商用树脂2
- 格式:pdf
- 大小:153.42 KB
- 文档页数:8
—环氧树脂产品标准概述—、关于环氧树脂产品标准本栏目发布我国环氧树脂产品的国家标准、部颁标准、行业标准,也将适当介绍一些国外的标准,热诚希望广大关注我国环氧树脂产业发展的人士提供信息。
关于行业标准,以前由行业协会就国家有关部门委托制订,并成为国家标准。
但近15年来此项工作基本中断,这对行业发展是不利的。
为此,中国环氧树脂行业协会将启动''行标〃计划,对存在落后、缺失因素的产品,逐步制订行业标准,加以规范,并在可能的情况下按有关要求进行规范完善,使之成为国家标准。
二、有关环氧树脂的国家标准目标1、基础标准GB/T1630-1989环氧树脂命名GB/T2035-1996塑料术语及其定义2、产品标准GB/T13657—1992双酚A型环氧树脂3、方法标准GB/T4612-1984环氧化合物环氧当量的测定GB/T4613-1984环氧树脂和缩水甘油醚无机氯的测定4、皂机氯的测定GB/T4618—1984环氧树脂和有关材料易皂化氯的测定5、加德纳色度法GB/T12007.1—1989环氧树脂颜色测定方法加德纳色度法GB/T12007.2—1989环氧树脂钠离子测定方法GB/T12007.3—1989环氧树脂总氯含量测定方法GB/T12007.4—1989环氧树脂粘度测定方法GB/T12007.5—1989环氧树脂密度的测定方法、比重瓶法GB/T12007.6—1989环氧树脂软化点的测定方法GB/T12007.7—198环氧树脂凝胶时间测定方法9Q/5S69—94环氧化合物环氧当量的测定-溴化氢-冰乙酸非水滴定法(中国航空总公司第014中心标准)6、物理性能的确定GB/T1732—1993涂料黏度测定法GB/T2794—1995胶粘剂黏度测定方法(旋转黏度计法)GB/T2567—1995树脂浇铸体力学性能试验方法总则GB/T2568—1995树脂浇铸体拉伸试验方法GB/T2569—1995树脂浇铸体压缩试验方法GB/T2570—1995树脂浇铸体弯曲试验方法GB/T2571-1995树脂浇铸体冲击试验方法GB/T4726-1984树脂浇铸体扭转试验方法环氧树脂及相关产品标准—双酚-A型环氧树脂1、主题内容与适用范围本标准规定了双酚-A型环氧树脂的技术要求、试验方法、检验规则以及标志、亿装、运输和贮存的要求。
BT树脂简介一、前言电子产品在多功能化、高I/O数及小型化趋势下,IC构装技术随之改变,因此由1980年代以前的通孔插装(PTH Insertion),1980~1993年大幅变革成表面黏装SMT方式,进展到至今以BGA、CSP及Flip Chip为主的构装方式,由IC载板生产成本来看,材料价占比重高达40%~50%,原料中又以BT树脂(Bismaleimide Triazine Resin)为主,BT树脂是日本三菱瓦斯化学公司于1982年经拜耳化学公司技术指导所开发出来,拥有专利也商业化量产,因此是目前全球最大的BT树脂制造商。
二、基本介绍日本三菱瓦斯公司开发出来的BT树脂,主要以B (Bismaleimide) and T (Triazine) 聚合而成,其化学结构如图一所示,以BT树脂为原料所构成的基板具有高Tg(255~330℃)、耐热性(160~230℃)、抗湿性、低介电常数(Dk)及低散失因素(Df)…等优点,IC载板与一般PCB铜箔基板制作方式相似,其制程如图二所示,先将BT树脂配制成A-stage的凡立水(Varnish),再将电子级玻纤布含浸BT树脂凡立水,经过烘干、裁切之后形成BT胶片(Preprag),BT胶片再经上、下两面铜箔压合后即形成B T铜箔基板(CCL),最后应客户需求作适当裁切即可出货。
目前全球所使用的BT铜箔基板几乎是由三菱瓦斯公司所供应,厂商经多年使用,其生产参数及产品特性具有相当的熟悉度及稳定性的情况下,造成其他环氧树脂基板进入市场门坎提高不少,因此三菱瓦斯公司具有相当大的市场独占性,CCL产品以CCL-HL 832系列为主,厚度规格有0.8、0.4、0.3、0.15、0. 1及0.06mm,最薄厚度仅0.05mm,目前尚在送样、测试中;CCL所覆盖的铜箔厚度规格有2oz、1oz、1/2oz、1/3oz、3mm 及1.5mm;而BT胶片(PP)方面的厚度规格有0.1、0.07、0.05及0.03mm,由于胶片有shelf life保存条件限制,必须在保存温度15~25℃、湿度50%以下的环境中,且空运方式运送,方能争取产品使用期限,并减少因运输所造成的货物损坏成本,而CCL比较无保存条件限制之虑,用海运方式运送即可。
聚丙烯酸树脂Ⅱ检验标准操作规程1. 目的建立聚丙烯酸树脂Ⅱ检验标准操作规程,规范操作。
2. 范围适用于聚丙烯酸树脂Ⅱ的检验。
3. 依据《中国药典》2010版二部4. 职责4.1 起草:QC 审核:质量保证部负责人批准人:质量管理负责人。
4.2 QC实施本规程。
4.3 QA监督本规程的实施。
5. 内容5.1 性状本品为白色条状物或粉末,在乙醇中易结块。
本品(如为条状物断成长约1cm,粉末则不经研磨)在温乙醇中1小时内溶解,在水中不溶。
5.1.1 黏度5.1.1.1 试液及仪器一般实验仪器。
5.1.1.2 分析步骤取本品6.0g,加乙醇100ml,微温使溶解,参照旋转式黏度计使用说明书,测得结果本品在25℃时的动力黏度不得过50mPa·s。
5.1.2 酸值5.1.2.1 试液及仪器一般实验仪器。
75%中性乙醇:取95%乙醇75ml ,加水20ml ,加两滴酚酞指示液,用氢氧化钠调节至中性。
酚酞指示液:取酚酞1g ,加0.05mol/L 氢氧化钠溶液5.7ml 使溶解,再加水稀释至200ml ,即得。
氢氧化钠滴定液(0.1mol/L ):取氢氧化钠适量,加水振摇使溶解成饱和溶液,冷却后,置聚乙烯塑料瓶中,静置数日,待澄清。
取澄清的氢氧化钠饱和溶液5.6ml ,加新沸过的冷水使成1000ml ,摇匀,即得。
5.1.2.2 分析步骤取本品约0.5g ,精密称定,置250ml 锥形瓶中,加75%中性乙醇(对酚酞指示液显中性)25ml ,微温使溶解,放冷,精密滴加氢氧化钠滴定液(0.1mol/L )15ml ,加氯化钠5g 与水10ml ,用氢氧化钠滴定液(0.1mol/L )继续滴定至粉红色持续30秒钟不褪。
以消耗氢氧化钠滴定液(0.lmol/L)的容积(ml)为A , 供试品的重量(g ) 为W ,照下式计算酸值:供试品的酸值=WA 61.5 ………………公式① 本品的酸值,按干燥品计算,应为300~330。
双环戊二烯型酚醛环氧树脂解释说明以及概述1. 引言1.1 概述本篇文章旨在介绍双环戊二烯型酚醛环氧树脂的定义、特性和性能,以及其在各个应用领域中的应用情况。
双环戊二烯型酚醛环氧树脂是一种重要的功能性高分子材料,具有许多优越的特点,如高耐热性、优异的电绝缘性能和出色的机械强度。
它广泛应用于航空航天、汽车制造、电子产品等众多领域。
1.2 文章结构本文按照以下结构进行展开:引言部分对文章进行整体概述,并说明文章结构;接下来将详细解释双环戊二烯型酚醛环氧树脂的定义、特性和性能;然后将介绍该材料在各个领域中的应用情况。
之后,正文一部分列举并详细讨论双环戊二烯型酚醛环氧树脂的一些关键要点;而正文二部分则进一步阐述其他关键要点。
最后,在结论部分对讨论结果进行总结,并探讨本研究的局限性以及未来可能的发展方向。
1.3 目的本文的目的是全面介绍双环戊二烯型酚醛环氧树脂,旨在帮助读者了解该材料在不同领域中的应用和潜力。
通过深入探讨其特性、性能以及各个应用领域中的具体案例,读者将更好地理解该材料视角和价值,并得到启发。
同时,本文也对当前研究存在的局限性进行了讨论,并提出了一些未来发展方向的建议,希望能够为相关领域的学术界和工业界提供有益参考。
2. 双环戊二烯型酚醛环氧树脂解释说明2.1 双环戊二烯型酚醛环氧树脂定义:双环戊二烯型酚醛环氧树脂是一种基于双环戊二烯的合成树脂。
它由酚和对甲醛进行缩聚反应而得,然后与环氧化合物反应,形成结构稳定的聚合物。
这种树脂具有双环戊二烯结构的特点,并且将其与酚和环氧团相结合,赋予了其优秀的性能和应用价值。
2.2 特性和性能:双环戊二烯型酚醛环氧树脂具有多种优异的特性和性能。
首先,它具有较高的耐高温性能,可以在高温下保持其结构和强度稳定。
其次,该树脂具有良好的机械强度,并且在极端条件下仍然表现出出色的耐久性。
此外,该树脂还具有较低的毒性和良好的绝缘性能,在电子电气领域得到广泛应用。
2.3 应用领域:双环戊二烯型酚醛环氧树脂在许多领域具有广泛的应用。
2-氯三苯甲基苯基树脂2-氯三苯甲基苯基树脂(CTP)是一种重要的高分子化合物,其化学结构中含有2个氯、3个苯甲基和1个苯基。
它的分子式为C37H29Cl2,分子量为515.55。
CTP以其优异的性能被广泛应用于涂料、胶粘剂、塑料等领域,本文将对其性质、制备方法以及应用进行详细介绍。
首先,关于CTP的性质。
CTP具有良好的溶解性能和热稳定性,能够在高温下保持较好的物理性质。
它具有良好的耐候性和耐化学腐蚀性,能够在恶劣环境下长期保持稳定。
此外,它还具有较高的机械强度和电绝缘性能,可广泛应用于电气领域。
其次,CTP的制备方法。
CTP主要通过苯甲酸与苯胺反应制备而成。
具体操作时,将苯甲酸和苯胺按一定物质比例溶解在醋酐中,并加入催化剂如三苯膦铜(I)碘化物。
加热反应体系至反应温度,持续反应一定时间后,将反应液降温并慢慢加入冷水中,析出的CTP通过过滤、洗涤、干燥等工艺得到纯品。
最后,关于CTP的应用。
CTP在涂料领域具有良好的附着性和耐腐蚀性,广泛应用于金属表面的防腐涂料。
其优异的热稳定性和电绝缘性能使其成为电子材料的重要成分。
同时,CTP还可用于制备高性能的胶粘剂,以满足需要高强度、高耐候性的胶粘效果。
在塑料制品方面,CTP作为增塑剂可以提高塑料的柔韧性、抗寒性和耐候性,应用于各类塑料制品的制备。
综上所述,2-氯三苯甲基苯基树脂(CTP)是一种具有优异性能的高分子化合物,其制备方法简单,并具有广泛的应用前景。
随着科技的不断发展,CTP在涂料、胶粘剂、塑料等领域的应用将会更加广泛,为人们的生活带来更多便利和舒适。
2官脂肪族聚氨酯丙烯酸树脂
官脂肪族聚氨酯丙烯酸树脂是一种特殊的高分子材料,具有优异的性
能和广泛的应用前景。
这种材料的制备方法主要是通过反应单体合成。
官脂肪族聚氨酯丙烯酸树脂的主要优点是其良好的耐热性和化学稳定性,具有高的温度耐受能力和极佳的耐腐蚀性。
此外,其还具有优异
的透明度、耐紫外线能力和电学性能。
由于其卓越的性能,官脂肪族聚氨酯丙烯酸树脂已被广泛应用于汽车
零部件、电子电器、涂料、粘合剂、塑料、涂料和医疗器械等领域。
其中,应用最为广泛的是在汽车零部件领域,这一领域对材料性能的
要求非常高,官脂肪族聚氨酯丙烯酸树脂的出现极大地满足了汽车工
业对高性能材料的需求。
另外,在涂料和粘合剂领域,官脂肪族聚氨酯丙烯酸树脂也具有非常
良好的应用前景。
特别是在高粘合性和高耐腐蚀性方面,它具备其他
材料所无法比拟的优势。
总之,官脂肪族聚氨酯丙烯酸树脂是一种非常有前途的高分子材料,
其在眼下和未来的产业应用领域都有巨大发展潜力。
它可以满足许多
重要领域对高性能材料的需求,并为人们的生活带来更多便利和舒适。
水溶性丙烯酸树脂——酒瓶漆丙烯酸树脂是由丙烯酸及丙烯酸酯类单,在一定条件下共聚而成的线性高分子树脂。
水溶性丙烯酸树脂之所以具有水溶性,是因为在树脂合成过程中,引进了亲水性基团—羧基、羟基、氨基、酰胺基等。
为了进一步增加树脂的水溶性,加胺中和成盐而获得水溶性,然后加水稀释得到水溶性丙烯酸树脂。
与传统的溶剂型涂料相比,水溶性涂料具有价格低、使用安全,节省资源和能源,减少环境污染和公害等优点,因而已成为当前发展涂料工业的主要方向。
水溶性丙烯酸烯树脂涂料是水性涂料中发展最快、品种最多的无污染型涂料。
水溶性丙烯酸树脂是制备环保型水溶性丙烯酸酯涂料、水性油墨、水性胶黏剂等的基础树脂材料,可作为成膜连接料,可广泛用于水性涂料、纸张、纺织品(天然和人工合成)表面处理剂、皮革上光剂、胶黏剂等配置的主要原料。
在施工过程中,可采用喷涂、辊涂、刷涂等方式涂装。
(1)聚合反应:丙烯酸及其酯在引发剂作用下聚合成嵌段丙烯酸树脂共聚物。
(2)成盐反应:嵌段丙烯酸树脂共聚物用氨水或有机胺中和,生产嵌段丙烯酸树脂的铵盐(3)聚合物玻璃化温度:无定形或半结晶聚合物从黏流态或高弹态(橡胶态)向玻璃态转变(或相反的转变)称玻璃化转变。
发生玻璃化转变温度范围近似中点称为玻璃化温度。
对于涂料用丙烯酸树脂,其玻璃化温度的设计是非常重要的。
因为其玻璃化温度直接影响涂料的最终性能。
一般而言,玻璃化温度高的硬度和光泽就高,但往往也比较脆。
为了使聚合物有较好的的施工和涂膜性能,需要对聚合物的配方进行设计。
一个由不同单体构成的聚合物,其玻璃化温度可以由其多组分的玻璃化温度加和而成。
通过设涂料树脂的玻璃化温度,就可以确定软硬单体的配比。
酒瓶漆是近年来发展较快的涂料品种,其要求耐醇、耐碱、耐水煮、硬度高、装饰性好,目前国内常用酒瓶漆树脂为环氧树脂和羟基丙烯酸树脂,基本属于溶剂型,不仅污染环境,也会影响操作人员健康。
随着环保法规的不断强化,促使涂料向“4E”方向发展,尤其是以水为分散介质和稀释剂的水性涂料是涂料发展的一个重要方向。
丙烯树脂二号处方分析
药用聚丙烯酸树脂II的主要用途医用树脂2号
聚丙烯酸树脂Ⅱ是一种阴离子型甲基丙烯酸共聚物,不溶于胃液只溶于肠液,主要用作口服片剂和胶囊剂的薄膜衣材料,还可用在透皮给药系统的骨架层中,以及直肠给药制剂的新型凝胶基质。
聚丙烯酸树脂Ⅱ(polyacrylic resinⅡ)各国药典均有收载,只是名称不同,其中《美国药典33-国家处方集》28版称之为A型异丁烯酸共聚物,《欧洲药典》7.0版和《英国药典》2010年版均称之为甲基丙烯酸/甲基丙烯酸甲酯聚合物(1:1)。
[2] 聚丙烯酸树脂Ⅱ的平均分子质量约为1.35×105,性状通常为白色条状物或粉末,在乙醇中易结块,不同型号的市售品可能为粉末、水分散体或有机溶液。
[2] 聚丙烯酸树脂Ⅱ主要用作口服片剂和胶囊剂的薄膜衣材料,也可用在透皮给药系统的骨架层中,以及直肠给药制剂的新型凝胶基质。
质量标准:符合中国药典 2020 版
外观:白色条状物或粉末。
溶解度:不溶于水,溶于极性有机溶剂如乙醇、异丙醇等。
用途:本片主要用作片剂、丸剂、颗粒剂的包衣材料和粘合剂。
也可用于胶囊剂、膜剂等的制造,调节药物的释放部位和速度,常用85—95%乙醇作溶剂,配成5—8%溶液作包衣用。
DOI: 10.1007/s10967-007-6888-6 Journal of Radioanalytical and Nuclear Chemistry, Vol. 275, No.3 (2008) 563–5700236–5731/USD 20.00Akadémiai Kiadó, Budapest© 2007 Akadémiai Kiadó, BudapestSpringer, DordrechtBatch and dynamic extraction of uranium(VI) from nitric acid mediumby commercial phosphinic acid resin, Tulsion CH-96K. A. Venkatesan, K. V. Shyamala, M. P. Antony, T. G. Srinivasan, P. R. Vasudeva Rao*Fuel Chemistry Division, Indira Gandhi Centre for Atomic Research, Kalpakkam 603 102, India(Received June 5, 2007)Batch and dynamic extractions of uranium(VI) in 10–3–10–2M concentrations in 3–4M nitric acid medium have been investigated using a commercially available phosphinic acid resin (Tulsion CH-96). The extraction of uranium(VI) has been studied as a function of time, batch factor (V /m ), concentrations of nitric acid and uranium(VI) ion. Dual extraction mechanism unique to phosphinic acid resin has been established for the extraction of uranium(VI). Distribution coefficient (K d ) of uranium(VI) initially decreases with increasing concentration of nitric acid, reaches a minimum value at 1.3M, followed by increases in K d . A maximum K d value of ~2000 ml/g was obtained at 5.0M nitric acid. Batch extraction data has been fitted into the linearized Langmuir adsorption isotherm. The performance of the resin under dynamic extraction conditions was assessed by following the breakthrough behavior of the system. Effect of flow rate, concentrations of nitric acid and uranium ion in the feed on the breakthrough behavior of the system was studied and the data was fitted using Thomas model.IntroductionMacroporous bifunctional phosphinic acid (MPBPA) resin is a potential candidate for the separation of uranium(VI) from nitric acid medium.1–7 It is prepared 1by Friedel-Crafts phosphination reaction on macroporous polystyrene-divinylbenzene (PS-DVB) using AlCl 3 as catalyst, which leads to the formation ofmonoaryl (primary) and diaryl (secondary) phosphinicacid ligands in the resin matrix as shown in Fig. 1. Thedual mechanism for the extraction of metal ions by the resin is well established.7–10 Ion-exchange withphosphinic acid groups or by co-ordination throughoxygen of –P=O moiety was reported for the extraction of uranium(VI) by this bifunctional resin.10Furthermore, the primary phosphinic acid is susceptible to oxidation reaction, MPBPA also behaves as redox ion-exchanger when metal ions like Ag +, Hg 2+ are extracted.7,9At present, MPBPA resin is commercially available from M/s. Thermax India Ltd., Pune, India, as Tulsion CH-96. Most of the studies reported so far on MPBPA resin involved the extraction of uranium(VI) ion present at trace levels.10–13 These studies are also carried out only on laboratory synthesized MPBPA resin.12However, the data on the extraction of uranium(VI) on commercial resin, Tulsion CH-96, are indeed required, when it is proposed for large-scale ion-exchange operation for the separation of uranium from nuclear wastes. Furthermore, nuclear wastes or dissolver solutions are composed of 3–4M nitric acid medium with varying amount of uranium present in the feed solution, ranging from 10–3 to 10–2M, also demands the investigation of extraction of uranium present at higher concentration levels on Tulsion CH-96. Thus, the present study focuses on the evaluation of commercial* E-mail: vasu@.in MPBPA resin, Tulsion CH-96, for the extraction of uranium(VI), present at 10–3 to 10–2M levels, from3–4M nitric acid medium. The distribution coefficients of uranium(VI) as a function of concentrations of nitricacid and uranium(VI) ion, time and batch factor (V /m )have been determined. Breakthrough curves at various flow rates, feed concentrations have also been evaluated. Experimental Materials All the chemicals and reagents were of analytical AR grade. Tulsion CH-96 resin was purchased from M/s.Thermax India Ltd., Pune, India. The resin (average particle size 400–500 P m) was washed extensively with 1.0M sodium hydroxide and water. It was then converted to H + form by passing sufficient quantity of 0.5M nitric acid. The resin was washed extensively withwater and acetone and dried at 343K for 2 hours. Phosphorous content in the resin was found to be 8% by spectrophotometry using amidol as coloring agent.1Uranyl nitrate was purchased from E. Merck. Effect of [HNO 3]All the experiments were carried out at 298 K. Typically, the experiments involved a batch factor of 20 ml/g, that is equilibration of 0.5 g of the resin with 10 ml of the test solution. Extraction of uranium(VI) as a function of nitric acid concentration was studied by equilibrating the ion-exchanger with a solution containing 4.2.10–3M uranium present in desired concentration of nitric acid. After ten hours of equilibration, an aliquot was taken from the supernatant.K. A. V ENKATESAN et al.: B ATCH AND DYNAMIC EXTRACTION OF URANIUM (VI) FROM NITRIC ACID564The concentration of uranium present in the aliquot before and after equilibration was measured either by spectrophotometric procedure 14 using Arsenazo III as coloring agent at O max of 655 nm or by D AVIES andG RAY 15 method. The distribution coefficient [K d , ml/g of U(VI)] and the percentage of uranium extracted by the resin were calculated using Eqs (1) and (2), respectively:¸¹·¨©§ m V K d fin fin ini U][U][U][ (1)%Extraction = 100U][U][1ini fin u ¸¸¹·¨¨©§ (2)where V and m are the volume of the solution and massof the sorbent taken for equilibration, respectively.Kinetics of the extraction The rate of extraction of uranium(VI) by TulsionCH-96 resin was studied by batch equilibration method.The experiments involved equilibration of the resin withthe solution containing uranium(VI) (4.2.10–3 or4.2.10–2M) diluted in desired concentration of nitricacid. At various intervals, equilibration was stopped andthe concentration of uranium present in the solution wasdetermined as described above.Langmuir adsorption isothermLoading of uranium(VI) on Tulsion CH-96 resin was studied by equilibrating 0.5 g of the resin with 10 ml of the solution containing the desired concentration of uranium in 3.0M or 4.0M nitric acid. The concentration of uranium(VI) in the solution was varied from 4.2.10–4to 2.1.10–1M. The concentration of uranium in resin phase was measured and plotted against theconcentration of the aqueous phase to obtain the Langmuir isotherm. Breakthrough experiments: The performance of the resin under dynamic condition was assessed by column breakthrough experiments. In these experiments 10 g(=24 ml bed volume) of the resin was immersed inwater and loaded into a glass column of radius 0.5 cm.The resin bed was washed with 250 ml of nitric acid of concentration equivalent to that of feed. Theexperimental feed solution containing 4.2.10–3M (or4.2.10–2M) uranium present in desired concentration ofnitric acid was passed at desired flow rate (0.5 ml/min to2 ml/min). The effluent was collected at variousintervals of time and analyzed for uranium. The ratio ofthe concentration of uranium in the effluent (C ) to thatof feed (C 0) was plotted against the volume of thesolution passed through the bed to obtain thebreakthrough curve. Breakthrough was followed up toC /C 0=0.8 and then the column was washed with 4.0M sodium nitrate solution. Elution of uranium from Tulsion CH-96 resin was carried out using 0.5Mammonium carbonate solution.Fig. 1. Preparation scheme of phosphinic acid resinK. A. V ENKATESAN et al.: B ATCH AND DYNAMIC EXTRACTION OF URANIUM (VI) FROM NITRIC ACID565Results and discussionEffect of [HNO 3]Distribution coefficient [K d of U(VI)] of uranium(VI) as a function of concentration of nitric acid on Tulsion CH-96 resin is shown in Fig. 2. K d of U(VI) initially decreases from 395 ml/g at 0.1M nitric acid, reaches a minimum value at 1.3M. Further increase in the concentration of nitric acid, increases the K d value of U(VI), reaching a maximum of 1988 ml/g at 5.0M nitric acid followed by a decrease. Similar trend was also reported for the diffusion coefficients of uranium(VI) in MPBPA resin.10K d of U(VI) for laboratory synthesized MPBPA resin 13 also reported to decrease from 3055 ml/g at 0.1M nitric acid and reach a minimum value between 1–2M in nitric acid followed by continuous increase in U(VI) K d values. Higher U(VI) K d value observed in this case could be due to the employment of trace levels of U(VI) for extraction. This unusual trend, not observed for conventional ion-exchangers, indicates that different types of mechanisms are responsible for the extraction of uranium(VI) from nitric acid medium. Uranyl ion (UO 22+) in nitric acid medium forms a series of complexes with nitrate ion as shown in Eqs (3) to (6):UO 22+ + NO 3– [UO 2(NO 3)]+(3) UO 22+ + 2 NO 3– [UO 2(NO 3)2] (4)UO 22+ + 3 NO 3– [UO 2(NO 3)3]–(5) UO 22+ + 4 NO 3– [UO 2(NO 3)4]2– (6) In 0.1M nitric acid medium uranium existsessentially as hydrated UO 22+. Increase in theconcentration of nitric acid favors the complexation ofuranyl ion with nitrate leading to neutral and anioniccomplexes. Phosphinic acid being a weak acidic ion-exchanger,1,4 the initial decrease in the distributioncoefficient with the increase in the concentration ofnitric acid, from 0.1M to 1.5M, could be attributed to the ion-exchange of uranyl ion with H + of phosphinic acid as shown in Eq. (7):2>P(=O)OH + UO 22+ (>P(=O)O)2UO 2 + 2 H + (7) Increase in the concentration of nitric acid from 0.1M, shifts the equilibrium reaction shown in Eq. (7) towards left and thus the K d of U(VI) values decrease. However, when the concentration of nitric acid is higher than 1.5M, the formation of neutral uranyl nitrate species are favored. Since these neutral species are also extracted by phosphinic acid resin through >P=O co-ordination, as shown in Eq. (8), the distribution coefficient of uranium increases further and reaches a maximum at 5.0M nitric acid. Further increase in nitric acid concentration favors anionic complexes of uranium [Eqs (5) and (6)], which are inextractable by the resin leading to the decrease in K d of U(VI) values:>P=O + UO 2(NO 3)2 >P=O---(UO 2(NO 3)2) (8) Extraction rate and effect of batch factorThe rate of extraction of uranium(VI) by Tulsion CH-96 resin at different initial concentrations of uranium and nitric acid is shown in Fig. 3. Rapid extraction is observed in the initial stages of equilibration followed by the establishment of equilibrium occurring within eight hours when the initial concentration of uranium is 4.2.10–3M. When theconcentration of uranium in the feed is increased to4.2.10–2M, the equilibrium is not established even after10 hours. The amount of uranium loaded in the resinincreases with the increase in the initial concentration ofuranium and nitric acid concentration. The effect ofbatch factor, namely the ratio of volume of the solutionto mass of the resin taken for equilibration, on thedistribution coefficient of uranium is shown in Table 1.Table 1. Variation of distribution coefficient of uranium(VI) with batch factor (V /m )3.0M HNO 34.0M HNO 3Batch factor, ml/g U(VI) K d , ml/g Extraction, % U(VI) K d , ml/g Extraction, % U(VI) = 4.2.10–3M 2040100200642506189109979465351390100325018199967147U(VI) = 4.2.10–2M20401002005.45.14.64.021124.42.19.08.87.96.8311893T =298 K, equilibration time = 10 hours.K. A. V ENKATESAN et al.: B ATCH AND DYNAMIC EXTRACTION OF URANIUM (VI) FROM NITRIC ACID566Fig. 2.Variation in the distribution coefficient of uranium(VI) with the concentration of nitric acid on Tulsion CH-96Fig. 3.Rate of extraction of uranium(VI) by Tulsion CH-96Fig. 4. Extraction isotherms of uranium(VI) on Tulsion CH-96K. A. V ENKATESAN et al.: B ATCH AND DYNAMIC EXTRACTION OF URANIUM (VI) FROM NITRIC ACID567Fig. 5. Langmuir plots for the extraction of uranium(VI) by Tulsion CH-96It is observed that both the U(VI) K d values andaccordingly the percentage of uranium(VI) extracted by the resin decrease with the increase in the value of batch factor. Increase in the initial concentration of uranium lowers the distribution coefficient and also reduces the difference in the K d of U(VI) values obtained at 20 ml/g and 200 ml/g.Langmuir adsorption isothermThe extraction isotherm of uranium on Tulsion CH-96 resin is shown in Fig. 4. Loading of uranium in the resin increases with increasing the aqueous phase concentrations of uranium(VI) ion and nitric acid. Figure 5 shows the linearized Langmuir adsorption isotherm for the extraction of uranium by Tulsion CH-96 at different nitric acid concentrations. The linearized Langmuir equation governing the amount of metal ion extracted (C s ) and its concentration in solution (C f ) is given by: b C b K C C f L s f 1 (9) where C f is the equilibrium concentration of uranium(mg/ml), C s is the amount of uranium extracted byTulsion CH-96 (mg/g), K L is the Langmuir adsorptionconstant (ml/mg) related to the affinity of the resin towards the metal ion, and b is the apparent extractioncapacity for uranium of Tulsion CH-96 under the studied conditions. The experimental capacity (b , mg/g) and K L are obtained from the slope and intercepts of the straight line are also shown in Fig. 5. The experimental capacity, b , increases from 55 mg/g to 70 mg/g when the concentration of nitric acid is increased from 3.0M to 4.0M. Higher magnitude of Langmuir constant (K L )obtained for the extraction of uranium(VI) by Tulsion CH-96 indicates the stronger affinity towards uranium at 4.0M nitric acid. Breakthrough studiesThe performance of Tulsion CH-96 resin under dynamic loading conditions can be evaluated by the breakthrough curve.16 Figure 6 shows the breakthrough (BT) curves for the extraction of uranium(VI) from3.0M nitric acid solution by Tulsion CH-96 resin. It isseen that the beginning of a breakthrough (or breakthrough edge) is a function of flow rate, and it decreases with increasing flow rate. 1% breakthrough occurs after passing 110 ml of the feed solution [4.6 bed volume (BV)] when passed at a flow rate of 2 ml/min and it is shifted to 600 ml (25 BV) when passed at a flow rate of 0.5 ml/min. Various simple models have been developed to describe the dynamic behavior of extraction of metal ions in a fixed bed column.17–21 TheT HOMAS model 17 is one of the most generally used fordescribing column performance, especially when the extraction follows Langmuir adsorption model. TheT HOMAS equation for describing a breakthrough curve isrepresented by:)/((0011Q V C Bm K T e C C (10)where C and C 0 are the concentration of uranium (mg/l) in the effluent and in the feed respectively; K T is the T HOMAS rate constant (ml/min .mg); B (mg/g) is the maximum loading capacity of uranium under the specified conditions; m (=10 g) is the mass of the resin taken in the column; V (l) is the throughput volume andQ is the flow rate in ml/min. Breakthrough data obtainedK. A. V ENKATESAN et al.: B ATCH AND DYNAMIC EXTRACTION OF URANIUM (VI) FROM NITRIC ACID568in this case were fitted using Eq. (10) by non-linear regression and the coefficients (K T and B ) obtained from regression were tabulated in Table 2. It is seen that at constant uranium concentration (4.2.10–3M), the increase of flow rate decreases the breakthrough capacity (BTC) of the resin under column conditions. It decreases from 73.7 to 36.4 mg/g when the flow rate is increased from 0.5 to 2 ml/min. Similarly, the effect of flow rate on the breakthrough behavior of the system from 4.0M nitric acid feed is shown in Fig. 7. Breakthrough edge occurs early with the increase in the flow rate of the feed as expected. Comparing Figs 6 and7, it is seen that the breakthrough edge also increases with the increase in the concentration of nitric acid. It is observed that 1% breakthrough occurs after passing 300 ml (12.5 BV) of 3.0M nitric acid feed whereas the same breakthrough occurs after passing 590 ml (24.6 BV) of 4.0M nitric acid feed under similar flow rates (1 ml/min). It is important to note to Table 2, that the BTC at 4.0M nitric acid is nearly two times higher than that observed for the extraction from 3.0M nitric acid, which could be due to the higher distributioncoefficient of uranium(VI) in 4.0M nitric acid.Fig. 6. Breakthrough profiles at various flow rates. Dynamic extraction of uranium(VI)by Tulsion CH-96 from 3.0M nitric acid mediumFig. 7. Breakthrough profiles at various flow rates. Dynamic extraction of uranium(VI)by Tulsion CH-96 from 4.0M nitric acid mediumK. A. V ENKATESAN et al.: B ATCH AND DYNAMIC EXTRACTION OF URANIUM (VI) FROM NITRIC ACID569Effect of initial concentration of uranium(VI) in 3.0M nitric acid feed solution on the breakthrough behavior of the system is shown in Fig. 8. Early breakthrough is observed with increasing of concentration. Beginning of 1% breakthrough is observed after passing 130 ml (5.4 BV) when theconcentration of uranium is 4.2.10–2M and is shifted to600 ml (25 BV) when the concentration of uranium is ten times lower. However, the capacity values obtained from the T HOMAS model, as tabulated in Table 2, indicate that the BTC increases with the increase in the concentration of the feed. It is noted that when the concentration of uranium in the feed increases from 4.2.10–3M to 2.1.10–2M, BTC increases from 73.7 mg/g to 215 mg/g. Further increase in the concentration to 4.2.10–2M does not result in any appreciable increase of BTC, indicating the saturation of the column capacity under the studied dynamic conditions. Effect of columndiameter on the breakthrough behavior of the system is shown in Fig. 9. Breakthrough edge decreases with increase in the diameter of the column taken for the column study.The column utilization can be defined as the ratio of the amount of uranium extracted by a gram of Tulsion CH-96 resin under the given column condition to the theoretical capacity (i.e., 595 mg/g for 8% P). It is seen from Table 2 that the column utilization increases with the increase in the concentrations of nitric acid and uranium ion in the feed and decreases with the increase of flow rate. Tulsion CH-96 can be effectively utilized up to 35% of theoretical capacity at higher uranium ion concentrations in the feed solution. The loaded column was washed with 3.0M ammonium nitrate solution and eluted using 0.5M ammonium carbonate (~250 ml) bythe procedure described elsewhere.12Table 2. Breakthrough results obtained from the T HOMAS model[HNO 3],M Flow rate, ml/min [U(VI)], M K T ,u 102, ml/min .mgColumn capacity,(B ) mg/g F 2u 103Column utilization, % 3 0.5 1.02.0 4.2.10–34.2.10–34.2.10–30.971.501.8673.746.436.40.622.923.0512.27.56.13 0.5 2.1.10–24.2.10–20.160.14215.9211.2 3.722.0036.535.54 0.5 1.02.0 4.2.10–34.2.10–34.2.10–30.250.561.78133107652.542.353.9222.318.011.0Fig. 8. Breakthrough curves for the extraction of uranium by Tulsion CH-96at various initial concentrations of uranium in the feedK. A. V ENKATESAN et al.: B ATCH AND DYNAMIC EXTRACTION OF URANIUM (VI) FROM NITRIC ACID570Fig. 9. Effect of column diameter on the breakthrough curvesfor the extraction of uranium(VI) by Tulsion CH-96ConclusionsThe distribution coefficient of uranium(VI) on a commercially available phosphinic acid resin, Tulsion CH-96, decreases from 396 ml/g at 0.1M nitric acid to a minimum value of 150 ml/g at 1.3M is attributed to the ion-exchange of uranyl ion with protons of phosphinic acid. Increase in K d of U(VI) above 1.5M nitric acid is due to co-ordination of >P=O moiety present in Tulsion CH-96 with neutral uranyl nitrate species. Rapid extraction is observed in the initial stages of equilibration followed by the establishment of equilibrium occurring within eight hours. Higher magnitude of K L obtained from Langmuir adsorption model indicates favorable extraction of uranium(VI) from 4.0M nitric acid medium by the resin. Breakthrough edge decreases with increasing flow rate, concentration of uranium in the feed and lowering of nitric acid concentration. Breakthrough capacity and column utilization factor increases with the increase in concentrations of nitric acid and uranium ion in the feed and decrease with the increase in the flow rate.Thus, the commercial Tulsion CH-96 is a very promising resin for the extraction of uranium from nitric acid medium representing nuclear wastes. Both -OH and P=O sites present in the resin can act as extracting groups. However, the resin needs to be improved from the point of view of enhancing the rate of extraction especially at higher concentration of uranium in the feed.*The authors wish to thank Mr. K. S URESH , M.Sc. Student, PSG College of Arts and Science, Coimbatore – 641 014, India for assistance.References1. S. D. A LEXANDRATOS , M. A. S TRAND , D. R. Q UILLEN ,A. J. W ALDER , Macromolecules, 18 (1985) 829.2. R. A. B EAUVAIS , S. D. A LEXANDRATOS , React. Funct. Polym., 36(1998) 113.3. A. M. E L -N AGGAR , A. S. E MARAT , S. G. A BD A LLA , Polym.Degr. Stab., 58 (1997) 97.4. A. W. T ROCHIMCZUK , React. Funct. Polym., 44 (2000) 9.5. A. W. T ROCHIMCZUK , React. Funct. Polym., 48 (2001) 141.6. M. M ERDIVAN , M. R. B UCHMEISER , G. B ONN , Anal. Chim. Acta,402 (1999) 91.7. S. D. A LEXANDRATOS , D. L. W ILSON , Macromolecules, 19 (1986)280.8. S. D. A LEXANDRATOS , L. H USSAIN , Ind. Eng. Chem. Res., 34(1995) 251.9. S. D. A LEXANDRATOS , D. R. Q UILLEN , React. Polym., 13 (1990)255. 10. K. A. V ENKATESAN , D. K. P ATRE , K. N. S ABHARWAL ,T. G. S RINIVASAN , P. R. V ASUDVA R AO , Solvent Extr. Ion Exch., 18 (2000) 551. 11. K. N. S ABHARWAL , P. R. V ASUDEVA R AO , M. S RINIVASAN ,Solvent Extr. Ion Exch., 12 (1994) 1085.12. K. N. S ABHARWAL , Ph.D. Thesis, Indian Institute of Technology,1995. 13. K. N. S ABHARWAL , K. K. N ANDY , T. G . S RINIVASAN ,P. R. V ASUDEVA R AO , Solvent Extr. Ion Exch., 14 (1996) 1101. 14. S. B. S AVVIN , Talanta, 11 (1964) 1.15. W. D AVIES , W. G RAY , Talanta, 11 (1964) 1203.16. F. H ELFFERICH , Ion Exchange, McG raw-Hill Book Co., NewYork, 1962.17. H. C. T HOMAS , J. Am. Chem. Soc., 44 (1964) 1664. 18. Z. A KSU , F. G ONEN , Process Biochem., 39 (2004) 599.19. T. M ATHAIALAGAN , T. V IRARAGHAVAN , J. Hazard. Mater., B94(2002) 291.20. R UEY -S HIN J UANG , S U -H SIA L IN , K UNG -H SUEN T SAO , J. ColloidInterface. Sci., 269 (2004) 46. 21. M. V. S IVAIAH , K. A. V ENKATESAN , P. S ASIDHAR ,R. M. K RISHNA , G. S. M URTHY , J. Nucl. Radiochem. Sci., 5 (2004) 7.。