材料力学习题解答
- 格式:ppt
- 大小:2.82 MB
- 文档页数:35
材料力学习题及答案材料力学习题一一、计算题1.(12分)图示水平放置圆截面直角钢杆(2ABC π=∠),直径mm 100d =,m l 2=,m N k 1q =,[]MPa 160=σ,试校核该杆的强度。
2.(12分)悬臂梁受力如图,试作出其剪力图与弯矩图。
3.(10分)图示三角架受力P 作用,杆的截面积为A ,弹性模量为E ,试求杆的内力和A 点的铅垂位移Ay δ。
4.(15分)图示结构中CD 为刚性杆,C ,D 处为铰接,AB 与DE 梁的EI 相同,试求E 端约束反力。
5. (15分) 作用于图示矩形截面悬臂木梁上的载荷为:在水平平面内P 1=800N ,在垂直平面内P 2=1650N 。
木材的许用应力[σ]=10MPa 。
若矩形截面h/b=2,试确定其尺寸。
三.填空题(23分)1.(4分)设单元体的主应力为321σσσ、、,则单元体只有体积改变而无形状改变的条件是__________;单元体只有形状改变而无体积改变的条件是__________________________。
2.(6分)杆件的基本变形一般有______、________、_________、________四种;而应变只有________、________两种。
3.(6分)影响实际构件持久极限的因素通常有_________、_________、_________,它们分别用__________、_____________、______________来加以修正。
4.(5分)平面弯曲的定义为______________________________________。
5.(2分)低碳钢圆截面试件受扭时,沿____________截面破坏;铸铁圆截面试件受扭时,沿____________面破坏。
四、选择题(共2题,9分)2.(5分)图示四根压杆的材料与横截面均相同,试判断哪一根最容易失稳。
答案:()材料力学习题二二、选择题:(每小题3分,共24分)1、危险截面是______所在的截面。
材料力学-学习指导及习题答案第一章绪论1-1 图示圆截面杆,两端承受一对方向相反、力偶矩矢量沿轴线且大小均为M的力偶作用。
试问在杆件的任一横截面m-m上存在何种内力分量,并确定其大小。
解:从横截面m-m将杆切开,横截面上存在沿轴线的内力偶矩分量M x,即扭矩,其大小等于M。
1-2 如图所示,在杆件的斜截面m-m上,任一点A处的应力p=120 MPa,其方位角θ=20°,试求该点处的正应力σ与切应力τ。
解:应力p与斜截面m-m的法线的夹角α=10°,故σ=p cosα=120×cos10°=118.2MPaτ=p sinα=120×sin10°=20.8MPa1-3 图示矩形截面杆,横截面上的正应力沿截面高度线性分布,截面顶边各点处的正应力均为σmax=100 MPa,底边各点处的正应力均为零。
试问杆件横截面上存在何种内力分量,并确定其大小。
图中之C点为截面形心。
解:将横截面上的正应力向截面形心C简化,得一合力和一合力偶,其力即为轴力F N=100×106×0.04×0.1/2=200×103 N =200 kN其力偶即为弯矩M z=200×(50-33.33)×10-3 =3.33 kN·m1-4 板件的变形如图中虚线所示。
试求棱边AB与AD的平均正应变及A点处直角BAD的切应变。
解:第二章轴向拉压应力2-1试计算图示各杆的轴力,并指出其最大值。
解:(a) F N AB=F, F N BC=0, F N,max=F(b) F N AB=F, F N BC=-F, F N,max=F(c) F N AB=-2 kN, F N2BC=1 kN, F N CD=3 kN, F N,max=3 kN(d) F N AB=1 kN, F N BC=-1 kN, F N,max=1 kN2-2 图示阶梯形截面杆AC,承受轴向载荷F1=200 kN与F2=100 kN,AB段的直径d1=40 mm。
材料力学习题答案1(总26页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--材料力学习题答案1试求图各杆1-1、2-2、3-3 截面上的轴力,并作轴力图。
解:(a) ()1140302050F kN -=+-=,()22302010F kN -=-=,()3320F kN -=-(b) 11F F -=,220F F F -=-=,33F F -=(c) 110F -=,224F F -=,3343F F F F -=-=轴力图如题2. 1 图( a) 、( b ) 、( c) 所示。
作用于图示零件上的拉力F=38kN ,试问零件内最大拉应力发生在哪个截面上 并求其值。
解 截面1-1 的面积为()()21502220560A mm =-⨯=截面2-2 的面积为()()()2215155022840A mm =+-=因为1-1截面和2-2 截面的轴力大小都为F ,1-1截面面积比2-2 截面面积小,故最大拉应力在截面1-1上,其数值为:()3max 11381067.9560N F F MPa A A σ⨯====冷镦机的曲柄滑块机构如图所示。
镦压工件时连杆接近水平位置,承受的镦压力F=1100kN 。
连杆截面是矩形截面,高度与宽度之比为 1.4hb=。
材料为45钢,许用应力[]58MPa σ=,试确定截面尺寸h 及b 。
解 连杆内的轴力等于镦压力F ,所以连杆内正应力为F Aσ=。
根据强度条件,应有[]F F A bh σσ==≤,将1.4h b=代入上式,解得()()0.1164116.4b m mm ≥== 由 1.4h b=,得()162.9h mm ≥所以,截面尺寸应为()116.4b mm ≥,()162.9h mm ≥。
在图示简易吊车中,BC 为钢杆,AB为木杆。
木杆AB 的横截面面积21100A cm =,许用应力[]17MPa σ=;钢杆BC 的横截面面积216A cm =,许用拉应力[]2160MPa σ=。
材料力学习题册参考答案材料力学习题册参考答案(无计算题)第1章:轴向拉伸与压缩一:1(ABE )2(ABD )3(DE )4(AEB )5(C )6(CE)7(ABD )8(C )9(BD )10(ADE )11(ACE )12(D )13(CE )14(D )15(AB)16(BE )17(D )二:1对2错3错4错5对6对7错8错9错10错11错12错13对14错15错三:1:钢铸铁 2:比例极限p σ 弹性极限e σ 屈服极限s σ 强度极限b σ3.横截面 45度斜截面4. εσE =, EAFl l =5.强度,刚度,稳定性;6.轴向拉伸(或压缩);7. llb b ?μ?=8. 1MPa=106 N/m 2 =1012 N/mm 2 9. 抵抗伸缩弹性变形,加载方式 10. 正正、剪 11.极限应力 12. >5% <5% 13. 破坏s σ b σ 14.强度校核截面设计荷载设计15. 线弹性变形弹性变形 16.拉应力 45度 17.无明显屈服阶段的塑性材料力学性能参考答案:1. A 2. C 3. C 4. C 5. C 6. 5d ; 10d 7. 弹塑8. s2s 9. 0.1 10. 压缩11. b 0.4σ 12. <;< 剪切挤压答案:一:1.(C ),2.(B ),3.(A ),二:1. 2bh db 2. b(d+a) bc 3. 4a δ a 2 4. F第2章:扭转一:1.(B ) 2.(C D ) 3.(C D ) 4. (C ) 5. (A E ) 6. (A )7. (D )8. (B D ) 9.(C ) 10. (B ) 11.(D ) 12.(C )13.(B )14.(A ) 15.(A E )二:1错 2对 3对 4错 5错 6 对三:1. 垂直 2. 扭矩剪应力 3.最外缘为零4. p ττ< 抗扭刚度材料抵抗扭转变形的能力5. 不变不变增大一倍6. 1.5879τ7.实心空心圆8. 3241)(α- 9. m ax m in αττ= 10. 长边的中点中心角点 11.形成回路(剪力流)第3章:平面图形的几何性质一:1.(C ),2.(A ),3.(C ),4.(C ),5.(A ),6.(C ),7.(C ),8.(A ),9.(D )二:1). 1;无穷多;2)4)4/5(a ; 3),84p R I π=p 4z y I 16R I I ===π4)12/312bh I I z z ==;5))/(/H 6bh 6BH W 32z -= 6)12/)(2211h b bh I I I I z y z y +=+=+;7)各分部图形对同一轴静矩8)两轴交点的极惯性矩;9)距形心最近的;10)惯性主轴;11)图形对其惯性积为零三:1:64/πd 114; 2.(0 , 14.09cm )(a 22,a 62)3: 4447.9cm 4, 4:0.00686d 4 ,5: 77500 mm 4 ;6: 64640039.110 23.410C C C C y y z z I I mm I I mm ==?==?第4章:弯曲内力一:1.(A B )2.(D )3.(B )4.(A B E )5.(A B D )6.(ACE ) 7.(ABDE ) 8.(ABE )9. (D ) 10. (D ) 11.(ACBE ) 12.(D ) 13.(ABCDE )二:1错 2错 3错 4对 5错 6对 7对三:1. 以弯曲变形 2.集中力 3. KNm 2512M .max =4. m KN 2q = 向下 KN 9P = 向上5.中性轴6.荷载支撑力7. 小8. 悬臂简支外伸9. 零第5章:弯曲应力一:1(ABD)2.(C )3.(BE )4.(A )5.(C )6.(C )7.(B )8.(C )9.(BC )二:1对 2错 3错 4 对 5 错 6错 7 对三:1.满足强度要求更经济、更省料2. 变成曲面,既不伸长也不缩短3.中性轴4.形心主轴5.最大正应力6.剪力方向7.相等8.平面弯曲发生在最大弯矩处9.平面弯曲第6章:弯曲变形一:1(B ),2(B ),3(A ),4(D ),5(C ),6(A ),7(C ),8(B ),9(A )10(B ),11(A )二:1对2错3错4错5错6对7错8错9错10对11错12对三:1.(转角小量:θθtan ≈)(未考虑高阶小量对曲率的影响)2. 挠曲线采用近似微分方程导致的。
习题2-2一打入基地内的木桩如图所示,杆轴单位长度的摩擦力fkx2,试做木桩的后力图。
解:由题意可得:l 1 0 fdx F 有kl 3 F k 3F / l 3 3 l FN x1 3Fx 2 / l 3dx F x1 / l 3 0习题2-3 石砌桥墩的墩身高l 10m ,其横截面面尺寸如图所示。
荷载 F 1000kN ,材料的密度2.35kg / m 3 ,试求墩身底部横截面上的压应力。
解:墩身底面的轴力为:N F G F Alg 2-3 图1000 3 2 3.14 12 10 2.35 9.8 3104.942kN 墩身底面积: A 3 2 3.14 12 9.14m 2 因为墩为轴向压缩构件,所以其底面上的正应力均匀分布。
N 3104.942kN 339.71kPa 0.34MPa A 9.14m 2习题2-7 图示圆锥形杆受轴向拉力作用,试求杆的伸长。
2-7 图解:取长度为dx 截离体(微元体)。
则微元体的伸长量为:Fdx l F F l dx d l ,l dx EA x 0 EA x E 0 A x r r1 x r r d d1 d ,r 2 1 x r1 2 x 1 ,r2 r1 l l 2l 2 d d1 d d1 d d1 2 d d A x 2 x 1 u2 ,d 2 x 1 du 2 dx 2l 2 2l 2 2l 2l 2l dx d d 2l du dx du ,2 2 1 du 2 d 2 d1 A x u d1 d 2 u l F F l dx 2 Fl l du 因此,l dx 0 u 2 0 EA x E 0 A x E d1 d 2 l 2 Fl 1 l 2 Fl 1 u E d d d d E d1 d 2 0 2 2 d 1 1 x 1 2l 2 0 2 Fl 1 1 E d1 d 2 d 2 d 1 dd1 l 1 2l 2 2 2 Fl 2 2 4 Fl E d1 d 2 d 2 d1 Ed 1 d 2习题2-10 受轴向拉力 F 作用的箱形薄壁杆如图所示。
材料力学课后习题答案1. 弹性力学。
1.1 问题描述,一根钢丝的弹性模量为200GPa,其截面积为0.01m²。
现在对这根钢丝施加一个拉力,使其产生弹性变形。
如果拉力为2000N,求钢丝的弹性变形量。
解答:根据胡克定律,弹性变形量与拉力成正比,与材料的弹性模量和截面积成反比。
弹性变形量可以用以下公式计算:$$。
\delta = \frac{F}{AE}。
$$。
其中,$\delta$表示弹性变形量,F表示拉力,A表示截面积,E表示弹性模量。
代入已知数据,可得:$$。
\delta = \frac{2000N}{0.01m² \times 200GPa} = 0.001m。
$$。
所以,钢丝的弹性变形量为0.001m。
1.2 问题描述,一根长为1m,截面积为$10mm^2$的钢棒,两端受到拉力为1000N的作用。
求钢棒的伸长量。
解答:根据胡克定律,钢棒的伸长量可以用以下公式计算:$$。
\delta = \frac{F \cdot L}{AE}。
$$。
其中,$\delta$表示伸长量,F表示拉力,L表示长度,A表示截面积,E表示弹性模量。
代入已知数据,可得:$$。
\delta = \frac{1000N \times 1m}{10mm² \times 200GPa} = 0.005m。
$$。
所以,钢棒的伸长量为0.005m。
2. 塑性力学。
2.1 问题描述,一块金属材料的屈服强度为300MPa,现在对其施加一个拉力,使其产生塑性变形。
如果拉力为500MPa,求金属材料的塑性变形量。
解答:塑性变形量与拉力成正比,与材料的屈服强度无关。
塑性变形量可以用以下公式计算:$$。
\delta = \frac{F}{A}。
$$。
其中,$\delta$表示塑性变形量,F表示拉力,A表示截面积。
代入已知数据,可得:$$。
\delta = \frac{500MPa}{300MPa} = 1.67。
材料力学-学习指导及习题答案第一章绪论1-1 图示圆截面杆,两端承受一对方向相反、力偶矩矢量沿轴线且大小均为M的力偶作用。
试问在杆件的任一横截面m-m上存在何种内力分量,并确定其大小。
解:从横截面m-m将杆切开,横截面上存在沿轴线的内力偶矩分量M x,即扭矩,其大小等于M。
1-2 如图所示,在杆件的斜截面m-m上,任一点A处的应力p=120 MPa,其方位角θ=20°,试求该点处的正应力σ与切应力τ。
解:应力p与斜截面m-m的法线的夹角α=10°,故σ=p cosα=120×cos10°=118.2MPaτ=p sinα=120×sin10°=20.8MPa1-3 图示矩形截面杆,横截面上的正应力沿截面高度线性分布,截面顶边各点处的正应力均为σmax=100 MPa,底边各点处的正应力均为零。
试问杆件横截面上存在何种内力分量,并确定其大小。
图中之C点为截面形心。
解:将横截面上的正应力向截面形心C简化,得一合力和一合力偶,其力即为轴力F N=100×106×0.04×0.1/2=200×103 N =200 kN其力偶即为弯矩M z=200×(50-33.33)×10-3 =3.33 kN·m1-4 板件的变形如图中虚线所示。
试求棱边AB与AD的平均正应变及A点处直角BAD的切应变。
解:第二章轴向拉压应力2-1试计算图示各杆的轴力,并指出其最大值。
解:(a) F N AB=F, F N BC=0, F N,max=F(b) F N AB=F, F N BC=-F, F N,max=F(c) F N AB=-2 kN, F N2BC=1 kN, F N CD=3 kN, F N,max=3 kN(d) F N AB=1 kN, F N BC=-1 kN, F N,max=1 kN2-2 图示阶梯形截面杆AC,承受轴向载荷F1=200 kN与F2=100 kN,AB段的直径d1=40 mm。
xx8-1 试求图示各杆的轴力,并指出轴力的最大值。
取 1-1 截面的左段;(2) (3) F N1取 2-2 截面的右段;F R用截面法求内力,取1-1、2-2、 3-3 截面;(1) (2) (3) (4)(5)(d)(1)取 1-1 截面的左段2;kN 取 2-2 截面的左段;取 3-3 截面的右段;轴力最大值: 用截面法求内力,取13kN 2 2kN33kN12 3F N11 31kN 21 32 F N33kN1-1、 2-2 截面;38-2 解:8-5 (2) (2) 取 1-1 截面的右段; 取 2-2 截面的右段F ;N112kN 22kN(5) 轴力最大值: 试画出 8-1所示各杆的轴力图。
(a) (b) (c) (d)F NF FN N(+)F图示阶梯形圆截面杆,承受F 轴N 向载荷(+) F 1=50 kN 与3kNF 2作用, 1kN (+) 1kN(-)(+) Fx AB 与 BC 段的直径分别为 x (-)1kN2kNd 1=20 mm 和 d 2=30 mm ,如欲使 AB 与 BC 段横截面上的正应力相同,试求载荷 F 2 之值。
(2) 求 1-1、 2-2 截面的正应力,利用正应力相同;8-7 图示木杆,承受轴向载荷 F=10 kN 作用,杆的横截面面积 A=1000 mm 2,粘接面的方位 角θ= 450,试计算该截面上的正应力与切应力,并画出应力的方向。
l 1l 2解: (1) 用截面法求 AB 、 BC 段的轴力;(2) 分段计F 算个杆向变形;FAC 杆缩短。
2F8-22 图示桁架,杆 1与A 杆 2的横截面面积与材料均相B 同,在节点 A 处承受C 载荷 F 作用。
从解: 8-6 解: (1) 用截面法求出 F 11-1、2-2 截面的轴力;(2) 求 1-1、 2-2 截面的正应A 力 ,利用正应力相B 同 ;题 8-5 图所示圆截面杆,已知载荷 1F 1=200 kN ,F 2=1020 kN ,CAB 段的直径 d 1=40 mm ,如 欲使 AB 与 BC 段横截面上的正应力相同,试求 BC 段的直径。