水下爆炸冲击波的传播特性试验研究
- 格式:doc
- 大小:12.22 KB
- 文档页数:1
水下爆炸瞬态水动力学效应研究一、水下爆炸瞬态水动力学效应概述水下爆炸是一种复杂的物理现象,涉及到水介质中的爆炸波传播、水动力响应以及结构物的冲击效应。
随着海洋工程、事应用以及深海资源开发等领域的发展,水下爆炸瞬态水动力学效应的研究显得尤为重要。
本文将从水下爆炸的基本特性、影响因素及其在不同应用领域中的作用等方面进行探讨。
1.1 水下爆炸的基本特性水下爆炸是指在水介质中发生的爆炸现象。
与陆地爆炸相比,水下爆炸具有独特的传播机制和效应。
爆炸波在水介质中的传播速度和衰减特性与空气介质有显著差异,主要表现为爆炸波的传播速度更快,衰减更慢。
此外,水下爆炸还会产生复杂的压力波、温度波和速度波,这些波动对周围环境和结构物产生显著影响。
1.2 水下爆炸的影响因素水下爆炸的效应受到多种因素的影响,主要包括爆炸物的性质、爆炸深度、水介质的物理特性等。
爆炸物的性质决定了爆炸波的初始能量和传播特性,而爆炸深度则影响爆炸波的传播路径和衰减过程。
水介质的密度、弹性模量和粘滞性等物理特性也对爆炸波的传播和效应产生重要影响。
1.3 水下爆炸的应用领域水下爆炸在事、海洋工程、深海资源开发等多个领域有着广泛的应用。
在事领域,水下爆炸效应的研究有助于提高潜艇的隐蔽性和生存能力,同时也对水雷的布设和清除具有重要意义。
在海洋工程领域,水下爆炸效应的研究有助于评估和预防海洋设施在极端条件下的安全风险。
在深海资源开发领域,水下爆炸效应的研究则有助于提高资源开采的效率和安全性。
二、水下爆炸瞬态水动力学效应的理论研究水下爆炸瞬态水动力学效应的理论研究是理解其复杂现象的基础。
通过数学模型和数值模拟,可以深入分析爆炸波在水介质中的传播机制和效应。
2.1 数学模型的建立建立水下爆炸瞬态水动力学效应的数学模型是研究其传播机制的关键。
常用的数学模型包括流体动力学方程、热力学方程和物质守恒方程等。
这些方程描述了爆炸波在水介质中的传播过程,包括压力波、温度波和速度波的生成和传播。
水下和空中爆炸冲击波传播特性对比分析张社荣1,孔源1,王高辉1,2【摘要】由于水和空气的物理属性差异以及与爆炸产物的界面作用效应不同,使得爆炸冲击波在水和空气中传播特性存在较大差异。
通过构建自由场水下和空中爆炸耦合数值仿真模型,对水下和空中爆炸冲击波传播特性进行对比分析,研究了起爆介质对冲击波峰值压力、冲量、传播速度的影响;同时考虑冲击波与自由面反射的稀疏波相互作用过程,研究了近自由面对水下和空中爆炸冲击波传播特性的影响。
研究表明,水下爆炸冲击波传播压强峰值及冲量均较空中爆炸大很多,对结构的潜在破坏能力较强;自由界面对冲击波传播特性存在较大的影响,在近自由面水下爆炸产生了冲击波水面切断及气穴现象,而在近自由面空中爆炸产生了冲击波增强效应。
【期刊名称】振动与冲击【年(卷),期】2014(000)013【总页数】6【关键词】冲击波传播特性;水中爆炸;空中爆炸;界面效应;切断效应;气穴随着精确制导武器的快速发展以及国内外恐怖袭击和意外爆炸事件不断发生,对重大建筑物结构的安全构成了巨大的威胁。
建筑物结构遭受爆炸冲击荷载的主要来源有空中爆炸和水下爆炸。
如船舰结构和水工大坝结构可能遭受来自制导炸弹的空中爆炸、鱼雷的水下爆炸等冲击荷载作用。
然而由于水和空气两种介质的物理属性存在较大差异,且爆炸产物与炸弹周围介质的相互作用效应不同,冲击波在水和空气中的传播特性存在较大的差异,导致其对结构的损伤机制、破坏程度及防护设计均有所不同。
当炸弹在近自由面水下或空中爆炸时,由于近自由面反射产生的稀疏波或冲击波与入射冲击波相互作用,自由面界面效应对冲击波的传播特性产生了较大影响,将导致近自由面爆炸的荷载特征与自由场爆炸不同。
因此研究冲击波在不同介质中的传播特性及界面效应对其传播规律的影响,对结构的抗爆防护设计具有重要意义。
爆炸是一种多学科交叉耦合的物理现象,由于它的复杂性,早期研究主要以理论和试验研究为主[1-2]。
近年来,随着计算机技术及实验手段的不断进步,与爆炸相关的理论、实验和数值模拟研究快速发展,使得数值模拟爆炸成为可能。
铝化炸药水下爆炸冲击波特性分析摘要:本文采用一维流体动力学、与时间相关的JWL 爆轰产物状态方程以及压力指数为1/6的反应速率方程,计算分析了铝化炸药水下爆炸冲击波特征参数对反应速率的依赖关系。
结果表明,反应速率常数存在阈值,只有反应速率足够大,才能充分利用爆炸能量。
根据铝粉粒度与反应速率常数的相关性,通过控制铝粉粒度可以设计不同的能量输出特性。
关键词:铝化炸药;冲击波;水下爆炸1 引言火药和炸药的能量输出具有明显的差异。
通常火药的化学反应以燃烧方式进行,可在较长的时间内生成高温气态产物,因而具有较高的冲量输出。
而传统炸药的能量释放是以爆轰波的形式快速进行的,表现为输出压强高、时间短。
虽然两者单位质量释放的能量大小具有相同的量级,但它们的能量释放速率的差异导致了威力的不同。
在实际应用中,往往需要根据目标的爆炸毁伤特性来设计相应炸药的能量输出,因此仅采用理想炸药对爆炸能量的释放进行控制是非常有限的。
特别是对于炸药在土岩介质或水中的爆炸作用,其静态能量输出显得尤为重要。
以铝化炸药为代表的非理想炸药兼顾了火药和炸药的能量释放特性,为爆炸能量释放速率的设计提供了一种非常有效的手段。
典型的铝化炸药通常由理想高能炸药、氧化剂、铝粉和粘结剂等组分构成,其化学反应过程首先是高能炸药组分的快速爆轰,然后是其它组分非理想地低速分解或氧化反应。
因此,通过控制两步化学反应的能量分配比例和低速反应的能量释放速率,可以调整水下爆炸的冲击波能和气泡能的大小,达到对特定目标的最大毁伤效果。
有限元程序能够对铝化炸药的水下爆炸过程进行深入的分析[1],但需要不断地重分网格,于是耗时较多。
而采用一维流体动力学描述炸药的水下爆炸效应则是一种简单、有效的方法[2]。
本文利用一维流体动力学数值计算,对低速能量释放速率与水下爆炸冲击波的相关性进行了分析。
2 一维流体动力学计算方程由于炸药的水下爆炸是包含爆轰产物和水介质两种物质的流动问题,因而适合采用Lagrangian 方法。
在水下爆炸冲击波作用下的新型冲击因子水下爆炸是一种常见的爆炸形式,它在水下环境中产生的冲击波对周围环境和结构物造成了巨大的影响。
在水下爆炸冲击波作用下,会产生许多冲击因子,这些因子对于研究水下爆炸的影响和防护措施具有重要意义。
一、冲击波传播特性水下爆炸冲击波的传播特性是研究冲击因子的基础。
冲击波在水中传播时,会受到水的阻力和粘滞力的影响,使得冲击波的能量逐渐减弱。
此外,水的密度和压力也会对冲击波的传播产生影响。
因此,研究冲击波在水中的传播特性,可以帮助我们了解水下爆炸对周围环境和结构物的影响程度。
二、冲击波压力水下爆炸冲击波的压力是造成冲击因子的主要因素之一。
冲击波的压力与爆炸源的能量、距离和介质特性等因素相关。
在水中,冲击波的压力会随着距离的增加而减小,但相对于空气中的爆炸来说,水下爆炸的压力更加集中和强大。
因此,在水下爆炸冲击波作用下,周围环境和结构物所承受的压力将会很大,这是造成冲击因子的重要原因之一。
三、气泡效应水下爆炸冲击波产生的气体会形成气泡效应,这也是造成冲击因子的重要因素之一。
在爆炸发生后,爆炸源周围的水会迅速蒸发形成气体,而这些气体会形成一个或多个气泡。
这些气泡在上升过程中会带动周围的水形成一个巨大的气泡云,并造成剧烈的涡流和压力变化。
这种气泡效应会对周围环境和结构物产生巨大的冲击力和摩擦力,从而造成冲击因子。
四、声波效应水下爆炸冲击波产生的声波也是造成冲击因子的重要原因之一。
爆炸产生的冲击波会引起周围水分子的振动,从而形成声波。
这些声波在水中传播时会引起压力变化和震动效应,对周围环境和结构物产生影响。
声波效应不仅会造成物体振动和位移,还会对水下生物产生伤害。
因此,在进行水下爆炸研究时,需要考虑声波效应对周围环境和结构物的影响。
五、沉积物悬浮水下爆炸冲击波作用下,爆炸产生的能量会使得底部沉积物悬浮起来,形成一个底部悬浮云。
这种沉积物悬浮现象会对周围环境和生态系统产生影响。
沉积物悬浮不仅会改变水质,还会对水下生物产生伤害,并且对于海底设施和管道等结构物也会造成损坏。
水下炮孔爆破水中冲击波传播特性当前资源已成为制约人类发展的三大因素之一,而在陆地资源日趋减少的形势下,世界各国纷纷把目光投向海洋、湖泊、港湾等水下可利用资源。
水下爆破技术是开采水下资源和水下施工的一个重要手段,水下爆破技术二战前主要用于军事目的以及零星的水下炸礁工程逐渐扩展到民用行业,如航道疏浚,海港开发,河口、港口整治,沉船解体,交通和水电工程建设,以及科学研究试验等方面。
随着安全环保意识增强和钻孔机械设备的改进,水下炮孔爆破逐渐取代水中爆炸和水下裸露爆破成为水下爆破的主要施工方法。
水下炮孔爆破的炸药埋藏在岩石或水工结构中,炸药爆炸时的能量分布、冲击波的传播特性以及边界条件的影响都与炸药直接在水介质中爆炸产生的水中冲击波特性有所不同。
文章在探讨水中爆炸的基本理论和水中爆炸产生的水中冲击波传播特性及衰减规律的基础上,采用数值模拟方法,对水下炮孔爆破在单自由面、两个自由面的情况下,炸药在岩石中爆炸后产生的应力冲击波在水介质中的传播特性和衰减规律问题展开研究,并取得了以下研究成果:1)对一个炮孔在单自由面、水介质堵塞时炸药产生的水中冲击波进行数值计算发现,炮孔附近的水中冲击波压力峰值是动水运动和气泡脉动的压力的叠加,动水运动和气泡脉动的影响主要是垂直向上;远离爆源时,由孔口局部炸药产生的水中直达波成为水中冲击波的主导波,水中直达波以孔口中心为球心向四周传播。
在距炮孔轴线11m后的水中冲击波衰减规律与现场试验数据所回归的衰减规律比较吻合。
在其它因素不变的情况下,将不同水深时水中冲击波传播的衰减规律相比较,随着水深的增加,水中冲击波压力峰值在竖直方向上衰减变得更快;而水平方向上,水中冲击波压力峰值在爆源附近区域衰减变快;距炮孔轴线11m后,水深使得水中冲击波衰减变慢,水中冲击波的影响范围变大。
2)在两个自由面的水下台阶爆破,水中冲击波的产生机理与单自由面时有所不同。
通过对水下台阶爆破最小抵抗线方向、平行台阶坡顶线方向和垂直水底三个方向的水中冲击波传播特性的研究,结果表明:水下台阶爆破的水中冲击波的压力由炮孔中所有药量来决定的,水中冲击波压力在垂直水底方向衰减最快,其次是平行于坡顶线方向,最小抵抗线方向的衰减是最慢的。
第1篇一、实验目的本次实验旨在通过模拟潜水内爆炸现象,研究爆炸对潜水器及周围环境的影响,为潜水器设计和安全防护提供理论依据。
二、实验背景随着深海探测技术的不断发展,潜水器在深海探测任务中发挥着越来越重要的作用。
然而,潜水器在深海作业过程中,面临着来自水压、生物、物理等多种风险。
其中,潜水器内部爆炸事故一旦发生,将对潜水员的生命安全造成极大威胁。
因此,研究潜水内爆炸现象,提高潜水器安全性能具有重要意义。
三、实验内容1. 实验材料(1)潜水器模型:采用1:10比例的潜水器模型,模拟实际潜水器结构。
(2)爆炸装置:选用TNT炸药作为爆炸源。
(3)传感器:包括压力传感器、温度传感器、加速度传感器等,用于监测爆炸过程中的各项参数。
(4)实验水池:模拟深海环境,水池深度为10米。
2. 实验步骤(1)将潜水器模型放入实验水池,确保其稳定性。
(2)在潜水器模型内部安装爆炸装置,确保爆炸源位于潜水器中心位置。
(3)将传感器连接至潜水器模型,并对传感器进行校准。
(4)启动爆炸装置,记录爆炸过程中的各项参数。
(5)观察潜水器模型及周围环境的损坏情况。
四、实验结果与分析1. 爆炸过程实验过程中,爆炸装置成功引爆,爆炸瞬间潜水器模型发生剧烈振动,压力、温度、加速度等传感器数据迅速上升。
爆炸过程中,潜水器模型周围水花四溅,实验水池水面出现大量气泡。
2. 潜水器模型损坏情况爆炸后,潜水器模型出现以下损坏情况:(1)壳体出现裂缝,部分区域出现变形。
(2)内部仪器设备损坏,部分部件丢失。
(3)模型周围水花四溅,实验水池内出现大量气泡。
3. 爆炸对周围环境的影响爆炸过程中,潜水器模型周围水花四溅,实验水池内出现大量气泡。
爆炸产生的冲击波对周围环境产生一定影响,但未对实验水池其他设施造成损坏。
五、实验结论1. 潜水内爆炸会对潜水器结构造成严重损坏,影响潜水器内部仪器设备正常运行。
2. 爆炸产生的冲击波对周围环境有一定影响,但未对实验水池其他设施造成损坏。
水下爆炸冲击波的传播特性试验研究
水下爆炸对构筑物的破坏主要表现为冲击波和气泡脉动效应。
一般而言,气泡脉动通常起附加破坏作用,而冲击波起决定性作用。
水下爆炸冲击波的传播规律及其动力效应是水利水电工程、航运工程和爆破工程等领域关注的一个重要问题,直接关系到水下设施的安全和容器状构筑物爆破拆除参数的合理选取,因而具有重要的工程价值和理论意义。
本文以水下爆炸冲击波效应为研究契机,在有限的钢板水箱水域内开展了水冲击波试验研究。
首先,通过现场试爆及其现象分析,得出了药包布置原则;其次,利用高速摄影技术再现了水下爆炸冲击波波阵面的动态传播过程,并得出波阵面传播速度及其传播规律;根据水冲击波波阵面传播速度,得出不同距离处的峰值压力,并对水冲击波峰值压力、传播距离及药量关系进行分析,从而得出了小药量水下爆炸冲击波压力计算经验公式。
最后,选取水压爆破拆除工程实例,对试验结果进行验证,说明了药包布置原则的合理性、实用性。
主要得出以下结论:(1)利用高速摄影技术来观测水下爆炸冲击波的传播过程及测试其峰值压力是切实可行的;(2)试验条件一定,水下爆炸冲击波波阵面传播速度从零急剧上升到某一值,随后以波动形式迅速衰减,最终趋向于某一稳定值;(3)相同试验条件下,药量越大,水冲击波波阵面传播速度上升及衰减越快,且二次波峰值压力越大:(4)根据冲击波波阵面水动力学量之间的关系,得出水下爆炸冲击波波阵面传播速度所对应的峰值压力,并对其峰值压力、传播距离及药量进行分析,从而得出了小药量水下爆炸冲击波峰值压力计算经验公式,即当比例半径r/r0>5.649
时,Pm=105.472(Q1/3/R)1.65;(5)在水压爆破工程中,对于开口式容器状构筑物,为提高炸药能量利用率,降低其能量损耗,则要求药包的入水深度h至少要大于容器内壁到爆心的距离R,即h>R;(6)药包布置位置要尽可能使冲击波波阵面同一时刻达到容器状构筑物侧壁,使容器状构筑物受力均匀为原则;(7)为减少自由水面卸载所造成的能量损失,条件适合时可在开口式容器状构筑物中注满水并对顶部做封闭措施。