同济大学材料力学习题解答(练习册PP)
- 格式:ppt
- 大小:1.39 MB
- 文档页数:17
材料⼒学课后习题答案8-1 试求图⽰各杆的轴⼒,并指出轴⼒的最⼤值。
(1) ⽤截⾯法求内⼒,取1-1、2-2截⾯;(2) 取1-1(3) 取2-2(4) 轴⼒最⼤值: (b)(1) 求固定端的约束反⼒;(2) 取1-1(3)取2-2截⾯的右段;(4) 轴⼒最⼤值: (c)(1) ⽤截⾯法求内⼒,取1-1、2-2、3-3截⾯;(2) 取1-1(3) 取2-2截⾯的左段;(4) 取3-3截⾯的右段;(c)(d)N 1F RF N 1F RF N 2F N 1N 2(5) 轴⼒最⼤值: (d)(1) ⽤截⾯法求内⼒,取1-1、2-2截⾯;(2) 取1-1(2) 取2-2(5) 轴⼒最⼤值:8-2 试画出8-1所⽰各杆的轴⼒图。
解:(a) (b)(c) (d)8-5段的直径分别为d 1=20 mm 和d 2=30 mm F 2之值。
解:(1) (2) 求1-1、2-2截⾯的正应⼒,利⽤正应⼒相同;8-6 题8-5图所⽰圆截⾯杆,已知载荷F 1=200 kN ,F 2=100 kN ,AB 段的直径d 1=40 mm ,如欲使AB 与BC 段横截⾯上的正应⼒相同,试求BC 段的直径。
解:(1) ⽤截⾯法求出1-1、2-2截⾯的轴⼒;(2) 求1-1、2-2截⾯的正应⼒,利⽤正应⼒相同;8-7 图⽰⽊杆,承受轴向载荷F =10 kN 作⽤,杆的横截⾯⾯积A =1000 mm 2,粘接⾯的⽅位⾓θ= 450,试计算该截⾯上的正应⼒与切应⼒,并画出应⼒的⽅向。
F N 3F N 1F N 2解:(1)(2)8-14 图⽰桁架,杆1d 1=30 mm 与d 2=20 mm ,两杆材料相同,许⽤应⼒[σ]=160 MPa 。
该桁架在节点A 处承受铅直⽅向的载荷F =80 kN 作⽤,试校核桁架的强度。
解:(1) 对节点A(2) 列平衡⽅程解得:(2) 所以桁架的强度⾜够。
8-15 图⽰桁架,杆1为圆截⾯钢杆,杆2为⽅截⾯⽊杆,在节点A 处承受铅直⽅向的载荷F 作⽤,试确定钢杆的直径d 与⽊杆截⾯的边宽b 。
《材料力学》习题及答案一、单选题1.构件的强度、刚度和稳定性________。
(A)只与材料的力学性质有关(B)只与构件的形状尺寸有关(C)与二者都有关(D)与二者都无关2.一直拉杆如图所示,在P 力作用下。
(A) 横截面a上的轴力最大(B) 横截面b上的轴力最大(C) 横截面c上的轴力最大(D) 三个截面上的轴力一样大3.在杆件的某一截面上,各点的剪应力。
(A)大小一定相等(B)方向一定平行(C)均作用在同一平面内(D)—定为零4.在下列杆件中,图所示杆是轴向拉伸杆。
P (A) (B)(C) (D)5.图示拉杆承受轴向拉力P的作用,斜截面m-m的面积为A,则σ=P/A为。
(A)横截面上的正应力(B)斜截面上的剪应力(C)斜截面上的正应力(D)斜截面上的应力6.解除外力后,消失的变形和遗留的变形。
(A)分别称为弹性变形、塑性变形(B)通称为塑性变形(C)分别称为塑性变形、弹性变形(D)通称为弹性变形7.一圆截面轴向拉、压杆若其直径增加—倍,则抗拉。
(A)强度和刚度分别是原来的2倍、4倍(B)强度和刚度分别是原来的4倍、2倍(C)强度和刚度均是原来的2倍(D)强度和刚度均是原来的4倍8.图中接头处的挤压面积等于。
P(A)ab (B)cb (C)lb (D)lc9.微单元体的受力状态如下图所示,已知上下两面的剪应力为τ则左右侧面上的剪应力为。
(A)τ/2(B)τ(C)2τ(D)010.下图是矩形截面,则m—m线以上部分和以下部分对形心轴的两个静矩的。
(A)绝对值相等,正负号相同(B)绝对值相等,正负号不同(C)绝对值不等,正负号相同(D)绝对值不等,正负号不同11.平面弯曲变形的特征是。
(A)弯曲时横截面仍保持为平面(B)弯曲载荷均作用在同—平面内;(C)弯曲变形后的轴线是一条平面曲线(D)弯曲变形后的轴线与载荷作用面同在—个平面内12.图示悬臂梁的AC段上,各个截面上的。
(A)剪力相同,弯矩不同(B)剪力不同,弯矩相同(C)剪力和弯矩均相同(D)剪力和弯矩均不同13.当横向力作用于杆件的纵向对称面内时,关于杆件横截面上的内力与应力有以下四个结论。
可编辑修改精选全文完整版一.是非题:(正确的在括号中打“√”、错误的打“×”) (60小题) 1.材料力学研究的主要问题是微小弹性变形问题,因此在研究构件的平衡与运动时,可不计构件的变形。
( √ )2.构件的强度、刚度、稳定性与其所用材料的力学性质有关,而材料的力学性质又是通过试验测定的。
( √ ) 3.在载荷作用下,构件截面上某点处分布内力的集度,称为该点的应力。
(√ ) 4.在载荷作用下,构件所发生的形状和尺寸改变,均称为变形。
( √ ) 5.截面上某点处的总应力p 可分解为垂直于该截面的正应力σ和与该截面相切的剪应力τ,它们的单位相同。
( √ )6.线应变ε和剪应变γ都是度量构件内一点处变形程度的两个基本量,它们都是无量纲的量。
( √ )7.材料力学性质是指材料在外力作用下在强度方面表现出来的性能。
( ) 8.在强度计算中,塑性材料的极限应力是指比例极限p σ,而脆性材料的极限应力是指强度极限b σ。
( )9.低碳钢在常温静载下拉伸,若应力不超过屈服极限s σ,则正应力σ与线应变ε成正比,称这一关系为拉伸(或压缩)的虎克定律。
( )10.当应力不超过比例极限时,直杆的轴向变形与其轴力、杆的原长成正比,而与横截面面积成反比。
( √ )11.铸铁试件压缩时破坏断面与轴线大致成450,这是由压应力引起的缘故。
( )12.低碳钢拉伸时,当进入屈服阶段时,试件表面上出现与轴线成45o 的滑移线,这是由最大剪应力max τ引起的,但拉断时截面仍为横截面,这是由最大拉应力max σ引起的。
( √ )13.杆件在拉伸或压缩时,任意截面上的剪应力均为零。
( ) 14.EA 称为材料的截面抗拉(或抗压)刚度。
( √ ) 15.解决超静定问题的关键是建立补充方程,而要建立的补充方程就必须研究构件的变形几何关系,称这种关系为变形协调关系。
( √ ) 16.因截面的骤然改变而使最小横截面上的应力有局部陡增的现象,称为应力集中。
材料力学习题一一、计算题1.(12分)图示水平放置圆截面直角钢杆(2ABC π=∠),直径mm 100d =,m l 2=,m N k 1q =,[]MPa 160=σ,试校核该杆的强度。
2.(12分)悬臂梁受力如图,试作出其剪力图与弯矩图。
3.(10分)图示三角架受力P 作用,杆的截面积为A ,弹性模量为E ,试求杆的内力和A 点的铅垂位移Ay δ。
4.(15分)图示结构中CD 为刚性杆,C ,D 处为铰接,AB 与DE 梁的EI 相同,试求E 端约束反力。
5. (15分) 作用于图示矩形截面悬臂木梁上的载荷为:在水平平面内P 1=800N ,在垂直平面内P 2=1650N 。
木材的许用应力[σ]=10MPa 。
若矩形截面h/b=2,试确定其尺寸。
三.填空题 (23分)1.(4分)设单元体的主应力为321σσσ、、,则单元体只有体积改变而无形状改变的条件是__________;单元体只有形状改变而无体积改变的条件是__________________________。
2.(6分)杆件的基本变形一般有______、________、_________、________四种;而应变只有________、________两种。
3.(6分)影响实际构件持久极限的因素通常有_________、_________、_________,它们分别用__________、_____________、______________来加以修正。
4.(5分)平面弯曲的定义为______________________________________。
5.(2分)低碳钢圆截面试件受扭时,沿 ____________ 截面破坏;铸铁圆截面试件受扭时,沿 ____________ 面破坏。
四、选择题(共2题,9分)2.(5分)图示四根压杆的材料与横截面均相同,试判断哪一根最容易失稳。
答案:( )材料力学习题二二、选择题:(每小题3分,共24分)1、危险截面是______所在的截面。
材料力学练习题与答案-全1.当T三Tp时,剪切虎克定律及剪应力互等定理。
A、虎克定律成立,互等定理不成立B、虎克定律不成立,互等定理成立(正确答案)C、均不成立D、二者均成立2.木榫接头,当受F力作用时,接头的剪切面积和挤压面积分别是A、ab,lcB、cb,lbC、lb,cb(正确答案)D、lc,ab3.在下列四种材料中,()不可以应用各向同性假设。
A、铸钢B、玻璃C、松木(正确答案)D、铸铁4.一细长压杆当轴向压力P达到临界压力Pcr时受到微小干扰后发生失稳而处于微弯平衡状态,此时若解除压力P,则压杆的微弯变形。
A、有所缓和B、完全消失(正确答案)C、保持不变D、继续增大;5.矩形截面偏心受压杆件发生变形。
A、轴向压缩、平面弯曲B、轴向压缩、平面弯曲、扭转C、轴向压缩、斜弯曲(正确答案)D、轴向压缩、斜弯曲、扭转6.当杆件处于弯扭组合变形时,对于横截面的中性轴有这样的结论,正确的是:A、一定存在(正确答案)B、不一定存在C、一定不存在7.梁在某一段内作用有向下的分布载荷时,在该段内它的弯矩图为。
A、上凸曲线;(正确答案)B、下凸曲线;C、带有拐点的曲线;D、斜直线8.图示结构中,AB为钢材,BC为铝,在P力作用下()A、AB段轴力大B、BC段轴力大C、轴力一样大(正确答案)D、无法判断9.圆截面的悬臂梁在自由端受集中力的作用,若梁的长度增大一倍,其他条件不变,最大挠度是原来的倍。
图片2.pngA、2B、16C、8(正确答案)D、410.托架由横梁与杆组成。
若将杆由位于梁的下方改为位于梁的上方,其他条件不变,则此托架的承载力。
A、提高(正确答案)B、降低C、不变D、不确定11.单位长度的扭转角e与()无关A、杆的长度(正确答案)B、扭矩C、材料性质D、截面几何性质12.矩形截面拉弯组合变形时,对于横截面的中性轴有以下的结论。
正确的是:。
A、过形心B、过形心且与ZC轴有一夹角;C、不过形心,与ZC轴平行;(正确答案)D、不过形心,与ZC轴有一夹角。
【精品】同济大学材料力学练习册答
案
同济大学材料力学练习册答案
1. 弹性力学
题目:一根悬臂梁,长度为L,截面为矩形,宽度为b,高度为h,杨氏模量为E,悬臂梁一端固定,另一端受到一个集中力F,求悬臂梁在受力端的最大弯矩。
解答:根据悬臂梁的受力情况,可以得到受力端的最大弯矩为M = F * L。
2. 塑性力学
题目:一根钢材的屈服强度为400MPa,抗拉强度为600MPa,断后伸长率为20%,求该钢材的应变硬化指数。
解答:应变硬化指数n = ln(σt/σy) / ln(εt/εy),其中σt为抗拉强度,σy为屈服强度,εt为断后伸长率。
3. 破裂力学
题目:一根圆柱形试样在拉伸过程中发生断裂,断口的直径为10mm,断口的延伸长度为4mm,试样的断裂韧性为40J/m²,求试样的断裂强度。
解答:断裂强度σf = 2 * Gc / (π * df * lf),其中Gc为断裂韧性,df 为断口直径,lf为断口延伸长度。
4. 疲劳力学
题目:一根钢材的疲劳极限为200MPa,应力幅为100MPa,寿命为10^5次,求该钢材的疲劳强度系数。
解答:疲劳强度系数Sf = σf/ σa,其中σf为疲劳极限,σa为应力幅。
5. 断裂力学
题目:一根圆柱形试样在拉伸过程中发生断裂,载荷为1000N,试样的直径为10mm,试样的断裂韧性为40J/m²,求试样的断裂应力。
解答:断裂应力σf = 2 * Gc / (π * df²),其中Gc为断裂韧性,df为试样直径。
资料力学请在以下五组题目中任选一组作答,满分100 分。
第一组:计算题(每题25 分,共 100 分)1.梁的受力状况以以下图,资料的 a。
若截面为圆柱形,试设计此圆截面直径。
q10kN / m4m2.求图示单元体的:(1)图示斜截面上的应力;( 2)主方向和主应力,画出主单元体;( 3)主切应力作用平面的地点及该平面上的正应力,并画出该单元体。
y100MPa60MPa50MPaO 300 50MPa xn60MPa 100 MPa解:( 1)、斜截面上的正应力和切应力:30o MPa , 300M Pa ( 2)、主方向及主应力:最大主应力在第一象限中,对应的角度为00,则主应力为:1 121.0(MPa ), 3( 3)、主切应力作用面的法线方向:/ 0,/ 02主切应力为:/ /1 225.0( MPa ) ,主单元体如图3-2所示。
此两截面上的正应力为:/ /1 2y1xO03图 3-125.67 0O图 3-23.图中所示传动轴的转速 n=400rpm,主动轮 2 输入功率 P2=60kW,从动轮 1,3,4和 5 的输出功率分别为 P1=18kW,P3=12kW,P4=22kW,P5=8kW。
试绘制该轴的扭矩图。
4.用积分法求图所示梁的挠曲线方程和转角方程,并求最大挠度和转角。
各梁EI 均为常数。
第二组:计算题(每题25 分,共 100 分)1. 简支梁受力以下图。
采纳一般热轧工字型钢,且已知 = 160MPa。
试确立工字型钢型号,并按最大切应力准则对梁的强度作全面校核。
(已知选工字钢: W = 692.2 cm3, Iz = 11075.5 cm4)解:1.F RA = F RB = 180kN (↑)kN·mkN·mkN3m由题设条件知:W = 692.2 cm 2, Iz = 11075.5 cm 4cmE截面:MPaMPa2. A +、 B-截面:MPaMPa3.C-、 D+截面:MPaMPa∴选 No.32a 工字钢安全。
练习1 绪论及基本概念1-1 是非题(1)材料力学是研究构件承载能力的一门学科。
( 是 )(2)可变形固体的变形必须满足几何相容条件,即变形后的固体既不可以引起“空隙”,也不产生“挤入”现象。
(是 )(3)构件在载荷作用下发生的变形,包括构件尺寸的改变和形状的改变。
( 是 ) (4)应力是内力分布集度。
(是 )(5)材料力学主要研究构件弹性范围内的小变形问题。
(是 ) (6)若物体产生位移,则必定同时产生变形。
(非 ) (7)各向同性假设认为,材料沿各个方向具有相同的变形。
(F )(8)均匀性假设认为,材料内部各点的力学性质是相同的。
(是)(9)根据连续性假设,杆件截面上的内力是连续分布的,分布内力系的合力必定是一个力。
(非) (10)因为构件是变形固体,在研究构件的平衡时,应按变形后的尺寸进行计算。
(非 )1-2 填空题(1)根据材料的主要性质对材料作如下三个基本假设:连续性假设 、均匀性假设 、 各向同性假设 。
(2)工程中的 强度 ,是指构件抵抗破坏的能力; 刚度 ,是指构件抵抗变形的能力。
(3)保证构件正常或安全工作的基本要求包括 强度 , 刚度 ,和 稳定性 三个方面。
(4)图示构件中,杆1发生 拉伸 变形,杆2发生 压缩 变形, 杆3发生 弯曲 变形。
(5)认为固体在其整个几何空间内无间隙地充满了物质,这样的假设称为 连续性假设 。
根据这一假设构件的应力,应变和位移就可以用坐标的 连续 函数来表示。
(6)图示结构中,杆1发生 弯曲 变形,构件2发生 剪切 变形,杆件3发生 弯曲与轴向压缩组合。
变形。
(7)解除外力后,能完全消失的变形称为 弹性变形 ,不能消失而残余的的那部分变形称为 塑性变形 。
(8)根据 小变形 条件,可以认为构件的变形远 小于 其原始尺寸。
1-3 选择题(1)材料力学中对构件的受力和变形等问题可用连续函数来描述;通过试件所测得的材料的力学性能,可用于构件内部的任何部位。