三证:设 [3]现在只要证显然可知,并易知因为存在,所以在点a的某领域内存在n=1阶导函数 . 于是,当且时,允许接连使⽤洛⽐达法则n-1次,得到=0证毕 .3带拉格朗⽇型余项的泰勒公式的证明⽅法定理1只是给出余项的定性描述,还不能进⾏定量的估计,下⾯定理解决了定性的估计.定理2[1] 若函数在闭区间[ a , b ] 上有连续的n 阶导数,在开区间( a , b) 内存在n + 1 阶导数则对任何x ?( a , b) ,则存在 ,使得3.1⽅法四在《⾼等数学》中,泰勒公式⼀般都是⽤柯西定理证明的,然⽽拉格朗⽇定理作为泰勒公式的特殊情况,担当对泰勒公式的证明,似乎更在情理之中。
泰勒公式及其应用论文)泰勒公式及其应用摘 要文章主要对泰勒公式在近似计算、求极限、证明不等式、外推、求曲线的渐近线方程和判断级数收敛性,对函数凹凸性及拐点判断、广义积分敛散性中的应用关于界的估计、和泰勒公式展开的唯一性问题做了简单系统的介绍和分析,从而体现泰勒公式式在微分学中占有很重要的地位.关键词 泰勒公式; 佩亚诺余项; 拉格朗日余项; 不等式; 根的唯一存在性; 极值; 近似计算.一.引言近代微积分的蓬勃发展,促使几乎所有的数学大师都致力于相关问题的研究,特别是泰勒,笛卡尔,费马,巴罗,沃利斯等人作出了具有代表性的工作.泰勒公式是18世纪早期英国牛顿学派最优秀代表人物之一的英国数学家泰勒在微积分学中将函数展开成无穷级数而定义出来的.泰勒将函数展开成级数得到泰勒公式,对于一般函数f ,设它在点0x 存在直到n 阶的导数,由这些导数构成一个n 次多项式()20000000()()()()()()()(),1!2!!n n n f x f x f x T x f x x x x x x x n '''=+-+-++-称为函数f 在点0x 处的泰勒多项式,若函数f 在点0x 存在直至n 阶导数,则有0()()(()),n n f x T x x x ο=+-即()200000000()()()()()()()()(()).2!!n n n f x f x f x f x f x x x x x x x x x n ο'''=+-+-++-+-称为泰勒公式.我们都知道,泰勒公式是数学分析中非常重要的内容,它的理论方法已经成为研究函数极限和估计误差等方面不可缺少的数学工具,集中体现了微积分“逼近法”的精髓。
在近似计算上有着独特的优势,利用它可以将非线性问题化为线性问题,并能满足很高的精确度要求,在微积分的各个方面都有重要的应用. 泰勒公式在分析和研究数学问题中有着重要作用,它可以应用于求极限、判断函数极值、求高阶导数在某些点的数值、判断广义积分收敛性、近似计算、不等式证明等方面. 这篇主要在于探索泰勒公式及其应用的新方法,借助泰勒公式的广泛应用,将泰勒公式的知识应用到数学解题的各个方面和领域中去,得出泰勒公式在数学各方面的应用和解求方法的简便性.二.预备知识2.1泰勒公式的定义定义2.1]1[ 若函数()f x 在0x 存在n 阶导数,则有'''200000()()()()()()1!2!f x f x f x f x x x x x =+-+-+()00()()(),!n n n f x x x r x n +-+ (1)其中 0()()(())n n n r x r x o x x =-满足上述公式称为()f x 在点0x x =处带有佩亚诺余项的的泰勒公式.当0x =0时,(1)式变成)(!)0(!2)0(!1)0()0()()(2'''n nn x o x n f x f x f f x f +++++= ,称此式为(带有佩亚诺余项的)麦克劳林公式.定义2.2]2[ 若函数 ()f x 在0x 某邻域内为存在直至 1+n 阶的连续导数,则''()'20000000()()()()()()()...()()2!!n n n f x f x f x f x f x x x x x x x r x n =+-+-++-+, (2)这里()n r x 为拉格朗日余项(1)10()()()(1)!n n n f r x x x n ξ++=-+,其中ξ在x 与0x 之间,称(2)为f 在0x 的泰勒公式.当0x =0时,(2)式变成''()'2(0)(0)()(0)(0)...()2!!n nn f f f x f f x x x r x n =+++++ 称此式为(带有拉格朗日余项的)麦克劳林公式.常见函数的展开式:12)!1(!!21+++++++=n xn xx n e n x x x e θ .)()!12()1(!5!3sin 221253++++-+-+-=n n n x o n x x x x x . 24622cos 1(1)()2!4!6!(2)!nnn x x x x x o x n =-+-++-+.2311ln(1)(1)()231n nn x x x x x o x n +++=-+-+-++.)(1112n n x o x x x x+++++=- , +-++=+2!2)1(1)1(x m m mx x m 定理 2.1]3[(介值定理) 设函数 f 在闭区间 ],[b a 上连续,且 )()(b f a f ≠,若0μ为介于 )(a f 与)(b f 之间的任何实数,则至少存在一点0x ),(b a ∈,使得00)(μ=x f .2.2泰勒公式的意义泰勒公式的意义是,用一个n 次多项式来逼近函数()f x .而多项式具有形式简单,易于计算等优点.泰勒公式由()f x 的n 次泰勒多项式()n P x 和余项0()(())n n R x o x x =-组成,我们来详细讨论它们.当n =1时,有 1000()()()()P x f x f x x x '=+-,是()y f x =的曲线在点00(,())x f x 处的切线(方程),称为曲线()y f x =在点00(,())x f x 的一次密切,显然,切线与曲线的差异是较大的,只是曲线的近似.当n =2时,有2020000()()()()()()2!f x P x f x f x x x x x '''=+-+-, 是曲线()y f x =在点00(,())x f x 的“二次切线”,也称曲线()y f x =在点00(,())x f x 的二次密切.可以看出,二次切线与曲线的接近程度比切线要好.当次数越来越高时,接近程度越来越密切,近似程度也越来越高. 2.3泰勒公式余项的类型泰勒公式的余项分为两类,一类佩亚诺型余项0(())n o x x -,一类是拉格朗日型余项(1)101()()(1)!n n f x x n ξ++-+,它们的本质相同,但性质各异.佩亚诺型余项0(())n o x x -是定性的余项,仅表示余项是比0()n x x -(当0x x →时)高阶的无穷小.如33sin ()6x x x o x =-+,表示当0x →时,sin x 用36x x -近似,误差(余项)是比3x 高阶的无穷小.拉格朗日型余项(1)101()()(1)!n n f x x n ξ++-+是定量的余项(ξ也可以写成00()x x x θ+-).定量的余项一般用于函数值的计算与函数形态的研究.三.泰勒公式的应用3.1 .利用泰勒公式求极限简化极限运算,就可用某项的泰勒展开式来代替该项,使得原来函数的极限转化为类似多项式有理式的极限.例1.求极限sin 2limsin cos x x xe x xx x x →0-1--- .分析 : 此为0型极限,若用罗比达法求解,则很麻烦,这时可将cos x 和sin x ,x e 分别用泰勒展开式代替,则可简化此比式.解:由1sin 2xx e x x ---=233331()())2626x x x x x o x x x o x ++++-1--(-+=34333()()6126x x x o x o x ++=+, 3233sin cos ()(1())62x x x x x x o x x o x -=-+--+=33()3x o x + 于是1sin 2lim sin cos xx x e x x x x x →0----3333()162()3x o x x o x +==+,3. 2 利用泰勒公式证明不等式当所要证明的不等式是含有多项式和初等函数的混合物,不妨作一个辅助函数并用泰勒公式代替,往往使证明方便简捷.例1. 当0x ≥时,证明31sin 6x x x ≥-.证明 取31()sin 6f x x x x =-+,00x =,则'''''''''(0)0,(0)0,(0)0,()1cos ,(0)0.f f f f x x f ====-≥带入泰勒公式,其中n =3,得31cos ()0003!x f x x θ-=+++,其中10<<θ. 故当0x ≥时,31sin 6x x x ≥-.例2. 设()f x 在[0,1]二次可导,而且(0)(1)0f f ==,01lim ()1x f x ≤≤=-,试求存在(0,1)ξ∈,使()8f ξ''≥.证: 由于()f x 在[0,1]的最小值不等于在区间端点的值,故在[0,1]内存在1x ,使1()1f x =-,由费马定理知,1()0f x '=. 又21111()()()()()()2!f f x f x f x x x x x η'''=+-+- 21()1()2!f x x η''=-+-,(η介于x 与1x 之间) 由于(0)(1)0f f ==,不令0x =和1x =,有211()0(0)1(0)2f f x ξ''==-+-, 所以21112()2(1)(1)f x x ξξ-''=-<<,当1112x <≤时,2128x -≥,而当1112x <<时,212(1)8x --≥,可见1()f ξ''与2()f ξ''中必有一个大于或等于8.3.3 利用泰勒公式判断广义积分的敛散性当级数的通项表达式是由不同类型函数式构成的繁难形式时,就可以利用泰勒公式将级数通项简化成统一形式,以便利用判敛准则.在判定广义积()a f x dx +∞⎰敛散性时, 通常选取广义积分1(0)pa dx p x +∞>⎰进行比较, 在此通过研究无穷小量()()f x x →+∞的阶来有效地选1pa dx x +∞⎰中的p 值,从而简单地判定()af x dx +∞⎰的敛散性(注意到:如果()af x dx +∞⎰得收敛,则()af x dx +∞⎰得收敛).例 1.研究广义积分4dx +∞⎰的敛散性. 解 : 22(1)(1)1()2!x x x o x αααα-+=+++()f x =112233)(1)2x x=++--22223191131911())(1())22828o o x x x x x x =+⋅-⋅++-⋅-⋅+- 3/23/2911()4o x x=-⋅+ ,因此,3/2()9lim14x f x x →+∞=,即()0f x →是1()x x→+∞的32阶,而3/241dx x +∞⎰收敛,故4()f x dx +∞⎰收敛,从而4dx +∞⎰.例2.讨论级数1n∞=∑的敛散性.注意到11ln ln(1)nn n+=+,若将其泰勒展开为1n的幂的形式,开二次方后恰与相呼应,会使判敛易进行.解:因为2341111111ln ln(1)234nn nn n n n n+=+=-+-+<,所以所以nu=>,故该级数是正项级数.又因为3212n=>==-,所以332211)22nun n=<-=.因为31212n n∞=∑收敛,所以由正项级数比较判别法知原级数收敛.3.4 利用泰勒公式判断函数的凸凹性及拐点例 1. 设()f x 在[a,b]上连续在(a,b)上具有一阶和二阶导数,若在(a,b)内 ()0f x ´´>()f x 在[a,b]上是凹向的.12x x 证明:设c <d 为[a,b]内任意两点,且[c,d]足够小.<为[c,d]中的任意两点,1202x x =+记x 由定理条件得泰勒公式: 2000000()()()()()()((-))2n x x f x f x f x x x f x o x x ´´´-=+-++!,22102012001002000()()()()()()()()()()()22x x x x f x f x f x f x x x f x x x f x f x ´´´´´´--+=2+-+-++!!221020())())o x x o x x +(-+(-212()n x x x x 因为余项为-的高阶无穷小,[,]又为足够小,202000()()())()2x x f x o x x f x ´´´´-所以泰勒公式中+(-的符号与相同。