超临界流体萃取过程
- 格式:ppt
- 大小:4.88 MB
- 文档页数:25
超临界流体萃取的基本原理引言超临界流体技术是目前研究热度较高的一种技术,它以超临界流体为溶剂,通过现代高级分离技术,对不同物质的分离提纯和有效利用进行研究。
本文主要讲述超临界流体萃取(SFE)的基本原理,包括超临界流体的基本概念、SFE的实验原理、其在不同领域的应用及前景等方面。
超临界流体的概念超临界流体是在它们的扩散零点(临界点)之上,温度和压力都超过其临界值的物质,具有很强的溶解能力、低粘度、高扩散系数和可控的密度等特点。
常见的超临界流体有二氧化碳、二甲醚、氨和正戊烷等,其中以二氧化碳为最为常用。
SFE的实验原理SFE的实验基本原理与传统的液液萃取相似,只是替换为超临界溶剂进行操作,通过对萃取物质和超临界流体的相互作用进行调控,完成不同物质的分离提纯。
其实验流程一般包括以下几步:1.选择合适的超临界流体作为溶剂,并确定实验所需要的温度和压力等操作条件;2.将物质样品与超临界流体进行接触,利用物质与超临界流体之间的加热和冷却作用,控制物质的溶解和分离;3.将混合物通过压力降低或者温度升高等方式,溶剂被回收,分离出物质。
SFE在不同领域的应用农药残留超临界二氧化碳在农业领域中应用极其广泛,并主要应用于对农药残留的检测和分析,其萃取效果和效率比传统的方法更优秀,且对环境污染小。
食品中的添加剂超临界流体萃取技术可应用于食品中添加剂的检测,其具有灵敏度高、检测时间快的特点,并且可对检测样本进行多重分析,保障食品安全性。
药物大分子SFE在药物大分子中的应用也日益广泛,SFE能够提取高质量和高精度的药物大分子,具有独特的分离空间,让分离更加准确和精准。
SFE的前景超临界流体技术由于其环保、高效、高选择性等特点,未来在食品、生物医药、环境保护等领域的应用前景广阔。
同时,与其他萃取技术相比,SFE是一种绿色萃取技术,其萃取物质充分,并且不会产生污染物和毒性物质,因而得到越来越广泛的关注与应用。
结论SFE技术在农药残留、食品中添加剂、药物大分子等多个领域都有广泛应用,其优点在于高效、环保、高选择性等特点。
超临界流体萃取的三种典型工艺流程下载温馨提示:该文档是我店铺精心编制而成,希望大家下载以后,能够帮助大家解决实际的问题。
文档下载后可定制随意修改,请根据实际需要进行相应的调整和使用,谢谢!并且,本店铺为大家提供各种各样类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,如想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by theeditor. I hope that after you download them,they can help yousolve practical problems. The document can be customized andmodified after downloading,please adjust and use it according toactual needs, thank you!In addition, our shop provides you with various types ofpractical materials,such as educational essays, diaryappreciation,sentence excerpts,ancient poems,classic articles,topic composition,work summary,word parsing,copy excerpts,other materials and so on,want to know different data formats andwriting methods,please pay attention!超临界流体萃取的三种典型工艺流程。
1. 动态萃取法。
超临界流体的应用超临界流体萃取( Supercritical fluid extraction,简写SCFE ) 是一种起源于20 世纪40 年代, 20 世纪70 年代投入工业应用的新型的萃取分离、精制技术, 已广泛应用于食品、香料、生物、医药、化工、轻工、冶金、环保、煤炭和石油等深加工领域中,并取得成功。
过去, 分离天然的有机成分一直沿用水蒸汽蒸馏法、压榨法、有机溶剂萃取法等。
水蒸汽蒸馏法需要将原料加热, 不适用于化学性质不稳定的热敏性成分的提取; 压榨法得率低; 有机溶剂萃取法在去除溶剂时会造成产品质量下降或有机溶剂残留; 而超临界流体萃取法则有效地克服了传统分离方法的不足,利用在较低临界温度以上的高压气体作为溶剂, 经过分离、萃取、精制有机成分。
1 超临界萃取技术的基本原理超临界流体( Supercritical Fluid, 简写为SCF ) ,是超过临界温度( Tc ) 和临界压力(Pc)的非凝缩性的高密度流体。
既不是气体, 也不是液体, 是一种气液不分的状态, 性质介于气体和液体之间, 具有优异的溶剂的性质, 粘度低, 密度大, 有较好的流动、传质、传热和溶解性能。
流体处于超临界状态时, 其密度接近于液体密度。
易随流体压力和温度的改变发生十分明显的变化, 而溶质在超临界流体中的溶解度随超临界流体密度的增大而增大。
超临界流体萃取正是利用这种性质, 在较高压力下, 将溶质溶解于流体中, 然后降低流体溶液的压力或升高流体溶液的温度, 使溶解于超临界流体中的溶质因其密度下降溶解度降低而析出, 从而实现特定溶质的萃取。
发达国家如德国、法国、日本、澳大利亚、意大利和巴西等国在这方面做了很多的研究工作,目前研究的体系有甾醇- 维生素E、柑橘油和各种不饱和脂肪酸, 研究的内容有相平衡、理论级计算、理论塔板高度和传质单元高度的确定、工艺操作条件的优选、萃取柱内的浓度分布、能耗估算、萃取柱设计、过程工艺与设备的数学模拟等[ 1~ 8]。
超临界萃取详解超临界流体萃取:作为一种分离过程,是基于一种溶剂对固体或液体的萃取能力和选择性,在超临界状态下较之在常温常压下可得到极大的提高。
原理:利用超临界流体作为萃取剂,从固体或液体中萃取出某种高沸点和热敏性成分,以达到分离和纯化目的的一种分离技术。
超临界流体:即温度和压力略超过或靠近超临界温度(Tc)和临界压力(Pc),介于气体和液体之间的流体。
超临界流体萃取过程:介于蒸馏和液-液萃取过程之间,是利用超临界状态的流体,依靠被萃取物质在不同蒸气压力下所具有的不同化学亲和力和溶解能力进行分离、纯化的单元操作。
超临界流体与待分离混合物中的溶质具有异常相平衡行为和传递性能,且它对溶质的溶解能力随着压力和温度的改变而在相当宽的范围内发生变动,因此利用超临界流体作为溶剂可从多种液态或固态混合物中萃取出待分离的组分超临界流体:指在临界温度和临界压力以上的流体。
临界温度:指高于此温度时,该物质处于无论多高压力下均不能被液化时的温度。
临界压力:临界区附近压力和温度的变化,对密度的影响?非挥发性溶质在超临界流体中的溶解度与流体密度的关系?在临界区附近压力和温度的微小变化,可引起流体密度的大幅度变化。
溶质在超临界流体中的溶解度大致和流体的密度成正比。
b.超临界流体的传递性质:超临界流体的密度近似于液相,溶解能力也基本上相同,而黏度却接近普通气体,自扩散能力比液体大约100倍。
此外,传递性质值的范围,在气体和液体之间。
超临界流体是一种低黏度、高扩散系数、易流动的相;扩散传递更加容易并能减少泵送所需的能量。
降低了与之相平衡的液相黏度和表面张力,提高了平衡液相的扩散系数,有利于传质。
在临界点附近,压力和温度的微小变化可对溶剂的密度、扩散系数、表面张力、黏度、溶解度、介电常数等带来明显的变化。
c.超临界流体的选择性有效地分离产物或除去杂质的关键是用作萃取剂的超临界流体应具有很好的选择性按相似相容的原则超临界流体与被萃取物质的化学性质越相按操作角度来看操作温度越接近临界温度,溶解能力越大基本原则超临界流体的化学性质和待分离的物质化学性质相近;操作温度和超临界流体的临界温度相近。
第三章超临界流体萃取定义:即用超临界流体作为萃取剂的萃取过程一、超临界流体指处于临界温度Tc和临界压力Pc之上的流体(它不是气体也不是液体)。
超临界C02(研究最多、应用最广)1、临界压力(7.39 MPa)适中;2、临界温度(31.1 ℃)接近室温;3、便宜易得;4、无毒、惰性,是理想的绿色溶剂;5、极易从萃取产物中分离出来。
典型应用:咖啡因、植物油脂、天然香料与药物的萃取。
超临界流体的特性(1)密度、粘度和扩散系数的特点密度比气体大得多,与液体接近,使其对溶质有较大的溶解度。
粘度接近气体,比液体小得多。
扩散系数介于气体和液体之间,是气体的几百分之一, 是液体的几百倍。
与液体相比,超临界流体粘度小、扩散系数大使其传质速率大大高于液体。
(2)溶解特性在临界点附近,压力和温度的变化可引起超临界流体密度急剧变化, 相应地使溶质在超临界流体中的溶解度发生急剧变化,因而可利用压力与温度的改变来实现萃取和分离。
有机物在超临界流体中溶解度的变化:低于临界压力时,几乎不溶解;高于临界压力时,溶解度随压力急剧增加。
二、超临界流体萃取原理流体在临界区附近,压力和温度的微小变化,会引起流体的密度大幅度变化,而非挥发性溶质在超临界流体中的溶解度大致上和流体的密度成正比。
利用流体在超临界状态下对物质有特殊增加的溶解度,而在低于临界状态下基本不溶解的特性. (1)超临界流体萃取过程一般分两步(以超临界C02为例)(2)超临界流体萃取特点① 高压下进行,设备及工艺技术要求高, 投资比较大。
② 可以在接近室温下完成(对超临界C02而言),特别适用于热敏性天然产物的分离。
③ 分离工艺流程简单,主要由萃取器和分离器二部分组成,而且萃取和分离通过改变温度和压力即可实现。
④ 超临界流体循环使用,无需溶剂回收设备,不产生二次污染。
⑤ 被萃取物中基本无萃取剂残留。
(1)萃取原料装入萃取釜,超临界C02从釜底进入,与被萃取物料充分接触,选择性溶解出被萃取物。
超临界萃取实验1.超临界萃取工艺流程图2.实验步骤2.1开机前的准备工作(1) 首先检查电源、三相四线是否完好无缺。
(AC380V/50HZ)(2) 冷冻机及储罐的冷却水源是否畅通,冷箱内为30%的乙二醇+70%的水溶液。
(3) CO2气瓶压力保证在5~6MPa的气压,且食品级净重大于等于22kg。
(4) 检查管路接头以及各连接部位是否牢靠。
(5) 将每个热箱内加入冷水,不宜太满,离箱盖2公分左右。
(6) 萃取原料装入料筒,原料不应装太满。
离过滤网2~3公分左右。
(7) 将料筒装入萃取缸,盖好压环及上堵头。
(8) 如果萃取液体物料需加入夹带剂时,将液料放入携带剂罐,可用泵压入萃取缸内。
2.2开机操作顺序(1) 先开电源开关,三相电源指示灯都亮,则说明电源已接通,再启动电源的(绿色)按钮。
(2) 接通制冷开关,同时接通水循环开关。
(3) 开始加温,先将萃取缸、分离Ⅰ、分离Ⅱ、精馏柱的加热开关接通,将各自控温仪调整到各自所需的设定温度。
如果精馏柱参加整机循环需打开与精馏柱相应的加热开关。
(4) 在冷冻机温度降到0℃左右,且萃取缸、分离Ⅰ、分离Ⅱ、温度接近设定的要求后,进行下列操作。
如萃取缸40℃,分离Ⅰ50℃,分离Ⅱ35℃,其中萃取缸与分离Ⅰ温度小于等于75℃,分离Ⅱ温度不变。
(5) 开始制冷的同时将CO2气瓶通过阀门2进入净化器、冷盘管和贮罐,CO2进行液化,液态CO2通过泵、混合气、净化器进入萃取缸(萃取缸已装样品且关闭上堵头),等压力平衡后,打开放空阀门4,慢慢放掉残留空气以降低部分压力后,关闭放空阀。
(6) 加压力:先将电极点拨到需要的压力(上限),启动泵Ⅰ绿色按钮,打开变频器上的RUN,如果反转时,按一下触摸开关FWD/PEV。
当压力加到接近设定压力(提前1MPa左右),开始打开萃取缸后面的节流阀门,具体怎么调节,根据下面不同流向:①萃取缸→分离器Ⅰ→分离Ⅱ→回路从阀门3进萃取缸,阀门5、7进入分离Ⅰ,阀门9、10进入分离Ⅱ,阀门13、12、1回路循环;调节阀门7控制萃取缸压力,调节阀门10控制分离Ⅰ压力,调节阀门12控制分离Ⅱ压力。