【新人教版中考数学考点跟踪突破系列全套31份】考点跟踪突破14 函数的应用
- 格式:doc
- 大小:365.50 KB
- 文档页数:9
用二次函数解决实际问题考点一用二次函数解决增长率问题考点二用二次函数解决销售问题考点三用二次函数解决拱桥问题考点四用二次函数解决喷水问题考点五用二次函数解决投球问题考点六用二次函数解决图形问题考点七用二次函数解决图形运动问题考点一用二次函数解决增长率问题例题:(2022·全国·九年级课时练习)某工厂实行技术改造,产量年均增长率为x,已知2020年产量为1万件,那么2022年的产量y(万件)与x间的关系式为___________.【变式训练】1.(2022·江西萍乡·七年级期末)某厂有一种产品现在的年产量是2万件,计划今后两年增加产量,如果每年都比上一年的产量增加x倍,那么两年后这种产品的产量y(万件)将随计划所定的x的值而确定,那么y与x之间的关系式应表示为________.2.(2022·全国·九年级专题练习)为积极响应国家“旧房改造”工程,该市推出《加快推进旧房改造工作的实施方案》推进新型城镇化建设,改善民生,优化城市建设.(1)根据方案该市的旧房改造户数从2020年底的3万户增长到2022年底的4.32万户,求该市这两年旧房改造户数的平均年增长率;(2)该市计划对某小区进行旧房改造,如果计划改造300户,计划投入改造费用平均20000元/户,且计划改造的户数每增加1户,投入改造费平均减少50元/户,求旧房改造申报的最高投入费用是多少元?考点二用二次函数解决销售问题例题:(2021·宁夏·吴忠市利通区扁担沟中心学校九年级期中)一商店销售某种商品,平均每天可售出20件,每件盈利40元.为了扩大销售、增加盈利,该店采取了降价措施,在每件盈利不少于25元的前提下,经过一段时间销售,发现销售单价每降低1元,平均每天可多售出2件.(1)若降价3元,则平均每天销售数量为件:(2)当每件商品降价多少元时,该商店每天销售利润最大?【变式训练】1.(2021·广东·陆丰市甲东镇钟山中学九年级期中)某商场要经营一种新上市的文具,进价为20元/件,试营销阶段发现:当销售单价是25元/件时,每天的销售量为250件,销售单价每上涨1元,每天的销售量就减少10件.求销售单价为多少元时,该文具每天的销售利润最大;最大利润为多少元?2.(2022·山东德州·九年级期末)某商厦灯具部投资销售一种进价为每件20元的护眼台灯,销售过程中发现,每月销售量y(件)与销售单价x(元)之间的关系可近似的看作一次函数:y=﹣10x+500,在销售过程中销售单价不低于成本价,而每件的利润不高于成本价的60%.(1)设每月获得利润为w(元),求每月获得利润w(元)与销售单价x(元)之间的函数关系式,并直接写出自变量x的取值范围.(2)如果想要每月获得的利润为2000元,那么每月的单价定为多少元?(3)当销售单价定为多少元时,每月可获得最大利润?每月的最大利润是多少?考点三用二次函数解决拱桥问题例题:(2022·四川广安·中考真题)如图是抛物线形拱桥,当拱顶离水面2米时,水面宽6米,水面下降________米,水面宽8米.【变式训练】1.(2022·山东德州·九年级期末)如图是抛物线型拱桥,当拱顶高距离水面2m时,水面宽4m,如果水面上升1.5m ,则水面宽度为________.2.(2022·甘肃定西·模拟预测)有一个抛物线的拱形桥洞,桥洞离水面的最大高度为4m ,跨度为10m ,如图所示,把它的图形放在直角坐标系中.(1)求这条抛物线所对应的函数关系式;(2)如图,在对称轴右边1m 处,桥洞离水面的高是多少?考点四 用二次函数解决喷水问题例题:(2022·河南·中考真题)小红看到一处喷水景观,喷出的水柱呈抛物线形状,她对此展开研究:测得喷水头P 距地面0.7m ,水柱在距喷水头P 水平距离5m 处达到最高,最高点距地面3.2m ;建立如图所示的平面直角坐标系,并设抛物线的表达式为()2y a x h k =-+,其中x (m )是水柱距喷水头的水平距离,y (m )是水柱距地面的高度.(1)求抛物线的表达式.(2)爸爸站在水柱正下方,且距喷水头P水平距离3m,身高1.6m的小红在水柱下方走动,当她的头顶恰好接触到水柱时,求她与爸爸的水平距离.【变式训练】1.(2022·四川南充·中考真题)如图,水池中心点O处竖直安装一水管,水管喷头喷出抛物线形水柱,喷头上下移动时,抛物线形水柱随之竖直上下平移,水柱落点与点O在同一水平面.安装师傅调试发现,喷头高2.5m时,水柱落点距O点2.5m;喷头高4m时,水柱落点距O点3m.那么喷头高_______________m时,水柱落点距O点4m.2.(2022·浙江台州·中考真题)如图1,灌溉车沿着平行于绿化带底部边线l的方向行驶,为绿化带浇水.喷水口H离地竖直高度为h(单位:m).如图2,可以把灌溉车喷出水的上、下边缘抽象为平面直角坐标系DE ,竖直高度为EF的中两条抛物线的部分图象;把绿化带横截面抽象为矩形DEFG,其水平宽度3m长.下边缘抛物线是由上边缘抛物线向左平移得到,上边缘抛物线最高点A离喷水口的水平距离为2m,高出喷水口0.5m,灌溉车到l的距离OD为d(单位:m).(1)若 1.5h = 0.5m EF =①求上边缘抛物线的函数解析式,并求喷出水的最大射程OC ;②求下边缘抛物线与x 轴的正半轴交点B 的坐标;③要使灌溉车行驶时喷出的水能浇灌到整个绿化带,求d 的取值范围;(2)若1m EF =.要使灌溉车行驶时喷出的水能浇灌到整个绿化带,请直接写出h 的最小值.考点五 用二次函数解决投球问题例题:(2022·上海市张江集团中学八年级期末)如图,以地面为x 轴,一名男生推铅球,铅球行进高度y (单位:米)与水平距离x (单位:米)之间的关系是21251233y x x =-++.则他将铅球推出的距离是___米.【变式训练】 1.(2022·重庆实验外国语学校八年级期末)小明在期末体育测试中掷出的实心球的运动路线呈抛物线形.若实心球运动的抛物线的解析式为21(3)9y x k =--+,其中y 是实心球飞行的高度,x 是实心球飞行的水平距离.已知该同学出手点A 的坐标为16(0,)9,则实心球飞行的水平距离OB 的长度为( )A .7mB .7.5mC .8mD .8.5m2.(2022·贵州安顺·九年级阶段练习)如图是小明站在点O 处长抛篮球的路线示意图,球在点A 处离手,且1m OA =.第一次在点D 处落地,然后弹起在点E 处落地,篮球在距O 点6m 的点B 处正上方达到最高点,最高点C 距地面的高度4m BC =,点E 到篮球框正下方的距离2m EF =,篮球框的垂直高度为3m .据试验,两次划出的抛物线形状相同,但第二次的最大高度为第一次的12,以小明站立处点O 为原点,建立如图所示的平面直角坐标系.(1)求抛物线ACD 的函数解析式;(2)求篮球第二次的落地点E 到点O 的距离.(结果保留整数)(3)若小明想一次投中篮球框,他应该向前走多少米?(结果精确到0.1m )(参考数据:36 2.45≈)考点六 用二次函数解决图形问题例题:(2021·江苏镇江·九年级期中)如图,利用一面墙(墙长26米),用总长度49米的栅栏(图中实线部分)围成一个矩形围栏ABCD ,且中间共留两个1米的小门,设栅栏BC 长为x 米.(1)AB = 米(用含x 的代数式表示);(2)若矩形围栏ABCD 面积为210平方米,求栅栏BC 的长;(3)能围成比210平方米更大的矩形围栏ABCD吗?如果能,请求出最大面积;如果不能,请说明理由.【变式训练】1.(2021·宁夏·吴忠市利通区扁担沟中心学校九年级期中)如图,利用一面墙(墙长10米)用20米的篱笆国成一个矩形场地.设垂直于墙的一边为x米.矩形场地的面积为s平方米.(1)求s与x的函数关系式,并求出x的取值范围;(2)若矩形场地的面枳最大,应该如何设计长与宽.2.(2022·山东烟台·九年级期中)某城门的截面由一段抛物线和一个正方形(OMNE为正方形)的三条边围成,已知城门宽度为4米,最高处距地面6米.如图1所示,现以O点为原点,OM所在的直线为x轴,OE所在的直线为y轴建立直角坐标系.(1)求上半部分抛物线的函数表达式,并写出其自变量的取值范围;(2)有一辆宽3米,高4.5米的消防车需要通过该城门,请问该消防车能否正常进入?(3)为营造节日气氛,需要临时搭建一个矩形“装饰门”ABCD,该“装饰门”关于抛物线对称轴对称,如图2所示,其中AB,AD,CD为三根承重钢支架,A、D在抛物线上,B,C在地面上,已知钢支架每米70元,问搭建这样一个矩形“装饰门”,仅钢支架一项,最多需要花费多少元?考点七 用二次函数解决图形运动问题例题:(2022·全国·九年级课时练习)如图1 在Rt ABC △中 90ABC ∠=︒ 已知点P 在直角边AB 上 以1cm/s的速度从点A 向点B 运动,点Q 在直角边BC 上,以2cm/s 的速度从点B 向点C 运动.若点P ,Q 同时出发,当点P 到达点B 时,点Q 恰好到达点C 处.图2是BPQ 的面积()2cm y 与点P 的运动时间()s t 之间的函数关系图像(点M 为图像的最高点),根据相关信息,计算线段AC 的长为( )A .35cmB .45cmC .55cmD .65cm【变式训练】 1.(2022·宁夏·银川唐徕回民中学二模)如图,在矩形ABCD 中,BC >CD ,BC 、CD 分别是一元二次方程x 2-7x +12=0的两个根,连接BD ,并过点C 作CN ⊥BD ,垂足为N ,点P 从B 出发,以每秒1个单位的速度沿BD 方向匀速运动到D 为止;点M 沿线段DA 以每秒1个单位的速度由点D 向点A 匀速运动,到点A 为止,点P 与点M 同时出发,设运动时间为t 秒(t >0).(1)求线段CN 的长;(2)在整个运动过程中,当t 为何值时△PMN 的面积取得最大值,最大值是多少?2.(2021·北京·九年级期中)如图,Rt ABCAC=8∠=︒6C∆中90BC=动点P,Q分别从A,C两点同时出发,点P沿边AC向C以每秒3个单位长度的速度运动,点Q沿边BC向B以每秒4个单位长度的速度t s.运动,当P,Q到达终点C,B时,运动停止.设运动时间为()(1)①当运动停止时,t的值为.②设P,C之间的距离为y,则y与t满足(选填“正比例函数关系”,“一次函数关系”,“二次函数关系” ).∆的面积为S,(2)设PCQ①求S的表达式(用含有t的代数式表示);②求当t为何值时,S取得最大值,这个最大值是多少?一、选择题1.(2022·黑龙江·鸡西市第一中学校九年级期末)某服装店购进单价为15元的童装若干件,销售一段时间后发现:当销售价为25元时平均每天能售出8件,而当销售价每降低2元,平均每天能多售出4件,为使该服装店平均每天的销售利润最大,则每件的定价为()A.21元B.22元C.23元D.24元2.(2022·全国·九年级课时练习)如图,一抛物线型拱桥,当拱顶到水面的距离为2m时,水面宽度为4m.那么水位下降1m时,水面的宽度为()A 6mB .26mC .)64mD .()264m 3.(2022·全国·九年级课时练习)从某幢建筑物2.25米高处的窗口A 用水管向外喷水,水流呈抛物线,如果抛物线的最高点M 离墙1米,离地面3米,那么水流落点B 与墙的距离OB 是( )A .1米B .2米C .3米D .4米4.(2022·河南·辉县市城北初级中学一模)如果△ABC 和△DEF 都是边长为2的等边三角形,他们的边BC ,EF 在同一条直线l 上,点C ,E 重合,现将△ABC 沿着直线l 向右移动,直至点B 与点F 重合时停止移动,在此过程中,设点B 移动的距离为x ,两个三角形重叠部分的面积为y ,则y 随x 变化的函数图像大致为( )A .B .C .D . 二、填空题5.(2022·上海宝山·九年级期末)据了解,某蔬菜种植基地2019年的蔬菜产量为100万吨,2021年的蔬菜x x ,那么y关于x的函数解析式为产量为y万吨,如果2019年至2021年蔬菜产量的年平均增长率为(0)_________.6.(2021·广东揭阳·九年级期末)用长12m的铝合金条制成矩形窗框(如图所示),那么这个窗户的最大透光面积是___________(中间横框所占的面积忽略不计)7.(2022·湖北襄阳·一模)如图,以40m/s的速度将小球沿与地面成30°角的方向击出时,小球的飞行路线是一条抛物线.若不考虑空气阻力,小球的飞行高度h(单位:m)与飞行时间t(单位:s)之间具有函数关系h=20t-5t2,则小球飞出______s时,达到最大高度.8.(2022·山西·一模)某物理兴趣小组对一款饮水机的工作电路展开研究,将变阻器R的滑片从一端滑到另一端,绘制出变阻器R消耗的电功率P随电流I变化的关系图象如图所示,该图象是经过原点的一条抛物线的一部分,则变阻器R消耗的电功率P最大为__________W.三、解答题9.(2022·内蒙古北方重工业集团有限公司第一中学三模)北重一中计划利用一片空地建一个学生自行车车棚,其中一面靠墙,墙的最大可用长度为12米.另三边用总长为26米的木板材料围成.车棚形状如图中的矩形ABCD。
2021-2022学年人教版九年级数学上册第22章《二次函数的应用》能力提高专题突破训练(附答案)一.选择题(共8小题)1.向空中发射一枚炮弹,第x秒时的高度为y米,且高度与时间的关系为y=ax2+bx+c(a ≠0),若此炮弹在第6秒与第15秒时的高度相等,则在下列时间中炮弹所在高度最高的是()A.第8秒B.第10秒C.第12秒D.第15秒2.飞机着陆后滑行的距离s(单位:m)与滑行的时间t(单位:s)的函数解析式是s=60t ﹣1.5t2,那么飞机着陆后滑行多长时间才能停下来()A.10s B.20s C.30s D.40s3.为了减少空气污染,国家要求限制塑料玩具生产,这样有时企业会被迫停产,经过调研预测,某塑料玩具生产公司一年中每月获得的利润y(万元)和月份n之间满足函数关系式y=﹣n2+14n﹣24,则没有盈利的月份为()A.2月和12月B.2月至12月C.1月D.1月、2月和12月4.如图是抛物线形拱桥,当拱顶离水面2m时,水面宽4m,若水面下降2.5m,那么水面宽度为()m.A.3B.6C.8D.95.如图是一个迷宫游戏盘的局部平面简化示意图,该矩形的长、宽分别为5cm,3cm,其中阴影部分为迷宫中的挡板,设挡板的宽度为xcm,小球滚动的区域(空白区域)面积为ycm2,则下列所列方程正确的是()A.y=5×3﹣3x﹣5x B.y=(5﹣x)(3﹣x)C.y=3x+5x D.y=(5﹣x)(3﹣x)+5x26.如图1,一个移动喷灌架喷射出的水流可以近似地看成抛物线.图2是喷灌架为一坡地草坪喷水的平面示意图,喷水头的高度(喷水头距喷灌架底部的距离)是1米.当喷射出的水流距离喷水头20米时,达到最大高度11米,现将喷灌架置于坡度为1:10的坡地底部点O处,草坡上距离O的水平距离为30米处有一棵高度约为2.3米的石榴树AB,因为刚刚被喷洒了农药,近期不能被喷灌.下列说法正确的是()A.水流运行轨迹满足函数y=﹣x2﹣x+1B.水流喷射的最远水平距离是40米C.喷射出的水流与坡面OA之间的最大铅直高度是9.1米D.若将喷灌架向后移动7米,可以避开对这棵石榴树的喷灌7.某商场经营一种小商品,已知进购时单价是20元.调查发现:当销售单价是30元时,月销售量为240件,而销售单价每上涨1元,月销售量就减少10件,但每件商品的售价不能高于40元.当月销售利润最大时,销售单价为()A.35元B.36元C.37元D.36或37元8.如图,预防新冠肺炎疫情期间,某校在校门口用塑料膜围成一个临时隔离区,隔离区一面靠长为5m的墙,隔离区分成两个区域,中间用塑料膜隔开.已知整个隔离区塑料膜总长为12m,如果隔离区出入口的大小不计,并且隔离区靠墙的面不能超过墙长,小明认为:隔离区的最大面积为12m2;小亮认为:隔离区的面积可能为9m2.则:()A.小明正确,小亮错误B.小明错误,小亮正确C.两人均正确D.两人均错误二.填空题(共8小题)9.某网店某种商品成本为50元/件,售价为60元/件时,每天可销售100件;售价单价高于60元时,每涨价1元,日销售量就减少2件.据此,当销售单价为元时,网店该商品每天盈利最多.10.三孔桥横截面的三个孔都呈抛物线形,两小孔形状、大小完全相同.当水面刚好淹没小孔时,大孔水面宽度为10米,孔顶离水面1.5米;当水位下降,大孔水面宽度为14米时,单个小孔的水面宽度为4米,若大孔水面宽度为20米,则单个小孔的水面宽度为.11.某快餐店销售A、B两种快餐,每份利润分别为12元、8元,每天卖出份数分别为40份、80份.该店为了增加利润,准备降低每份A种快餐的利润,同时提高每份B种快餐的利润.售卖时发现,在一定范围内,每份A种快餐利润每降1元可多卖2份,每份B 种快餐利润每提高1元就少卖2份.如果这两种快餐每天销售总份数不变,那么这两种快餐一天的总利润最多是元.12.如图,在足够大的空地上有一段长为a米的旧墙,张大爷利用旧墙和篱笆围成一个矩形菜园ABCD,已知矩形菜园的一边靠墙,另三边一共用了100米篱笆,若a=30米,则矩形菜园ABCD面积的最大值为.13.一个球从地面上竖直向上弹起的过程中,距离地面高度h(米)与经过的时间t(秒)满足以下函数关系:h=﹣5t2+15t,则该球从弹起回到地面需要经过秒,距离地面的最大高度为米.14.如图,一座悬索桥的桥面OA与主悬钢索MN之间用垂直钢索连接,主悬钢索是抛物线形状,两端到桥面的距离OM与AN相等,小强骑自行车从桥的一端O沿直线匀速穿过桥面到达另一端A,当他行驶18秒时和28秒时所在地方的主悬钢索的高度相同,那么他通过整个桥面OA共需秒.15.如图,某抛物线型桥拱的最大高度为16米,跨度为40米,如图所示建立平面直角坐标系,则该抛物线对应的函数关系式为.16.一位篮球运动员在距离篮圈中心水平距离4m处起跳投篮,球沿一条抛物线运动,当球运动的水平距离为2.5m时,达到最大高度3.5m,然后准确落入篮框内.已知篮圈中心距离地面高度为3.05m,在如图所示的平面直角坐标系中,则此抛物线的解析式为.三.解答题(共5小题)17.如图,马大爷在屋侧的菜地上搭建一抛物线型蔬菜大棚,其中一端固定在离地面1.2米的墙体A处,另一端固定在离墙体6米的地面上B点处,现以地面和墙体为x轴和y轴建立坐标系,已知大棚的高度y(米)与地面水平距离x(米)之间的关系式用y=x2+bx+c 表示.结合信息请回答:(1)直接写出b,c的值.(2)求大棚的最高点到地面的距离.(3)马大爷现库存7米钢材,准备在抛物线上点C(不与A,B重合)处,安装一直角形钢架ECD对大棚进行加固(点D,E分别在x轴、y轴上,且CE∥x轴,CD∥y轴),就如何选取点C的问题,小明说:“点C取在抛物线的顶点处,库存钢材才够用”,小慧说“点C在抛物线上任意位置,库存钢材都够用”,请问谁的说法正确?说明理由.18.昆明斗南花卉市场是全国鲜花市场的心脏,也是亚洲最大的鲜花交易市场之一.斗南某兰花专卖店专门销售某种品牌的兰花,已知这种兰花的成本价为60元/盆.市场管理部门规定:每盆兰花的销售价格不低于成本价,又不高于成本价的2倍.经过市场调查发现,该店某天的销售数量y(盆)与销售单价x(元/盆)之间的函数关系如图所示:(1)求y与x之间的函数关系式,并写出自变量x的取值范围;(2)在销售过程中,该店每天还要支付其他费用200元,求这一天销售兰花获得的利润w(元)的最大值.19.为促进经济发展,方便居民出行.某施工队要修建一个横断面为抛物线的公路隧道.抛物线的最高点P离路面OM的距离为6m,宽度OM为12m.(1)按如图所示的平面直角坐标系,求表示该抛物线的函数表达式;(2)一货运汽车装载某大型设备后高为4m,宽为3.5m.如果该隧道内设双向行车道(正中间是一条宽1m的隔离带),那么这辆货车能否安全通过?(3)施工队计划在隧道口搭建一个矩形“脚手架”ABCD,使A,D点在抛物线上.B,C点在地面OM线上(如图2所示).为了筹备材料,需求出“脚手架”三根支杆AB,AD,DC的长度之和的最大值是多少?请你帮施工队计算一下.20.某超市从厂家购进A、B两种型号的水杯,两次购进水杯的情况如表:进货批次A型水杯(个)B型水杯(个)总费用(元)一1002008000二20030013000(1)求A、B两种型号的水杯进价各是多少元?(2)在销售过程中,A型水杯因为物美价廉而更受消费者喜欢.为了增大B型水杯的销售量,超市决定对B型水杯进行降价销售,当销售价为44元时,每天可以售出20个,每降价1元,每天将多售出5个,请问超市应将B型水杯降价多少元时,每天售出B型水杯的利润达到最大?最大利润是多少?(3)第三次进货用10000元钱购进这两种水杯,如果每销售出一个A型水杯可获利10元,售出一个B型水杯可获利9元,超市决定每售出一个A型水杯就为当地“新冠疫情防控”捐b元用于购买防控物资.若A、B两种型号的水杯在全部售出的情况下,捐款后所得的利润始终不变,此时b为多少?利润为多少?21.某校一面墙RS(长度大于32m)前有一块空地,校方准备用长32m的栅栏(A﹣B﹣C ﹣D)围成一个一面靠墙的长方形花圃,再将长方形ABCD分割成六块(如图所示),已知MN∥AD,EF∥GH∥AB,MB=BF=CH=CN=1m,设AB=xm.(1)用含x的代数式表示:BC=m;PQ=m.(2)当长方形EPQG的面积等于96m2时,求AB的长.(3)若在如图的甲区域种植花卉,乙区域种植草坪,种植花卉的成本为每平方米100元,种植草坪的成本为每平方米50元,则种植花卉与草坪的总费用的最高是多少?并求此时花圃的宽AB的值.参考答案一.选择题(共8小题)1.解:∵此炮弹在第6秒与第15秒时的高度相等,∴抛物线的对称轴是:x==10.5,∵10.5﹣8=2.5,10.5﹣10=0.5,12﹣10.5=1.5,15﹣10.5=4.5,根据抛物线的性质,在x轴上对称轴的两侧,距离对称轴越近的x对应的函数值越大,∴x=10时,函数值最大,即第10秒炮弹所在高度最高,故选:B.2.解:∵a=﹣1.5<0,∴函数有最大值,当t=﹣=﹣=20(秒),即飞机着陆后滑行20秒能停下来,故选:B.3.解:∵y=﹣n2+14n﹣24=﹣(n﹣2)(n﹣12),1≤n≤12且n为整数,∴当y=0时,n=2或n=12,当y<0时,n=1,故选:D.4.解:建立平面直角坐标系,设横轴x通过AB,纵轴y通过AB中点O且通过C点,则通过画图可得知O为原点,抛物线以y轴为对称轴,且经过A,B两点,OA和OB可求出为AB的一半2米,抛物线顶点C坐标为(0,2),设顶点式y=ax2+2,把A点坐标(﹣2,0)代入得a=﹣0.5,∴抛物线解析式为y=﹣0.5x2+2,当水面下降2.5米,通过抛物线在图上的观察可转化为:当y=﹣2.5时,对应的抛物线上两点之间的距离,也就是直线y=﹣2.5与抛物线相交的两点之间的距离,可以通过把y=﹣2.5代入抛物线解析式得出:﹣2.5=﹣0.5x2+2,解得:x=±3,∴水面宽度为3﹣(﹣3)=6(m).故选:B.5.解:设挡板的宽度为xcm,小球滚动的区域(空白区域)面积为ycm2,根据题意可得:y=(5﹣x)(3﹣x),故选:B.6.解:由题意可设抛物线的解析式为y=a(x﹣20)2+c,将(0,1),(20,11)分别代入,得:,解得:,∴y=﹣(x﹣20)2+11=﹣x2+x+1,故A错误;∵坡度为1:10,∴直线OA的解析式为y=0.1x,当x=40时,y=0.1×40=4,令y=4,得﹣x2+x+1=4,∴x2﹣40x+120=0,解得x=20±2≠40,∴B错误;设喷射出的水流与坡面OA之间的铅直高度为h米,则h=﹣x2+x+1﹣0.1x=﹣x2+x+1,∴对称轴为x=﹣=18,∴h max=9.1,故C正确;将喷灌架向后移动7米,则图2中x=30时抛物线上的点的纵坐标值等于x=37时的函数值,当x=37时,y=﹣×372+37+1=3.775,在图2中,当x=30时,点B的纵坐标为:0.1×30+2.3=5.3>3.775,故D错误.故选:C.7.解:设销售单价上涨x元,∵每件商品售价不能高于40元,∴0≤x≤10,依题意得:y=(30﹣20+x)(240﹣10x)=(10+x)(240﹣10x)=﹣10x2+140x+2400=﹣10(x﹣7)2+2890,∴当x=7时,y最大=2890,∴每件商品售价为30+7=37(元),故选:C.8.解:设隔离区靠近墙的长度为xm(0<x≤5),隔离区的面积为Sm2,由题意得:S=×x=﹣x2+4x,∴对称轴为x=﹣=6,∵0<x≤5,抛物线开口向下,在对称轴左侧,S随x的增大而增大,∴当x=5时,S有最大值:S max=﹣×52+4×5=﹣+20=.∵9<<12,∴小明错误;令S=9得:9=﹣x2+4x,解得:x1=9(舍),x2=3,∴x=3时,S=9.∴隔离区的面积可能为9m2.故选:B.二.填空题(共8小题)9.解:设销售单价为x元,则每天可销售100﹣2(x﹣60)=(220﹣2x)件,每天盈利w 元,依题意得:w=(x﹣50)(220﹣2x)=﹣2x2+320x﹣11000=﹣2(x﹣80)2+1800,∵﹣2<0,∴当x=80时,w有最大值,最大值为1800元,故答案为:80.10.解:如图,建立如图所示的平面直角坐标系,由题意可得MN=4,EF=14,BC=10,DO=,设大孔所在抛物线解析式为y=ax2+,∵BC=10,∴点B(﹣5,0),∴0=a×(﹣5)2+,∴a=﹣,∴大孔所在抛物线解析式为y=﹣x2+,设点A(b,0),则设顶点为A的小孔所在抛物线的解析式为y=m(x﹣b)2,∵EF=14,∴点E的横坐标为﹣7,∴点E坐标为(﹣7,﹣),∴﹣=m(x﹣b)2,∴x1=+b,x2=﹣+b,∵MN=4,∴|+b﹣(﹣+b)|=4,∴m=﹣,∴顶点为A的小孔所在抛物线的解析式为y=﹣(x﹣b)2,∵大孔水面宽度为20米,∴当x=﹣10时,y=﹣,∴﹣=﹣(x﹣b)2,∴x1=+b,x2=﹣+b,∴单个小孔的水面宽度=|(+b)﹣(﹣+b)|=5(米),故答案为:5米.11.解:设每份A种快餐降价a元,则每天卖出(40+2a)份,每份B种快餐提高b元,则每天卖出(80﹣2b)份,由题意可得,40+2a+80﹣2b=40+80,解a=b,∴总利润W=(12﹣a)(40+2a)+(8+a)(80﹣2a)=﹣4a2+48a+1120=﹣4(a﹣6)2+1264,∵﹣4<0,∴当a=6时,W取得最大值1264,即两种快餐一天的总利润最多为1264元.故答案为:1264.12.解:设AB为x米,则BC=(100﹣2x)米,矩形菜园ABCD面积为y.由题意得:y=x(100﹣2x)=﹣2(x﹣25)2+1250,∵0<100﹣2x≤30,∴35≤x<50∴当x=35时,y=﹣2×(35﹣25)2+1250=1050为最大值,故答案为:1050平方米.13.解:当该球从弹起回到地面时h=0,∴0=﹣5t2+15t,解得:t1=0或t2=3,t=0时小球还未离开地面,∴t=3时小球从弹起回到地面;∵h=﹣5t2+15t=﹣5(t﹣)2+,﹣5<0,∴当t=时,h取得最大值;故答案为:3,.14.解:∵主悬钢索是抛物线形状,两端到桥面的距离OM与AN相等,且小强骑行18秒时和28秒时所在地方的主悬钢索的高度相同,∴MN的对称轴为直线x==23,∴他通过整个桥面OA共需23×2=46(秒).故答案为:46.15.解:由图象可知抛物线顶点坐标(20,16),经过(0,0),(40,0).设抛物线的解析式为y=a(x﹣20)2+16,把(0,0)代入得到a=﹣,∴抛物线的解析式为y=﹣(x﹣20)2+16,即y=﹣x2+x,故答案为:y=﹣x2+x.16.解:∵当球运动的水平距离为2.5m时,达到最大高度3.5m,∴抛物线的顶点坐标为(0,3.5),∴设此抛物线的解析式为y=ax2+3.5,由图象可知,篮圈中心与y轴的距离为:4﹣2.5=1.5(m),且篮圈中心距离地面高度为3.05m,∴篮圈中心的坐标为(1.5,3.05),代入y=ax2+3.5,得:3.05=a×1.52+3.5,∴a=﹣0.2,∴y=﹣0.2x2+3.5.故答案为:y=﹣0.2x2+3.5.三.解答题(共5小题)17.解:(1)由题意得A(0,1.2),B(6,0),将A,B代入y=x2+bx+c得:,解得:,∴b=1,c=1.2;(2)由(1)知,y=x2+x+1.2=﹣(x2﹣5x)+1.2=﹣+2.45,∴大棚的最高点到地面的距离为2.45米;(3)由(2)可知y=﹣+2.45的顶点为(2.5,2.45),①按小明说法:钢材长度为CE+CD=2.5+2.45=4.95<7,∴小明说法正确;②按小慧说法:设C点坐标为(x,x2+x+1.2),∴CE+CD=x x2+x+1.2=7,x2+2x+=7,x2﹣10x+29=0,∵Δ=(﹣10)2﹣4×1×29=﹣16<0,∴方程无解,∴钢材不够用,∴小慧说法错误.综上,小明说法正确.18.解:(1)设y与x之间的函数关系式为y=kx+b(k≠0),∵该函数图象过点(80,60),(110,30),∴,解得,∴y与x之间的函数关系式为y=﹣x+140,∵每盆兰花的销售价格不低于成本价,又不高于成本价的2倍.∴60≤x≤120,由上可得,y与x之间的函数关系式为y=﹣x+140(60≤x≤120);(2)根据题意,得w=(x﹣60)(﹣x+140)﹣200=﹣x2+200x﹣8600=﹣(x﹣100)2+1400,∵﹣1<0,∴当x=100时,w有最大值,此时w=1400.答:这一天销售兰花获得的利润的最大值为1400元.19.解:(1)根据题意,顶点P的坐标为(6,6),设抛物线的解析式为y=a(x﹣6)2+6,把点O(0,0)代入得:36a+6=0,解得:,即所求抛物线的解析式为:(0≤x≤12);(2)根据题意,当x=6﹣0.5﹣3.5=2时(或者当x=6+0.5+3.5=10)时,,∴这辆货车不能安全通过;(3)设A点的坐标为,则OB=m,,根据抛物线的对称性可得CM=OB=m,∴BC=12﹣2m,∵四边形ABCD是矩形,∴AD=BC=12﹣2m,,∴三根支杆AB,AD,DC的长度之和:=,∴当m=3,即OB=3米时,三根支杆AB,AD,DC的长度之和的最大值为15.20.解:(1)设A种型号的水杯进价为x元,B种型号的水杯进价为y元,根据题意得:,解得:.答:A种型号的水杯进价为20元,B种型号的水杯进价为30元;(2)设超市应将B型水杯降价m元时,每天售出B型水杯的利润为W元,根据题意,得:W=(44﹣m﹣30)(20+5m)=﹣5m2+50m+280=﹣5(m﹣5)2+405,∴当m=5时,W取得最大值,最大值为405元,答:超市应将B型水杯降价5元时,每天售出B型水杯的利润达到最大,最大利润为405元;(3)∵设总利润为w元,购进A种水杯a个,依题意,得:w=(10﹣b)a+9×=(10﹣6﹣b)a+3000,∵捐款后所得的利润始终不变,∴w值与a值无关,∴10﹣6﹣b=0,解得:b=4,∴w=(10﹣6﹣4)a+3000=3000,答:捐款后所得的利润始终不变,此时b为4元,利润为3000元.21.解:(1)由题意可得,AB+BC+CD=32,且CD=AB=x,∴BC=32﹣2x,∵MB=BF=CH=CN=1,∴PQ=FH=BC﹣BF﹣HC=(30﹣2x)m,故答案为:(32﹣2x),(30﹣2x);(2)由(1)得,EP=AM=AB﹣MB=x﹣1,∵长方形EPQG的面积等于96m2,∴EP⋅PQ=(30﹣2x)(x﹣1)=96(m),解得x1=7,x2=9,∴AB的长为7m或9m;(3)由题意可得,甲区域的面积为:2(x﹣1)+30﹣2x=28(m2),乙区域的面积为:(30﹣2x)(x﹣1)+2=﹣2x2+32x﹣28(m2);设总费用为y元,则y=100×28+50(﹣2x2+32x﹣28)=﹣100x2+1600x+1400,∴y=﹣100(x﹣8)2+7800,当x=8时,y有最大值7800,所以种植花卉与草坪的总费用的最高是7800元,此时花圃的宽AB是8m。
二次函数多结论压轴小题精选30道1.(2024春•岳麓区校级期末)已知抛物线y=ax2+bx+c的图象如图所示,则下列结论中,正确的有( )①abc>0;②b2>4ac;③a﹣b+c<0;④2a﹣b>0;⑤a+c<1.A.1个B.2个C.3个D.4个【分析】根据图上给的信息,结合二次函数的性质去判断对错即可.【解答】解:①如图所示,图象开口向上,∴a>0,∵图象与y轴的交点在x轴下方∴c<0,∵图象的对称轴在y轴的左边,且a>0,∴b>0,∴abc<0,故①错误;②根据图象可知,抛物线与x轴有两个交点,∴b2﹣4ac>0,即b2>4ac,故②正确;③由图可得,当x=﹣1时,y<0,∴a﹣b+c<0,故③正确;④由图可得,―b2a>―1,∵a>0,∴2a>b,∴2a﹣b>0,故④正确;⑤当x=1时,a+b+c=2,∴a+c=2﹣b,∵a﹣b+c<0,∴2﹣b﹣b<0,解得:b>1,∴2﹣b<1,∴a+c<1,故⑤正确;综上所述,共有4个是正确的;故选:D.2.(2024•宝安区校级模拟)已知抛物线y=ax2+bx+c(a≠0)的图象如图所示,则下列结论①abc<0,②a+b+c=2,③a>12④0<b<1中正确的有( )A.①②B.①②③C.①②④D.①②③④【分析】根据抛物线开口方向,对称轴的位置,与y轴的交点的位置,可以得出a、b、c的符号,进而确定abc的符号,对①做出判断;把(1,2)代入可对②做出判断;而无法判断③④一定正确,综合得出答案.【解答】解:因为抛物线开口向上,可知a>0,对称轴在y轴的左侧,a、b同号.故b>0,抛物线与y轴的交点在负半轴,因此c<0,∴abc<0,故①正确;把(1,2)代入得a+b+c=2,故②正确;当x=﹣1时,y=a﹣b+c<0,又∵a+b+c=2,∴2b>2,即:b>1,因此④不正确,因为对称轴x=―b2a介在﹣1与0之间,因此―b2a>―1,得2a>b,而b>1,∴a>12,因此③正确.故选:B.3.(2024•凤凰县模拟)已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,在下列5个结论:①abc<0;②b<a+c;③4a+2b+c>0;④2c<3b;⑤a+b<m(am+b)(m≠1的实数).其中正确结论个数有( )A.4个B.3个C.2个D.1个【分析】根据抛物线的开口方向、对称轴、与y轴的交点判定系数符号,及运用一些特殊点解答问题.【解答】解:开口向下,a<0;对称轴在y轴的右侧,a、b异号,则b>0;抛物线与y轴的交点在x轴的上方,c>0,∴abc<0,所以①正确,符合题意;当x=﹣1时图象在x轴下方,则y=a﹣b+c<0,即a+c<b,所以②不正确,不符合题意;对称轴为直线x=1,则x=2时图象在x轴上方,则y=4a+2b+c>0,所以③正确,符合题意;x=―b2a=1,则a=―12b,而a﹣b+c<0,则―12b―b+c<0,2c<3b,所以④正确,符合题意;开口向下,当x=1,y有最大值a+b+c;当x=m(m≠1)时,y=am2+bm+c,则a+b+c>am2+bm+c,即a+b>m(am+b)(m≠1),所以⑤错误,不符合题意.故①③④正确,故选:B.4.(2024•汝阳县一模)图形结合法既可以由数解决形的问题,也可以由形解决数的问题.如图所示,已知二次函数y=ax2+bx+c的图象如图所示.下列结论:①ab>0;②4a﹣2b+c<0;③2a﹣b<0;④|a+c|<|b|.其中正确的个数有( )A.1B.2C.3D.4【分析】根据所给函数图象,可得出a,b,c的正负,再根据抛物线的对称性和增减性对四个结论依次进行判断即可.【解答】解:由所给函数图象可知,a<0,b<0,所以ab>0.故①正确.抛物线上横坐标为﹣2的点在x轴下方,所以4a﹣2b+c<0.故②正确.因为抛物线的对称轴在直线x=﹣1和y轴之间,所以―b2a>―1,则2a﹣b<0.故③正确.当x=1时,函数值小于零,则a+b+c<0;当x=﹣1时,函数值大于零,则a﹣b+c>0;所以(a+b+c)(a﹣b+c)<0,即(a+c)2﹣b2<0,所以(a+c)2<b2,所以|a+c|<|b|.故④正确.故选:D.5.(2024•斗门区校级模拟)二次函数y=ax2+bx+c的图象如图所示,对称轴是直线x=1.下列结论:①abc>0;②3a+c>0;③(a+c)2﹣b2<0;④a+b≤m(am+b)(m为实数).其中结论正确的为( )A.①④B.②③④C.①②④D.①②③④【分析】由抛物线开口方向,对称轴位置,抛物线与y轴交点位置判断①,由a与b的关系及x=﹣1时y<0可判断②,利用(a+c)2﹣b2=(a+b+c)(a﹣b+c),根据x=﹣1时y>0,x=1时y<0可判断③,由x=1时y取最小值可判断④.【解答】解:∵抛物线开口向上,∴a>0,∵抛物线对称轴为直线x=―b2a=1>0∴b=﹣2a<0,∵抛物线与y轴交点在x轴下方,∴c<0∴abc>0,故①正确.∵x=﹣1时,y=a﹣b+c=3a+c=0,故②不正确.∵(a+c)2﹣b2=(a+b+c)(a﹣b+c),且a+b+c<0,a﹣b+c=0,∴(a+c)2﹣b2=0,故③不正确.∵x=1时,y=a+b+c为最小值,∴a+b≤m(am+b),故④正确.故选:A.6.(2024•岚山区二模)已知二次函数y=ax2+bx+c(a≠0)与x轴的一个交点为(4,0),其对称轴为直线x=1,其部分图象如图所示,有下列5个结论:①abc<0;②b2﹣4ac<0;③8a+c=0;④若关于x 的方程ax2+bx+c=﹣1有两个实数根x1x2,且满足x1<x2,则x1<﹣2,x2>4;⑤直线y=kx﹣4k(k≠0)经过点(0,c),则关于x的不等式ax2+(b﹣k)x+c+4k>0的解集是0<x<4.其中正确结论的个数为( )A.5B.4C.3D.2【分析】根据抛物线与方程、不等式的关系及二次函数的性质求解.【解答】解:由图象得:a<0,c>0,b=﹣2a>0,∴abc<0,故①是正确的;∵抛物线与x轴有两个交点,∴0=ax2+bx+c有两个不相等的实数根,∴b2﹣4ac>0,故②是错误的;根据抛物线的对称性,抛物线与x轴的交点的横坐标分别为:﹣2,4,∴当x=﹣2时,4a﹣2b+c=8a+c=0,故③是正确的;由图象得:抛物线与y=﹣1的交点的横坐标分别位于﹣2的左边,4的右边,∴x1<﹣2,x2>4;故④是正确的;∵直线y=kx﹣4k(k≠0)经过点(0,c)和(4,0),∴于x的不等式ax2+(b﹣k)x+c+4k>0即:ax2+bx+c>kx﹣4k的解集是0<x<4,故⑤是正确的;故选:B.7.(2024•旺苍县三模)已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,有下列5个结论:①abc>0;②b2<4ac;③2c<3b;④a+b>m(am+b)(m≠1);⑤若方程|ax2+bx+c|=1有四个根,则这四个根的和为2.其中正确的结论有( )A.2个B.3个C.4个D.5个【分析】①由二次函数图象性质知,开口向下,则a<0.再结合对称轴―b2a>0,得b>0.据二次函数图象与y轴正半轴相交得c>0;②由于二次函数图象与x轴交于不同两点,则b2﹣4ac>0,即b2>4ac;③由―b2a=1,得b=﹣2a,当x=﹣1时,y<0,即a﹣b+c<0,所以2a﹣2b+2c<0,把b替换成a计算;④x=1时函数有最大值,所以当x=1时的y值大于当x=m(m≠1)时的y值,即a+b+c>m(am+b)+c,所以a+b>m(am+b)(m≠1)成立;⑤将x轴下方二次函数图象翻折到x轴上方,则与直线y=1有四个交点即可,由二次函数图象的轴对称性知:关于对称轴对称的两个根的和为2,四个根的和为4.【解答】解:∵图象开口向下,∴a<0,∵对称轴在y轴的右侧,a与b异号,∴b>0,∵与y轴交于正半轴,∴c>0,∴abc<0,故①错误;∵二次函数图象与x轴交于不同两点,则Δ=b2﹣4ac>0.∴b2>4ac.故②错误;∵―b2a=1,∴b=﹣2a.又∵当x=﹣1时,y<0.即a﹣b+c<0.∴2a﹣2b+2c<0.∴﹣3b+2c<0.∴2c<3b.故③正确;∵x=1时函数有最大值,∴当x=1时的y值大于当x=m(m≠1)时的y值,即a+b+c>m(am+b)+c∴a+b>m(am+b)(m≠1)成立,故④正确.将x轴下方二次函数图象翻折到x轴上方,则与直线y=1有四个交点即可,由二次函数图象的轴对称性知:关于对称轴对称的两个根的和为2,四个根的和为4,故⑤错误.综上:③④正确,8.(2023秋•龙港区期中)函数y =ax 2+bx +c 与y =kx 的图象如图所示,下列结论:①b 2﹣4ac >0;②a +b +c =0;③x =﹣2时,函数y =﹣ax 2+(k ﹣b )x ﹣c 有最大值;④关于x 的方程ax 2+(b ﹣k )x +c =0的根是x 1=﹣1,x 2=﹣3,其中正确的个数是( )A .1B .2C .3D .4【分析】根据抛物线与x 轴交点个数与Δ=b 2﹣4ac 的关系即可判断①;由x =1时,二次函数的函数值即可判断②;由抛物线与直线的两个交点的横坐标为﹣3,﹣1得到9a ―3b +c =―3k①a ―b +c =―k②,解得k ﹣b =﹣4a ,代入y =﹣ax 2+(k ﹣b )x ﹣c 得到y =﹣ax 2+(k ﹣b )x ﹣c =﹣ax 2﹣4ax ﹣c =﹣a (x +2)2+4a ﹣c ,根据二次函数的性质即可判断③;抛物线与直线的交点的坐标与函数解析式的关系即可判断④.【解答】解:∵抛物线与x ∴Δ=b 2﹣4ac <0,故选项①错误;由图象可知,当x =1时,y =a +b +c >0,故选项②错误;∵抛物线与直线的两个交点的横坐标为﹣3,﹣1,∴9a ―3b +c =―3k①a ―b +c =―k②,②﹣①得﹣8a +2b =2k ,即k ﹣b =﹣4a ,∴y =﹣ax 2+(k ﹣b )x ﹣c =﹣ax 2﹣4ax ﹣c =﹣a (x +2)2+4a ﹣c ,∵﹣a <0.∴x =﹣2时,函数y =﹣ax 2+(k ﹣b )x ﹣c 有最大值,故选项③正确;∵抛物线与直线的两个交点的横坐标为﹣3,﹣1,∴方程ax 2+bx +c 与y =kx 的解为x 1=﹣1,x 2=﹣3,∴关于x 的方程ax 2+(b ﹣k )x +c =0的根是x 1=﹣1,x 2=﹣3,故选项④正确.9.(2023•石城县模拟)二次函数y=ax2+bx+c(a≠0)的图象如图所示.下列结论:①abc>0;②2a+b=0;③m为任意实数,则a+b>am2+bm;④a﹣b+c>0;⑤若ax21+bx1=ax22+bx2且x1≠x2,则x1+x2=2.其中正确的有( )A.①④B.③④C.②⑤D.②③⑤【分析】由抛物线的开口方向判断a与0的关系,由抛物线与y轴的交点判断c与0的关系,然后根据对称轴及抛物线与x轴交点情况进行推理,进而对所得结论进行判断.【解答】解:①抛物线开口方向向下,则a<0.抛物线对称轴位于y轴右侧,则a、b异号,即ab<0.抛物线与y轴交于正半轴,则c>0.所以abc<0.故①错误.②∵抛物线对称轴为直线x=b2a=1,∴b=﹣2a,即2a+b=0,故②正确;③∵抛物线对称轴为直线x=1,∴函数的最大值为:y=a+b+c;∴a+b+c≥am2+bm+c,即a+b≥am2+bm,故③错误;④∵抛物线与x轴的一个交点在(3,0)的左侧,而对称轴为直线x=1,∴抛物线与x轴的另一个交点在(﹣1,0)的右侧,∴当x=﹣1时,y<0,∴a﹣b+c<0,故④错误;⑤∵ax21+bx1=ax22+bx2,∴ax21+bx1―ax22―bx2=0,∴a(x1+x2)(x1﹣x2)+b(x1﹣x2)=0,∴(x1﹣x2)[a(x1+x2)+b]=0,而x1≠x2,∴a(x1+x2)+b=0,即x1+x2=―b a ,∵b=﹣2a,∴x1+x2=2,故⑤正确.综上所述,正确的有②⑤.故选:C.10.(2024•苍溪县模拟)如图,已知二次函数y=ax2+bx+c(a,b,c是常数)的图象关于直线x=﹣1对称,则下列五个结论:①abc>0;②2a﹣b=0;③9a﹣3b+c<0;④a(m2﹣1)+b(m+1)≤0(m为任意实数);⑤3a+c<0.其中结论正确的个数为( )A.2个B.3个C.4个D.5个【分析】根据所给函数图象可得出a,b,c的正负,再结合抛物线的对称性及增减性,利用数形结合的思想对所给结论依次进行判断即可.【解答】解:由函数图象可知,a<0,b<0,c>0,所以abc>0.故①正确.因为抛物线的对称轴为直线x=﹣1,所以―b2a=―1,即2a﹣b=0.因为抛物线的对称轴为直线x =﹣1,且x =1时,函数值小于零,所以x =﹣3时,函数值小于零,则9a ﹣3b +c <0.故③正确.因为抛物线的对称轴为直线x =﹣1,且开口向下,所以当x =m 时,am 2+bm +c ≤a ﹣b +c ,即am 2﹣a +bm +b ≤0,所以a (m 2﹣1)+b (m +1)≤0.故④正确.由函数图象可知,当x =1时,函数值小于零,则a +b +c <0,又因为b =2a ,所以3a +c <0.故⑤正确.故选:D .11.(2024•y =ax 2+bx +c 的图象中,观察得出了下面五条信息:①c <0;②abc >0;③a ﹣b +c >0;④2a ﹣3b =0;⑤c ﹣4b >0,你认为其中正确信息的个数有( )A .2个B .3个C .4个D .5个【分析】观察图象易得a >0,―b 2a =13>0,所以b <0,2a ﹣3b >0,因此abc >0,由此可以判定①②是正确的,而④是错误的;当x =﹣1,y =a ﹣b +c ,由点(﹣1,a ﹣b +c )在第二象限可以判定a ﹣b +c >0③是正确的;当x =2时,y =4a +2b +c =2×(﹣3b )+2b +c =c ﹣4b ,由点(2,c ﹣4b )在第一象限可以判定c ﹣4b >0⑤【解答】解:∵抛物线开口方向向上,∴a>0,∵与y轴交点在x轴的下方,∴c<0,∵―b2a=13>0,∵a>0,∴b<0,2a﹣3b>0,∴abc>0,∴①②是正确的,④对称轴x=―b2a=13,∴3b=﹣2a,∴2a+3b=0,∴④是错误的;当x=﹣1,y=a﹣b+c,而点(﹣1,a﹣b+c)在第二象限,∴a﹣b+c>0是正确的;当x=2时,y=4a+2b+c=2×(﹣3b)+2b+c=c﹣4b,而点(2,c﹣4b)在第一象限,∴c﹣4b>0.故选:C.12.(2024•沂源县一模)已知二次函数y=ax2+bx+c(a≠0)的图象的一部分如图所示,其中对称轴为:x =1,下列结论:①abc>0;②a+c>0;③2a+3b>0;④a+b>am2+bm(m≠1);上述结论中正确结论的个数为( )A.1个B.2个C.3个D.4个【分析】由抛物线的开口方向可判定a的符号;结合抛物线的对称轴b的符号可判断①;通过x=﹣1和x=3的对称性判断②;将不等式的两边加上c,进而判断出③;将b=﹣2a,a﹣b+c=0可推出④.【解答】解:∵抛物线的开口向下,∴a<0,∵对称轴为:x=―b2a=1,∴b=﹣2a>0,∵抛物线与y轴交于y轴的正半轴,∴c>0,∴abc<0,故①不正确;∵2×1﹣3=﹣1,当x=3时,y>0,∴当x=﹣1时,a﹣b+c>0,∴a+c>b,∵b=﹣2a>0,∴a+c>0,故②正确;∵b=﹣2a,∴2a+3b=2a﹣6a=﹣4a>0,故③正确,∵当x=1时,y=a+b+c,a<0,∴函数的最大值为:a+b+c,∴a+b+c>am2+bm+c(m≠0),∴a+b>am2+bm,∴②③④正确,故选:C.13.(2024•桃江县一模)抛物线y=ax2+bx+c的顶点坐标为(2,﹣a)(如图所示),则下列说法:①abc <0;②(a+b)2≥c;③关于x的方程ax2+bx=0有两个不相等的实数根;④﹣1≤a≤0.则正确的结论有( )A.1个B.2个C.3个D.4个【分析】由二次函数图象的性质及二次函数图象与系数的关系逐一判定即可.【解答】解:∵抛物线开口向下,∴a<0,∵抛物线的顶点坐标为(2,﹣a),∴―b2a=2,∴b=﹣4a>0,∵抛物线交y轴的负半轴,∴c<0,∴abc>0,故①错误;∵抛物线的顶点坐标为(2,﹣a),∴4a+2b+c=﹣a,∵b=﹣4a,∴4a﹣8a+c=﹣a,即c=3a,∴(a+b)2﹣c=9a2﹣3a=3a(3a﹣1),∴3a (3a ﹣1)>0,∴(a +b )2﹣c >0,∴(a +b )2>c ,故②错误;由图可知抛物线与直线y =c 有两个交点,∴关于x 的方程ax 2+bx +c =c ,即ax 2+bx =0有两个不相等的实数根,故③正确;∵a 为抛物线二次项系数,∴a ≠0,故④错误.故选:A .14.(2023秋•中山市校级期末)二次函数y =ax 2+bx +c (a ≠0)的图象如图所示.下列结论:①2a +b =0;②3a +c >0;③m 为任意实数,则a +b >am 2+bm ;④若A (x 1,0),B (x 2,0),则x 1+x 2=2,其中正确的有( )A .①②B .①③C .①④D .②④【分析】根据对称轴为直线x =x =1时取得最大值,即可判断①③,根据x =3时,y <0,即可判断②,根据对称性即可判断④.【解答】解:∵抛物线对称轴为直线x =―b 2a=1,∴b =﹣2a ,即2a +b =0,所以①正确;∵x =3时,y =9a +3b +c <0,即9a +3×(﹣2a )+c <0,∴3a +c <0,故②不正确;抛物线对称轴为直线x =1,开口向下,∴函数的最大值为a +b +c ,∴a +b +c ≥am 2+bm +c (m 为任意实数),即a +b ≥am 2+bm ,故③不正确;∵A (x 1,0),B (x 2,0),对称轴为直线x =1,则x 1+x 2=2,故④正确,15.(2023秋•西城区校级月考)已知二次函数y=ax2+bx+c的图象如图所示,则下列结论:①a<0;②9a+3b+c>0;③c>0;④﹣3<―b2a<0其中正确的有( )A.4个B.3个C.2个D.1个【分析】根据开口方向判断a的符号,当x=3时,判断9a+3b+c>0;根据抛物线与y轴的交点位置判断c的符号;根据抛物线对称轴的位置判断④.【解答】解:∵抛物线开口向下,∴a<0,故①正确;由图可以看出,对称轴﹣3<x=―b2a<0,故④正确;设抛物线与x1,由题意得,对称轴x=x1―32<0,解得x1<3,∴当x=3时,y=9a+3b+c<0,故②错误;∵抛物线与y轴交于正半轴,∴c>0,故③正确.综上所述,①③④正确.故选:B.16.(2023•东港区校级三模)函数y=x2+bx+c与y=x的图象如图所示,有以下结论:①b2﹣4c>0;②b+c=0;③2b+c+3=0;④当1<x<3时,x2+(b﹣1)x+c<0其中正确的有( )个.A.4B.3C.2D.1【分析】①根据开口方向判定a的符号,根据对称轴判断b的符号,根据抛物线与y轴的交点判断c的符号,根据抛物线与x轴的交点情况判断b2﹣4ac的符号;②当x=1时,y=1,判断b+c+1的符号,由b+c+1=1,可得b+c=0;③根据对称轴求b的值,由b+c=0,代入可作判定;④由抛物线和直线所处的位置判断x2+bx+c<x,得出x2+(b﹣1)x+c<0.【解答】解:①∵函数y=x2+bx+c与x轴没交点,∴Δ=b2﹣4ac<0,∵a=1,∴Δ=b2﹣4c<0,故①错误;②∵函数y=x2+bx+c与y=x的交点的横坐标为1,∴交点为:(1,1),(3,3),∴b+c+1=1,∴b+c=0;故②正确;③由图象得:抛物线的对称轴是:x=32,且a=1,∴―b2=32,∴b=﹣3,∴2b+c+3=b+0+3=0,故③正确;④由图象可知:当1<x<3时,抛物线在直线的下方,∴x2+bx+c<x,∴x2+(b﹣1)x+c<0,故选:B.17.(2023•双台子区校级一模)二次函数y=ax2+bx+c的图象如图所示,给出四个结论:①abc>0;②4a﹣2b+c>0;③对于任意实数m,有am2+bm+c<a﹣b+c;④ca>―3,其中正确的有( )A.①②B.①④C.②③D.③④【分析】二次函数y=ax2+bx+c的系数确定了抛物线开口方向、对称轴、与y轴的交点等.对于①,先根据二次函数图象的性质判断a,b,c的正负,进而得出答案;对于②,令x=﹣2求出y值,判断即可;对于③,先求出当x=﹣1时,求初最大值,再比较即可;对于④,根据对称轴求出a,b的关系,再将x=1,y=0代入关系式,即可判断.【解答】解:①∵对称轴位于x轴的左侧,∴―b2a<0,∴即ab>0.∵与y轴交于正半轴,∴c>0,∴abc>0.故①正确;②∵x=﹣2时,y>0,∴4a﹣2b+c>0,故②正确;③当x=﹣1时,y最大=a﹣b+c,当x=m时,y=am2+bm+c,∴有am2+bm+c≤a﹣b+c,故③错误;④∵抛物线的对称轴为直线x=―b2a=―1,∵x=1时,y=0,∴a+b+c=0,∴c=﹣3a,∴ca=―3aa=―3,故④错误;正确的结论有:①②,故选:A.18.(2023•遂溪县模拟)如图是二次函数y=ax2+bx+c的图象,对称轴是直线l,则以下说法:①a﹣b+c=0;②4a+b=0;③abc>0;④16a+5b+2c>0,其中正确的个数是( )A.1B.2C.3D.4【分析】先由抛物线与x5,0),对称轴为x=2,可以得到抛物线与x轴的另一交点为(﹣1,0)可以判断①;利用抛物线的对称轴为x=2,判断出结论②;先由抛物线的开口方向判断出a>0,进而判断出b<0,再用抛物线与y轴的交点的位置判断出c>0,判断出结论③;先求出b=﹣4a,c=﹣5a,然后代入16a+5b+2c即可判断.【解答】解:有图象知,抛物线过点(5,0),对称轴为直线x=2,∴抛物线过点(﹣1,0),∴a﹣b+c=0,故①正确;∵抛物线的对称轴为直线x=2,∴―b2a=2,∴4a+b=0,故②正确;由图象知,抛物线开口向上,∴a>0,∵4a+b=0,∴b<0,而抛物线与y轴的交点在y轴的负半轴上,∴c<0,∴abc>0,故③正确;∵4a+b=0,∴b=﹣4a,∵a﹣b+c=0,∴c=﹣5a,∴16a+5b+2c=16a﹣20a﹣10a=﹣14a<0,故④错误.故选:C.19.(2023秋•义乌市期中)已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,有下列4个结论:①abc >0;②b2>4ac;③a(m2﹣1)+b(m﹣1)<0(m≠1);④关于x的方程|ax2+bx+c|=1有四个根,且这四个根的和为4A.①②③B.②③④C.①④D.②③【分析】由抛物线开口方向,对称轴位置,抛物线与y轴交点位置可判断①,由抛物线与x轴有两个交点可判断②,由当x=1时函数取最大值可判断③,由函数最大值大于1且抛物线开口向下可判断④.【解答】解:∵抛物线开口向下,∴a<0,∵抛物线对称轴为直线x=1,∴―b2a=1,∴b=﹣2a>0,∵抛物线与y轴交点在x轴上方,∴c>0,∴abc<0,①错误;∵抛物线与x轴有2个交点,∴b2﹣4ac>0,∴b2>4ac,②正确;∵x=1时函数取最大值,∴am2+bm+c<a+b+c(m≠1),∴am2﹣a+bm﹣b<0,即a(m2﹣1)+b(m﹣1)<0(m≠1),③正确.∴由图象可得函数最大值大于2,∴ax2+bx+c=1有两个不相等的实数根x1,x2,ax2+bx+c=﹣1有两个不相等的实数根x3,x4,∵图象对称轴为直线x=1,∴x1+x2=2,x3+x4=2.∴x1+x2+x3+x4=4,∴④正确.故选:B.20.(2023秋•铜梁区校级期中)二次函数y=ax2+bx+c的图象如图所示,给出下列结论:①abc>0;②2a+b<0;③若﹣1<m<n<1,则m+n<―b a ;④3|a|+|c|<2|b|.其中正确的结论有( )A.1个B.2个C.3个D.4个【分析】分别根据二次函数开口方向以及对称轴位置和图象与y轴交点得出a,b,c的符号,再利用特殊值法分析得出各选项.【解答】解:∵抛物线开口向下,∴a<0,∴2a<0,∵对称轴x=―b2a>1,b>0,∵抛物线与y轴交于负半轴,∴c<0,∴abc>0,故选项①正确;对称轴x=―b2a>1,又a<0,则﹣b<2a,则2a+b>0,故②错误;∵﹣1<m<n<1,则﹣2<m+n<2,∴抛物线对称轴为:x=―b2a>1,―ba>2,m+n<―ba,故选项③正确;当x=1时,a+b+c>0,2a+b>0,则3a+2b+c>0,∴3a+c>﹣2b,∴﹣3a﹣c<2b,∵a<0,b>0,c<0(图象与y轴交于负半轴),∴3|a|+|c|=﹣3a﹣c<2b=2|b|④选项正确.故选:C.21.(2023•仁怀市模拟)如图,根据二次函数y=ax2+bx+c的图象得到如下结论:①abc>0 ②2a﹣b=0 ③a+b+c=0 ④3a+c<0 ⑤当x>﹣2时,y随x的增大而增大⑥一定存在实数x0,使得ax20+bx0>a﹣b 成立.上述结论,正确的是( )A.①②⑤B.②③④C.②③⑥D.③④⑤【分析】由开口方向、对称轴及抛物线与y轴的交点位置可判断结论①;由对称轴为直线x=﹣1即可得到,2a﹣b=0,即可判断②;由抛物线的对称性即可判断③④;由抛物线的增减性可判断结论⑤;函数的最值即可判断结论⑥.【解答】解:∵抛物线开口向上、顶点在y轴左侧、抛物线与y轴交于负半轴,∴a>0,b>0,c<0,∴abc<0,故①错误;∵―b2a=―1,∴b=2a,∴2a﹣b=0,故②正确;∵抛物线过点(﹣3,0),对称轴为直线x=﹣1,∴抛物线过点(1,0),∴a+b+c=0,故③正确;∴b=2a,a+b+c=0,∴3a+c=0,故④错误;∵抛物线开口向上,对称轴是直线x=﹣1,∴当x>﹣1时,y随x的增大而增大;故⑤错误;∵函数最小值为a﹣b+c,∴当x0≠﹣1时,则ax20+bx0c a﹣b+c,即ax20+bx0>a﹣b,∴一定存在实数x0,使得ax20+bx0>a﹣b成立,故⑥正确;故选:C.22.(2023•广东模拟)二次函数y=ax2+bx+c的图象如图所示,有如下结论:①abc<0;②2a﹣b+c≤0;③3b﹣2c<0;④对任意实数m,都有2am2+2bm﹣b≥0.其中正确的有( )A.①②B.②③C.②④D.③④【分析】由抛物线开口方向,对称轴位置,抛物线与y轴的交点位置可判断①;由x=﹣1时y>0及a>0,可判断②;由x=﹣1时y>0及a与b的数量关系可判断③,由x=1时函数取最小值可判断④.【解答】解:∵抛物线开口向上,∴a>0,∵抛物线对称轴为直线x=1,∴―b2a=1,∴b=﹣2a<0,∵抛物线与y轴交点在x轴下方,∴c<0,∴abc>0,故①错误;∵x=﹣1时,y>0,∴a﹣b+c>0,∵a>0,∴2a﹣b+c>0,故②错误;∵b=﹣2a,∴a=―b 2,由图象可得x=﹣1时,y=a﹣b+c=―32b+c>0,∴3b﹣2c<0,故③正确;由x=1时函数取最小值可得am2+bm+c≥a+b+c,∴am2+bm≥a+b,∵a=―b 2,∴am2+bm≥b 2,∴2am2+2bm﹣b≥0,故④正确.故选:D.23.(2023•凤凰县模拟)已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列结论①abc<0;②3a+b>―13c;③2c<3b;④(k+1)(ak+a+b)≤a+b,其中正确的是( )A.①③④B.①②④C.①④D.②③④【分析】根据二次函数图象与性质,先判断a<0,b=﹣2a,即b>0,c>0,即可判断①正确;根据图象得出x=3时y<0,即可得出9a+3b+c<0,通过变形可判断②错误;根据9a+3b+c<0结合b=﹣2a 可以判断③正确;根据x=1时,y=a+b+c是函数的最大值,可以判断④正确.【解答】解:∵抛物线开口向下,∴a<0,∵对称轴是直线x=1,∴―b2a=1,即b=﹣2a,∴b>0,∵抛物线与y轴交点在正半轴,∴c>0,∴abc<0,故①正确;由图象可知,抛物线与x轴左侧的交点在(﹣1,0)的右侧,∵抛物线的对称轴为x=1,∴抛物线与x轴右侧的交点在(3,0)的左侧,∴当x=3时,y<0,∴9a+3b+c<0,∴3a+b<―13 c,故②错误;∵9a+3b+c<0,b=﹣2a,∴―92b+3b+c<0,∴2c<3b,故③正确;当x=1时,y=a+b+c是函数的最大值,∴a(k+1)2+b(k+1)+c≤a+b+c,∴a(k+1)2+b(k+1)≤a+b,∴(k+1)(ak+a+b)≤a+b,故④正确;∴正确的有①③④,故选:A.24.(2024•黄石模拟)已知抛物线y=ax2+bx+c(a<0)与x轴交于点(x1,0),(2,0),其中﹣1<x1<0.下列四个结论:①abc<0;②a﹣b+c>0;③2b﹣c<0;④不等式ax2+bx+c>―c2x+c的解集为0<x<2.其中正确结论的序号为( )A.①②B.①③C.②③D.①④【分析】根据题意画出函数图象,得到a、b异号,c>0,可判断①结论;根据当x=﹣1时,y<0,可判断②结论;根据抛物线y=ax2+bx+c(a<0)过点(2,0),得到a=―12b―14c,可判断③结论;令y1=―c2x+c,画出一次函数图象,利用图象可判断④结论.【解答】解:根据题意画出函数图象如下:∵抛物线y=ax2+bx+c(a<0x轴交于点(x1,0),(2,0),其中﹣1<x1<0,∴抛物线开口向下,对称轴在12~1之间,与y轴交点在正半轴,∴a、b异号,c>0,∴abc<0,①结论正确;由图象可知,当x=﹣1时,y<0,∴a﹣b+c<0,②结论错误;∵抛物线y=ax2+bx+c(a<0)过点(2,0),∴4a+2b+c=0,∴a=―2b+c4=―12b―14c,∴a―b+c=―12b―14c―b+c=―32b+34c=―34(2b―c)<0,∴2b﹣c>0,③结论错误;令y1=―c2x+c,当x=0时,y=c;当y=0,x=2,函数图象如下:由图象可知,当0<x<2时,抛物线y=ax2+bx+c图象在一次函数y1=―c2x+c的上方,∴不等式ax2+bx+c>―c2x+c的解集为0<x<2,④结论正确,故选:D.25.(2024•殷都区模拟)如图,在平面直角坐标系中,直线y1=mx+n与抛物线y2=ax2+bx―3相交于点A,B.结合图象,判断下列结论:①当﹣3<x<2时,y1>y2;②x=﹣3是方程ax2+bx﹣3=0的一个解;③若(﹣4,t1),(1,t2t1>t2;④对于抛物线y2=ax2+bx―3,当﹣3<x<2时,y2的取值范围是0<y2<5.其中正确结论的个数是( )A.4个B.3个C.2个D.1个【分析】根据函数图象即可判断①②④;求出对称轴,再由开口向上得到离对称轴越远函数值越大,即可判断③.【解答】解:由函数图象可知,当一次函数图象在二次函数图象上方时,自变量的取值范围为﹣3<x<2,∴当﹣3<x<2时,y1>y2,故①正确;∵二次函数与x轴的一个交点坐标为当(﹣3,0),∴x=﹣3是方程ax2+bx﹣3=0的一个解,故②正确;∵抛物线经过(2,5),(﹣3,0)∴4a+2b﹣3=5,9a﹣3b﹣3=0,∴a=1,b=2,∴抛物线对称轴为直线x=b―2a=―1,∵函数开口向上,∴离对称轴越远,函数值越大,∵﹣1﹣(﹣4)=3>1﹣(﹣1)=2,∴t1>t2,故③正确;由函数图象可知,当﹣3<x<2时,y2的取值范围是不是0<y2<5,故④错误,故选:B.26.(2024•东港区校级一模)如图,抛物线y=ax2+bx+c(a≠0)与x轴交于点A(﹣1,0),顶点坐标为(1,n),与y轴的交点在(0,2)和(0,3)两点之间(包含端点).下列结论中正确的是( )①不等式ax2+c<﹣bx的解集为x<﹣1或x>3;②9a2﹣b2<0;③一元二次方程cx2+bx+a=0的两个根分别为x1=13,x2=﹣1;④6≤3n﹣2≤10.A.①②③B.①②④C.②③④D.①③④【分析】由已知求出b=﹣2a,c=﹣3a,由抛物线的对称性可求抛物线与x轴的另一个的交点为(3,0),则不等式ax2+c<﹣bx的解集为x<﹣1或x>3;再将b=﹣2a,c=﹣3a,代入9a2﹣b2,即可判断②;将一元二次方程cx2+bx+a=0化为﹣3ax2﹣ax+a=0,即可求方程的根;由已知可得2≤c≤3,再由抛物线的顶点坐标可求n=﹣4a,从而进一步可求n的范围为83≤n≤4,即可求出6≤3n﹣2≤10.【解答】解:∵顶点坐标为(1,n),∴b=﹣2a,∵与x轴交于点A(﹣1,0),∴a﹣b+c=0,∴c=﹣3a,∵对称轴为直线x=1,经过点(﹣1,0),∴抛物线与x轴的另一个的交点为(3,0),∵抛物线开口向下,∴不等式ax2++bx+c<0的解集为x<﹣1或x>3,即不等式ax2+c<﹣bx的解集为x<﹣1或x>3,故①正确;∵9a2﹣b2=9a2﹣(﹣2a)2=5a2>0,故②不正确;∵一元二次方程cx2+bx+a=0可化为﹣3ax2﹣2ax+a=0,即3x2+2x﹣1=0,∴方程的根为x1=13,x2=﹣1,故③正确;∵抛物线与y轴的交点在(0,2)和(0,3)两点之间,∴2≤c≤3,∵顶点坐标为(1,n),∴n=﹣4a,∵c=﹣3a,∴n=43 c,∴83≤n≤4,∴6≤3n﹣2≤10;故④正确;故选:D.27.(2024•射洪市一模)二次函数y =ax 2+bx +c (a ≠0)的大致图象如图所示(1<x =h <2,0<x A <1).下列结论:①abc <0;②2a +b >0;③若OC =2OA ,则2b ﹣ac =4;④3a ﹣c <0.其中正确的有 ②③④ .(只填写序号)【分析】①根据抛物线的开口向下即可得出a <0,再根据抛物线的对称轴在x =1和x =2之间即可得出b >﹣2a ,②正确;②由b >﹣2a 可得出b >0,再根据抛物线与y 轴交于y 轴负半轴可得出c <0,由此即可得出abc >0,①错误;③将A(―c 2,0)代入抛物线解析式中,整理后可得出2b ﹣ac =4,③正确;④根据抛物线的对称轴1<―b 2a<2可得出﹣2a <b <﹣4a ,再由当x =1时y >0即可得出a +b +c >0,进而即可得出3a ﹣c <0,④正确.综上即可得出结论.【解答】解:∵抛物线的开口向下,∴a <0.∵抛物线的对称轴―b 2a>1,∴b >﹣2a ,即2a +b >0,②成立;∵b >﹣2a ,a <0,∴b >0,∵抛物线与y 轴的交点在y 轴的负半轴,∴c <0,∴abc >0,①错误;∵OC =2OA ,∴A(―c 2,0),∴14ac 2―14bc +c =0,整理得:2b ﹣ac =4,③成立;∵抛物线的对称轴1<―b 2a<2,∴﹣2a <b <﹣4a ,∵当x =1时,y =a +b +c >0,∴a ﹣4a +c >0,即3a ﹣c <0,④正确.综上可知正确的结论为②③④.故答案为:②③④.28.(2023秋•太康县期末)已知二次函数y =ax 2+bx +c (a ≠0,a 、b 、c 为常数)的图象如图所示.下列4个结论:①b >0;②b <a +c ;③c <4b ;④a +b <k 2a +kb (k 为常数,且k ≠1).其中正确的结论序号是 ①③ .【分析】由抛物线的开口方向判断a 的符号,然后根据对称轴及抛物线与x 轴交点情况进行推理,进而对所得结论进行判断.【解答】解:由图象可知,a <0,―b 2a=1,∴b =﹣2a ,∴b >0,故①正确;由图象可知,当x =﹣1时,y <0,即a ﹣b +c <0,∴b >a +c ,故②错误;∵二次函数y =ax 2+bx +c 图象的对称轴为直线x =1,∴当x =3时,函数值小于0,y =9a +3b +c <0,且b =﹣2a ,即a =―b 2,代入得9(―b 2)+3b +c <0,得c <32b ,∵b >0,∴c <4b ,故③正确;当x=1时,y的值最大.此时,y=a+b+c,而当x=k时,y=ak2+bk+c,∵k为常数,且k≠1,所以a+b+c>ak2+bk+c,故a+b>ak2+bk,故④错误.故①③正确.故答案为:①③.29.(2023秋•青山区期末)已知抛物线y=ax2+bx+c经过点(2,c),且满足a﹣b+c=0.下列四个结论:①抛物线的对称轴是直线x=1;②b与c同号;③若a+2b+4c>0,则不等式ax2+bx+c<﹣2ax﹣a﹣b的解集﹣2<x<2;④抛物线上的两个点M(m﹣1,y1),N(m+2,y2),当c<0,且y1>y2时,m<1 2.其中一定正确的是 .(填写序号)【分析】根据二次函数的性质及抛物线与不等式的关系求解.【解答】解:由题意得:4a+2b+c=c,∴b=﹣2a∴―b2a=1,故①是正确的;又∵a﹣b+c=0,∴c=﹣3a,∴a、c异号,a、b异号,∴b、c同号,故②是正确的;∵a+2b+4c>0,∴a﹣4a﹣12a=﹣15a>0,∴a<0,∴不等式化为:x2﹣4>0,解得:﹣2<x <2,故③是正确的;∵c <0,∴a >0,抛物线开口向上,∵m ﹣1<m +2,y 1>y 2,∴m +2≤1,或1﹣(m ﹣1)>m +2﹣1解得:m ≤﹣1或m <12,故④是错误的;故答案为:①②③.30.(2023秋•城厢区校级月考)如图,是抛物线y 1=ax 2+bx +c (a ≠0)图象的一部分,抛物线的顶点坐标为A (1,3),与x 轴的一个交点为B (4,0),点A 和点B 均在直线y 2=mx +n (m ≠0)上.①2a +b =0;②abc >0;③抛物线与x 轴的另一个交点是(﹣4,0);④方程ax 2+bx +c =﹣3有两个不相等的实数根;⑤a ﹣b +c <4m +n ;⑥不等式mx +n >ax 2+bx +c 的解集为1<x <4.其中正确的是 .【分析】利用抛物线的对称轴方程得到―b 2a=1,则可对①进行判断;由抛物线开口向下得到a <0,则b >0,由抛物线与y 轴的交点在x 轴上方得到c >0,则可对②进行判断;利用抛物线的对称性得到抛物线与x 轴的一个交点为(﹣2,0),则可对③进行判断;利用抛物线与直线y =﹣3只有一个交点可对④进行判断;利用x =﹣1时,y 1>0,即a ﹣b +c >0,x =4时,y 2=0,即4m +n =0,则可对⑤进行判断;结合函数图象可对⑥进行判断.【解答】解:∵抛物线的对称轴为直线x =―b 2a=1,∴b=﹣2a,即2a+b=0,所以①正确;∵抛物线开口向下,∴a<0,∴b=﹣2a>0,∵抛物线与y轴的交点在x轴下方,∴c>0,∴abc<0,所以②错误;∵抛物线的对称轴为直线x=1,抛物线与x轴的一个交点为B(4,0),∴抛物线与x轴的一个交点为(﹣2,0),所以③错误;∵抛物线的顶点坐标为(1,3),∴抛物线与直线y=﹣3有两个交点,∴方程ax2+bx+c=﹣3有两个不相等的实数根,所以④正确;∵x=﹣1时,y1>0,即a﹣b+c>0,而x=4时,y2=0,即4m+n=0,∴a﹣b+c>4m+n;所以⑤错误;∵当1<x<4时,y2<y1,∴不等式mx+n>ax2+bx+c的解集为x<1或x>4.所以⑥错误.故答案为:①④.。
考点跟踪突破14文言文朗读停顿与翻译(一)(2016·武汉)阅读下面的文言语段,完成1-4题。
(导学号:76712263)萧颖士风节萧颖士为唐名人,后之学者但称其才华而已。
予反复考之,盖有风节识量之士也。
为集贤校理,宰相李林甫欲见之,颖士不诣,林甫怒其不下己。
后召诣史馆又不屈愈见疾至免官更调河南参军。
安禄山宠恣,颖士阴.语柳并曰:“胡人负.宠而骄,乱不久矣。
东京其先陷乎!”即托疾去。
禄山反,往见郭纳,言御守计,纳不用。
叹曰:“肉食者以儿戏御剧贼,难矣哉!”闻封常清陈兵东京,往观之,不宿而还。
身走山南,节度使源洧欲退保江陵,颖士说曰:“襄阳乃天下喉襟,一日不守,则大事去矣。
公何遽轻土地,取天下笑乎?”洧乃按甲不出。
洧卒,往客.金陵,永王璘召之,不见。
李太白,天下士也,特以堕永王乱中,为终身累。
颖士,永王召而不见,则过.之焉。
(选自《容斋随笔》,有删改)1.下列字词的理解,不正确的一项是( D )A.颖士阴.语柳并曰阴:暗中B.胡人负.宠而骄负:依仗C.往客.金陵客:旅居D.则过.之焉过:责备2.为文中画波浪线的语句断句,正确的一项是( B )后召诣史馆又不屈愈见疾至免官更调河南参军A.后召诣/史馆又不屈/愈见疾至/免官更调河南参军B.后召诣史馆/又不屈/愈见疾/至免官更调河南参军C.后召诣/史馆又不屈愈/见疾至免官/更调河南参军D.后召诣史馆/又不屈愈见/疾至免官/更调河南参军3.下列对文本的理解,不正确的一项是( C )A.萧颖士对宰相李林甫、永王李璘的召见均辞而不去。
B.萧颖士预言了安禄山即将叛乱且东京将会陷落。
C.郭纳、封常清没有采纳萧颖士的守城计策。
D.节度使源洧听从了萧颖士坚守襄阳的劝说。
4.将文言文材料中画横线的句子翻译成现代汉语。
肉食者以儿戏御剧贼,难矣哉!当官的以儿童的游戏方式来抵御厉害的叛军,(想取胜)太难了!(二)(2016·宁波)阅读【甲】【乙】两文,回答问题。
专练(函数类应用题)1.某药店购进一批消毒液,进价为20元/瓶,要求利润率不低于20%,且不高于60%.该店通过分析销售情况,发现该消毒液一天的销售量y(瓶)与当天的售价x(元/瓶)满足下表所示的一次函数关系.(1)若某天这种消毒液的售价为30元/瓶,求当天该消毒液的销售量.(2)如果某天销售这种消毒液获利192元,那么当天该消毒液的售价为多少元?(3)若客户在购买消毒液时,会购买相同数量(包)的口罩,且每包口罩的利润为20元,则当消毒液的售价定为多少时,可获得的日利润最大?最大日利润是多少元?2.(2021·江西吉安市·九年级期末)某工艺品厂设计了一款每件成本为11元的工艺品投放市场进行试销,经过市场调查,得出每天销售量y(件)是每件售价x(元)(x为正整数)的一次函数,其部分对应数据如下表所示:(1)求y关于x的函数解析式.(2)该工艺品每件售价为多少元时,工艺品厂试销该工艺品每天获得的利润是900元?3.(2021·江西吉安市·八年级期末)李老师一家去离家200千米的某地自驾游,周六上午8点整出发.下面是他们离家的距离y(千米)与汽车行驶时间x(小时)之间的函数图象.(1)求他们出发半小时时,离家多少千米?(2)出发1小时后,在服务区等另一家人一同前往,等到后以每小时80千米的速度直达目的地;求等侯的时间及线段BC的解析式;(3)上午11点时,离目的地还有多少千米?4.我市某电器商场代理销售某种家用空气净化器,其进价是200元/台,经过市场销售后发现,在一个月内,当售价是400元/台时,可售出200台,且售价每降低1元,就可多售出5台,若供货商规定这种空气净化器售价不低于330元/台,代理销售商每月要完成不低于450台的销售任务. (1)若某月空气净化器售价降低30元,则该月可售出多少台?(2)试确定月销售量y (台)与售价x (元/台)之间的函数关系式,并求出售价x 的范围.(3)当售价x (元/台)定为多少时,商场每月销售这种空气净化器所获的利润w (元)最大,最大利润是多少?6.九年级学生到距离学校6千米的百花公园去春游,一部分学生步行前往,20分钟后另一部分学生骑自行车前往,设x (分钟)为步行前往的学生离开学校所走的时间,步行学生走的路程为1y 千米,骑自行车学生骑行的路程为2y 千米,12y y 、关于x 的函数图象如图所示.(1)求2y 关于x 的函数解析式;(2)步行的学生和骑自行车的学生谁先到达百花公园,先到了几分钟?7.为了“创建文明城市,建设美丽家园”,我市某社区将辖区内的一块面积为1000m 2的空地进行绿化,一部分种草,剩余部分栽花,设种草部分的面积为x (m 2),种草所需费用y 1(元)与x (m 2)的函数关系式为()112k (0600)y {k 6001000x x x b x ≤<=+≤≤,其图象如图所示:栽花所需费用y 2(元)与x (m 2)的函数关系式为y 2=﹣0.01x 2﹣20x+30000(0≤x≤1000).(1)请直接写出k 1、k 2和b 的值;(2)设这块1000m 2空地的绿化总费用为W (元),请利用W 与x 的函数关系式,求出绿化总费用W 的最大值;(3)若种草部分的面积不少于700m 2,栽花部分的面积不少于100m 2,请求出绿化总费用W 的最小值.8.(2021·江西九年级月考)某种食品的销售价格1y 与销售月份x 之间的关系如图1所示,成本2y 与销售月份x 之间的关系如图2所示(图1的图象是线段,图2的图象是部分抛物线).(1)已知6月份这种食品的成本最低,求当月出售这种食品每千克的利润(利润=售价-成本)是多少? (2)求出售这种食品的每千克利润p 与销售月份x 之间的函数关系式;(3)哪个月出售这种食品,每千克的利润最大?最大利润是多少?简单说明理由.9.(2021·江西宜春市·九年级期中)物价问题涉及民生,关系全局,为保证市场秩序稳定,某超市积极配合市场运作,诚信经营.据了解,该超市每天调运一批成本价为8元/千克的大蒜,以不超过12元/千克的单价销售,且每天销售大蒜的数量y(千克)与销售单价x(元/千克)之间的关系如图所示.(1)求出每天销售大蒜的数量y(千克)与销售单价x(元/千克)之间的关系式;(2)该超市将大蒜销售单价定为多少元时,每天销售大蒜的利润可达到318元;(3)求该超市大蒜销售单价定为多少元时,每天销售大蒜的利润最大,并求出最大利润.10.(2021·江西赣州市·九年级期末)某水果批发商场经销一种高档水果,如果每千克盈利10元,每天可售出500千克.经市场调查发现,在进货价不变的情况下,若每千克涨价1元,日销售量将减少20千克.(1)现该商场要保证每天盈利6 000元,同时又要顾客得到实惠,那么每千克应涨价多少元?(2)若该商场单纯从经济角度看,每千克这种水果涨价多少元,能使商场获利最多?11.(2021·江西赣州市·九年级期末)大润发超市进了一批成本为8元/个的文具盒.调查发现:这种文具盒每个星期的销售量y(个)与它的定价x(元/个)的关系如图所示:(1)求这种文具盒每个星期的销售量y(个)与它的定价x(元/个)之间的函数关系式(不必写出自变量x的取值范围);(2)每个文具盒定价是多少元时,超市每星期销售这种文具盒(不考虑其他因素)可获得的利润最高?最高利润是多少?12.(2021·江西南昌市·九年级一模)李师傅驾驶出租车匀速地从南昌市送客到昌北国际机场,全程约30km ,设小汽车的行驶时间为t (单位:h ),行使速度为v (单位:km/h ),且全程速度限定为不超过100km/h . (1)求v 关于t 的函数关系式;(2)李师傅上午7点驾驶出租车从南昌市出发,在20分钟后将乘客送到了昌北国际机场,求小汽车行驶速度v .13.(2021·江西九年级专题练习)某药研所研发了一种治疗某种疾病的新药,经测试发现:新药在人体的释放过程中,10分钟内(含10分钟),血液中含药量y (微克)与时间x (分钟)的关系满足1y k x =;10分钟后,y 与x 的关系满足反比例函数()220k y k =>.部分实验数据如表:(1)分别求当010x ≤≤和10x >时,y 与x 之间满足的函数关系式.(2)据测定,当人体中每毫升血液中的含药量不低于3微克时,治疗才有效,那么该药的有效时间是多少?14.(2021·江西吉安市·九年级期末)方方驾驶小汽车匀速地从A 地行驶到B 地,行驶里程为480千米,设小汽车的行驶时间为t (单位:小时),行驶速度为v (单位:千米/小时),且全程速度限定为不超过120千米/小时.⑴求v 关于t 的函数表达式; ⑴方方上午8点驾驶小汽车从A 出发.①方方需在当天12点48分至14点(含12点48分和14点)间到达B地,求小汽车行驶速度v的范围.②方方能否在当天11点30分前到达B地?说明理由.15.(2021·江西九年级其他模拟)某商店对A,B两种商品开展促销活动,方案如下:(1)商品B降价后的标价为元;(用含a的式子表示)(2)小艺购买A商品20件,B商品10件,共花费6000元,试求a的值.16.(2021·江西赣州市·九年级一模)某工厂现有甲种原料10吨,乙种原料15吨,计划用这两种原料生产A、B两种产品,两种原料都恰好全部用完.生产一件A、一件B产品与所需原料情况如下表所示:(1)求该厂生产A、B两种产品各有多少件;(2)如果购买这批原料共花费5万元,A、B产品的销售单价分别为2万元/件和3万元/件,求全部销售这批产品获得的利润是多少万元.17.(2021·江西九年级其他模拟)某校食堂的中餐与晚餐的消费标准如表一学生某星期从周一到周五每天的中餐与晚餐均在学校用餐,每次用餐米饭选1份,A 、B 类套餐菜选其中一份,这5天共消费36元,请问这位学生A 、B 类套餐菜各选用多少次?18.(2021·江西赣州市·九年级期末)返校复学之际,育才学校为每个班级准备了免洗抑菌洗手液.去市场购买时发现当购买量不超过100瓶时,免洗抑菌洗手液的单价为8元;超过100瓶时,每增加10瓶,每瓶单价就降低0.2元,但最低价格不能低于每瓶5元,设学校共买了x 瓶免洗抑菌洗手液.(1)当80x =时,每瓶洗手液的价格是______元;当150x =时,每瓶洗手液的价格是______元;当100x >时,每瓶洗衣手液的价格为______元(用含x 的式子表示);(2)若学校一次性购买洗手液共花费1250元,问一共购买了多少瓶洗手液?19.(2021·江西吉安市·九年级期末)汽车越来越多地进入普通家庭,调查显示,截止2020年底某市汽车拥有量为1.44万辆.己知2018年底该市汽车拥有量约为1万辆,求2018年底至2020年底该市汽车拥有量的平均增长率.20.(2021·江西吉安市·九年级一模)在“母亲节”前期,某花店购进康乃馨和玫瑰两种鲜花,销售过程中发现康乃馨比玫瑰销售量大,店主决定将玫瑰每枝降价1元促销,降价后30元可购买玫瑰的数量是原来购买玫瑰数量的1.5倍.(1)求降价后每枝玫瑰的售价是多少元?(2)根据销售情况,店主用不多于900元的资金再次购进两种鲜花共500枝,康乃馨进价为2元/枝,玫瑰进价为1.5元/枝,问至少购进玫瑰多少枝?21.(2020·江西吉安市·九年级其他模拟)为鼓励市民节约用水,某市自来水公司按分段收费标准收费,右图反映的是每月收水费y(元)与用水量x(吨)之间的函数关系(1)小红家五月份用水8吨,应交水费_____元;(2)按上述分段收费标准,小红家三、四月份分别交水费36元和19.8元,问四月份比三月份节约用水多少吨?22.(2020·江西新余市·九年级一模)在抗击新型冠状病毒期间,科学合理调运各种防控物资是重要任务之一.在某市的甲、乙、丙、丁四地中,已知某种消毒液甲地需要10吨,乙地需要8吨,正好丙地储备有12吨,丁地储备有6吨.该市新冠肺炎疫情防控应急指挥部决定将这18吨消毒液全部调往甲、乙两地.已知消毒液的运费价格如下表(单位:元/吨).又知从丙地调运2吨到甲地、3吨到乙地共需420元;从丙地调运4吨到甲地、2吨到乙地共需440元.如果设从丙地调运x吨到甲地.(1)确定表中a,b的值;(2)求调运18吨消毒液的总运费y关于x的函数关系式;(3)求出总运费最低的调运方案,并求出最低运费是多少.23.(2020·江西)小锐一家去离家200千米的某地自驾游,下面是他们离家的距离y(千米)与汽车行驶时间x(小时)之间的函数图象.(1)求他们出发半小时时,离家多少千米?(2)出发1小时后,在服务区等候另一家人一同前往,然后,以每小时80千米的速度直达目的地,求等候的时间及线段BC的解析式.24.(2020·江西九江市·九年级二模)为迎接“国家级文明卫生城市”检查,我市环卫局准备购买A,B两种型号的垃圾箱.通过市场调研发现:购买1个A型垃圾箱和2个B型垃圾箱共需340元;购买3个A型垃圾箱和2个B型垃圾箱共需540元.(1)求每个A型垃圾箱和B型垃圾箱各多少元?(2)该市现需要购买A,B两种型号的垃圾箱共30个,其中购买A型垃圾箱不超过16个.①求购买垃圾箱的总花费 (元)与A型垃圾箱x(个)之间的函数关系式;②当购买A型垃圾箱个数多少时总费用最少,最少费用是多少?25.(2020·江西萍乡市·九年级二模)今年我国许多地方严重的“旱情”,为了鼓励居民节约用水,区政府计划实行两级收费制,即每月用水量不超过14吨(含14吨)时,每吨按政府补贴优惠价收费;每月超过14吨时,超过部分....每吨按市场调节价收费.小英家1月份用水20吨,交水费29元;2月份用水18吨,交水费24元.(1)求每吨水的政府补贴优惠价和市场调节价分别是多少?(2)设每月用水量为x吨,应交水费为y元,写出y与x之间的函数关系式.26.(2020·江西宜春市·九年级一模)某超市购进一批成本为每件20元的商品,经调查发现,该商品每天的销售量y(件)与销售单价x(元)之间满足一次函数关系,其图象如图所示.(1)求该商品每天的销售量y与销售单价x之间的函数关系式;(2)若超市按单价不低于成本价,且不高于55元销售,则销售单价定为多少,才能使销售该商品每天获得的利润w(元)最大?(3)若超市要使销售该商品每天获得的利润为1600元,则每天的销售量应为多少件?27.(2020·江西景德镇市·九年级一模)某校学生食堂共有座位3600个,某天午餐时,食堂中学生人数y (人)与时间x (分钟)变化的函数关系图象如图中的折线OAB .(1)试分别求出当020x ≤≤与2038x ≤≤时,y 与x 的函数关系式;(2)已知该校学生数有6000人,考虑到安全因素,学校决定对剩余2400名同学延时用餐,即等食堂空闲座位不少于2400个时,再通知剩余2400名同学用餐.请结合图象分析,这2400名学生至少要延时多少分钟?28.(2020·江西)小颖的奶奶想用铁丝网在自家门前围一块面积为4平方米的矩形菜园,并且用最少的铁丝网,因此小颖进行了如下探究活动.活动一:(1)设矩形菜园的一边长为x 米,铁丝网长为y 米.①用含x 的代数式表示矩形菜园另一边长为_____________米;②y 关于x 的函数解析式是______________活动二:(2)①列表:根据(1)中所求的函数关系式计算并补全下图. (y 精确到0.1)②描点:根据表中数值,在平面直角坐标系中描出①中剩下的两个点(x ,y).③连线:在平面直角坐标系中,请用平滑的曲线画出该函数的图象.数学思考:(3)①请你根据函数图象,写出该函数的两条性质或结论.②根据以上信息可得,当x=_____________时,y有最小值.由此可知,小颖的奶奶至少需要买_____________米的铁丝网.29.(2020·江西九江市·九年级零模)在绿化某县城与高速公路的连接路段中,需购买罗汉松、雪松两种树苗共400株,罗汉松树苗每株60元,雪松树苗每株70元.相关资料表明:罗汉松、雪松树苗的成活率分别为70%,90%.(1)若购买这两种树苗共用去26500元,则罗汉松、雪松树苗各购买多少株?(2)绿化工程来年一般都要将死树补上新苗,现要使该两种树苗来年共补苗不多于80株,则罗汉松树苗至多购买多少株?(3)在(2)的条件下,应如何选购树苗,才能使购买树苗的费用最低?请求出最低费用.30.(2020·江西九年级一模)学校的学生专用智能饮水机里水的温度y(⑴)与时间x(分)之间的函数关系如图所示,当水的温度为20⑴时,饮水机自动开始加热,当加热到100⑴时自动停止加热(线段AB),随后水温开始下降,当水温降至20⑴时(BC为双曲线的一部分),饮水机又自动开始加热……根据图中提供的信息,解答下列问题:(1)分别求出饮水机里水的温度上升和下降阶段y与x之间的函数表达式;(2)下课时,同学们纷纷用水杯去盛水喝.此时,饮水机里水的温度刚好达到100⑴.据了解,饮水机1分钟可以满足12位同学的盛水要求,学生喝水的最佳温度在30⑴~45⑴,请问在大课间30分钟时间里有多少位同学可以盛到最佳温度的水?。
专题第02讲二次函数的实际应用(30题)1.(2022秋•泰兴市期末)一水果店售卖一种水果,以8元/千克的价格进货,经过往年销售经验可知:以12元/千克售卖,每天可卖60千克;若每千克涨价0.5元,每天要少卖2千克;若每千克降价0.5元,每天要多卖2千克,但不低于成本价.设该商品的价格为x元/千克时,一天销售总质量为y千克.(1)求y与x的函数关系式.(2)若水果店货源充足,每天以固定价格x元/千克销售(x≥8),试求出水果店每天利润W与单价x的函数关系式,并求出当x为何值时,利润达到最大.2.(2023•朝阳)某超市以每件10元的价格购进一种文具,销售时该文具的销售单价不低于进价且不高于19元.经过市场调查发现,该文具的每天销售数量y(件)与销售单价x(元)之间满足一次函数关系,部分数据如下表所示:销售单价x/元…121314……363432…每天销售数量y/件(1)直接写出y与x之间的函数关系式;(2)若该超市每天销售这种文具获利192元,则销售单价为多少元?(3)设销售这种文具每天获利w(元),当销售单价为多少元时,每天获利最大?最大利润是多少元?3.(2023•海淀区校级开学)电缆在空中架设时,两端挂起的电缆下垂可以近似的看成抛物线的形状.如图,在一个斜坡BD上按水平距离间隔60米架设两个塔柱,每个塔柱固定电缆的位置离地面高度为27米(AB =CD=27米),以过点A的水平线为x轴,水平线与电缆的另一个交点为原点O建立平面直角坐标系,如图所示.经测量,AO=40米,斜坡高度12米(即B、D两点的铅直高度差).结合上面信息,回答问题:(1)若以1米为一个单位长度,则D点坐标为,下垂电缆的抛物线表达式为.(2)若电缆下垂的安全高度是13.5米,即电缆距离坡面铅直高度的最小值不小于13.5米时,符合安全要求,否则存在安全隐患.(说明:直线GH⊥x轴分别交直线BD和抛物线于点H、G.点G距离坡面的铅直高度为GH的长),请判断上述这种电缆的架设是否符合安全要求?请说明理由.4.(2023春•江岸区校级月考)如图,在斜坡底部点O处安装一个的自动喷水装置,喷水头(视为点A)的高度(喷水头距喷水装置底部的距离)是1.8米,自动喷水装置喷射出的水流可以近似地看成抛物线.当喷射出的水流与喷水装置的水平距离为8米时,达到最大高度5米.以点O为原点,自动喷水装置所在的直线为y轴,建立平面直角坐标系.(1)求抛物线的解析式;(2)斜坡上距离O水平距离为10米处有一棵高度为1.75米的小树NM,MN垂直水平地面且M点到水平地面的距离为2米.①记水流的高度为y1,斜坡的高度为y2,求y1﹣y2的最大值(斜坡可视作直线OM);②如果要使水流恰好喷射到小树顶端的点N,直接写出自动喷水装置应向后平移(即抛物线向左)多少米?5.(2023•武汉模拟)如图,灌溉车为绿化带浇水,喷水口H离地竖直高度OH为1.2m.可以把灌溉车喷出水的上、下边缘抽象为平面直角坐标系中两条抛物线的部分图象;把绿化带横截面抽象为矩形DEFG,其水平宽度DE=3m,竖直高度EF=0.5m.下边缘抛物线是由上边缘抛物线向左平移得到,上边抛物线最高点A离喷水口的水平距离为2m,高出喷水口0.4m,灌溉车到绿化带的距离OD为d(单位:m).(1)求上边缘抛物线的函数解析式,并求喷出水的最大射程OC;(2)求下边缘抛物线与x轴的正半轴交点B的坐标;(3)要使灌溉车行驶时喷出的水能浇灌到整个绿化带,直接写出d的取值范围.6.(2022秋•华容区期末)农户销售某农产品,经市场调查发现:若售价为6元/千克,日销售量为40千克,若售价每提高1元/千克,日销售量就减少2千克.现设售价为x元/千克(x≥6且为正整数).(1)若某日销售量为24千克,求该日产品的单价;(2)若政府将销售价格定为不超过18元/千克.设每日销售额为w元,求w关于x的函数表达式,并求w的最大值和最小值;(3)市政府每日给农户补贴a元后(a为正整数),发现最大日收入(日收入=销售额+政府补贴)还是不超过450元,并且只有5种不同的单价使日收入不少于440元,请直接写出所有符合题意的a的值.7.(2023春•蔡甸区月考)如图,抛物线AB,AC是某喷水器喷出的水抽象而成,抛物线AB由抛物线AC 向左平移得到,把汽车横截面抽象为矩形DEFG,其中DE=米,DG=2米,OA=h米,抛物线AC表达式为y=a(x﹣2)2+h+,h=,且点A,B,D,G,C均在坐标轴上.(1)求抛物线AC表达式.(2)求点B的坐标.(3)要使喷水器喷出的水能洒到整个汽车,记OD长为d米,直接写出d的取值范围.8.(2022秋•华容区期末)如图,足球场上守门员在O处开出一高球,球从离地面1米的A处飞出(A在y 轴上),运动员乙在距O点6米的B处发现球在自己头的正上方达到最高点M,距地面约4米高.球第一次落地点后又一次弹起.据实验,足球在草坪上弹起后的抛物线与原来的抛物线形状相同,最大高度减少到原来最大高度的一半.(1)求足球开始飞出到第一次落地时,该抛物线的表达式.(2)运动员乙要抢到第二个落点D,他应再向前跑多少米?(取,)9.(2023•淮安一模)某网店专门销售某种品牌的漆器笔筒,成本为30元/件,每天销售y(件)与销售单价x(元)之间存在一次函数关系,如图所示.(1)求y与x之间的函数关系式;(2)如果规定每天漆器笔筒的销售量不低于240件,当销售单价为多少元时,每天获取的利润最大,最大利润是多少?10.(2023•盘锦)某工厂生产一种产品,经市场调查发现,该产品每月的销售量y(件)与售价x(万元/件)之间满足一次函数关系,部分数据如表:每件售价x/万元…2426283032…月销售量y/件…5248444036…(1)求y与x的函数关系式(不写自变量的取值范围).(2)该产品今年三月份的售价为35万元/件,利润为450万元.①求:三月份每件产品的成本是多少万元?②四月份工厂为了降低成本,提高产品质量,投资了450万元改进设备和革新技术,使每件产品的成本比三月份下降了14万元.若四月份每件产品的售价至少为25万元,且不高于30万元,求这个月获得的利润w(万元)关于售价x(万元/件)的函数关系式,并求最少利润是多少万元.11.(2023春•江都区月考)某企业生产并销售某种产品,假设销售量与产量相等,图中的线段AB表示该产品每千克生产成本y1(单位:元)与产量x(单位:kg)之间的函数关系;线段CD表示该产品销售价y2(单位:元)与产量x(单位:kg)之间的函数关系,已知0<x≤120,m>60.(1)求线段AB所表示的y1与x之间的函数表达式;(2)若m=90,该产品产量为多少时,获得的利润最大?最大利润是多少?(3)若60<m<70,该产品产量为多少时,获得的利润最大?最大利润是多少?12.(2023•梁溪区模拟)为加强劳动教育,各校纷纷落实劳动实践基地.某校学生在种植某种高产番茄时,经过试验发现:①当每平方米种植2株番茄时,平均单株产量为8.4千克;②在每平方米种植的株数不超过10的前提下,以同样的栽培条件,株数每增加1株,平均单株产量减少0.8千克.(1)求平均单株产量y(千克)与每平方米种植的株数x(x为整数,且2≤x<10)之间的函数关系式;(2)已知学校劳动基地共有10平方米的空地用于种植这种番茄.问:当每平方米种植多少株时,该学校劳动基地能获得最大的产量?最大产量为多少千克?13.(2023春•仓山区校级期末)根据以下素材,探索完成任务.如何设计大棚苗木种植方案?素材1:图1中有一个大棚苗木种植基地及其截面图,其下半部分是一个长为20m,宽为1m的矩形,其上半部分是一条抛物线,现测得,大棚顶部的最高点距离地面5m.素材2:种植苗木时,每棵苗木高1.76m,为了保证生长空间,相邻两棵苗木种植点之间间隔1m,苗木顶部不触碰大棚,且种植后苗木成轴对称分布.(1)任务1:确定大棚上半部分形状.根据图2建立的平面直角坐标系,通过素材1提供的信息确定点的坐标,求出抛物线的函数关系式;(2)任务2:探究种植范围.在图2的坐标系中,在不影响苗木生长的情况下,确定种植点的横坐标的取值范围.14.(2023•岳麓区校级二模)从2020年开始,越来越多的商家向线上转型发展,“直播带货”已经成为商家的一种促销的重要手段.某商家在直播间销售一种进价为每件10元的日用商品,经调查发现,该商品每天的销售量y(件)与销售单价x(元)满足y=﹣10x+400,设销售这种商品每天的利润为W(元).(1)求W与x之间的函数关系式;(2)该商家每天想获得1250元的利润,又要减少库存,应将销售单价定为多少元?(3)若销售单价不低于28元,且每天至少销售50件时,求W的最大值.15.(2022秋•蜀山区校级期末)某超市经销甲、乙两种商品.商品甲每千克成本为20元,经试销发现,该种商品每天销售量y(千克)与销售单价x(元/千克)满足如图所示的一次函数关系,商品乙的成本为4元/千克,销售单价为10元/千克,但每天供货总量只有80千克,且能当天销售完.为了让利消费者,超市开展了“买一送一”活动,即买1千克的商品甲,免费送1千克的商品乙.(1)直接写出销售量y与销售单价x之间的函数表达式;(2)设这两种商品的每天销售总额为S元,求出S(元)与x(元/千克)的函数关系式;(注:商品的销售额=销售单价×销售量)(3)设这两种商品销售总利润为W,若商品甲的售价不低于成本,不超过成本的150%,当销售单价定为多少时,才能使当天的销售总利润最大?最大利润是多少?(注:销售总利润=两种商品的销售总额﹣两种商品的总成本)16.(2023春•莲池区校级期中)为促进学生德智体美劳全面发展,推动文化学习与体育锻炼协调发展,某校举办了学生趣味运动会.该校计划用不超过5900元购买足球和篮球共36个,分别作为运动会团体一、二等奖的奖品.已知足球单价170元,篮球单价160元.(1)学校至多可购买多少个足球?(2)受卡塔尔世界杯的影响,学校商议决定按(1)问的结果购买足球作为一等奖奖品,以鼓励更多学生热爱足球,同时商场也对足球和篮球的价格进行调整,足球单价下降了a%,篮球单价上涨了,最终学校购买奖品的经费比计划经费的最大值节省了155元,求a的值.17.(2023春•宜都市期末)某公司分别在A,B两城生产同种产品,共100件.A城生产产品的总成本y(万元)与产品数量x(件)之间具有一次函数关系:y=ax+b.当x=5时,y=40;当x=30时,y=140.B 城生产产品的每件成本为7万元.(1)求a,b的值;(2)当A,B两城生产这批产品的总成本之和为660万元时,求A,B两城各生产产品多少件?(3)从A城把该产品运往C,D两地的费用分别为m万元/件和3万元/件;从B城把该产品运往C,D 两地的费用分别为1万元/件和2万元/件.C地需要90件,D地需要10件,在(2)的条件下,若A,B 两城总运费之和的最小值为150万元,求m的值.18.(2023•海淀区校级四模)某公园修建一个圆形喷水池,在池中心竖直安装一根水管,在水管的顶端安装一个可调节角度的喷水头,从喷水头喷出的水柱形状是一条抛物线.建立如图所示的平面直角坐标系,抛物线形水柱的竖直高度y(单位:m)与到池中心的水平距离x(单位:m)满足的关系式近似为y=a (x﹣h)2+k(a<0).(1)在某次安装调试过程中,测得x与y的部分对应值如下表:水平距离x/m00.51 1.52 2.53竖直高度y/m 2.25 2.81253 2.8125 2.25 1.31250根据表格中的数据,解答下列问题:①水管的长度是m;②求出y与x满足的函数解析式y=a(x﹣h)2+k(a<0);(2)安装工人在上述基础上进行了下面两种调试:①不改变喷水头的角度,将水管长度增加1m,水柱落地时与池中心的距离为d1;②不改变水管的长度,调节喷水头的角度,使得水柱满足y=﹣0.6(x﹣1.5)2+3.6,水柱落地时与池中心的距离为d2.则比较d1与d2的大小关系是:d1d2(填“>”或“=”或“<”)19.(2023•罗山县三模)实心球是中考体育项目之一.在掷实心球时,实心球被掷出后的运动路线可以看作是抛物线的一部分.已知小军在一次掷实心球训练中,第一次投掷时出手点距地面1.8m,实心球运动至最高点时距地面3.4m,距出手点的水平距离为4m.设实心球掷出后距地面的竖直高度为y(m),实心球距出手点的水平距离为x(m).如图,以水平方向为x轴,出手点所在竖直方向为y轴建立平面直角坐标系.(1)求第一次掷实心球时运动路线所在抛物线的表达式.(2)若实心球投掷成绩(即出手点与着陆点的水平距离)达到12.4m为满分,请判断小军第一次投掷实心球能否得满分.(3)第二次投掷时,实心球运动的竖直高度y与水平距离x近似满足函数关系y=﹣0.08(x﹣5)2+3.8记小军第一次投掷时出手点与着陆点的水平距离为d1,第二次投掷时出手点与着陆点的水平距离为d2,则d1d2.(填“>”“<”“=”)20.(2023•花溪区校级一模)过山车是一项富有刺激性的娱乐工具,在乘坐过山车的过程中能够亲身体验由能量守恒、加速度和力交织在一起产生的效果,那感觉真是妙不可言.如图是合肥某乐园中部分过山车滑道所抽象出来的函数图象,线段AB是一段直线滑道,且AB长为米,点A到地面距离OA=6米,点B到地面距离BE=3米,滑道B﹣C﹣D可以看作一段抛物线,最高点为C(8,4).(1)求滑道B﹣C﹣D部分抛物线的函数表达式;(2)当小车(看成点)沿滑道从A运动到D的过程中,小车距离x轴的垂直距离为2.5米时,它到出发点A的水平距离是多少?(3)现在需要对滑道C﹣D部分进行加固,建造某种材料的水平和竖直支架CF,PH,PG.已知这种材料的价格是75000元/米,为了预算充足,至少需要申请多少元的资金.21.(2022秋•丰都县期末)抛实心球是丰都中考体育考试项目之一,如图1是一名男生投实心球情境,实心球行进路线是一条抛物线,行进高度y(m)与水平距离x(m)之间的函数关系如图2所示,掷出时,起点处高度为1.9m,当水平距离为4m时,实心球行进至最高点3.5m处.(1)求y关于x的函数表达式;(2)根据中考体育考试评分标准(男生版),投掷过程中,实心球从起点到落地点的水平距离大于等于9.7m时,即可得满分10分.该男生在此项考试中能否得满分,请说明理由.22.(2022秋•建昌县期末)2022年11月,“中国传统制茶技艺及其相关习俗”申遗成功,弘扬茶文化,倡导“和美雅静”的生活方式已成时尚.某茶商经销某品牌茶,成本为50元/千克,经市场调查发现,每周的销量y(千克)与销售单价x(元/千克)满足一次函数关系,部分数据列表如下:566575…销售单价x(元/千克)销量y(千克)12811090…(1)求y与x的一次函数关系式;(2)求该茶商这一周销售该品牌茶叶所获利润w(元)的最大值.23.(2023•锦州二模)近年来国家出台政策要求电动车上牌照,“保安全、戴头盔”出行.某头盔专卖店购进一批单价为36元的头盔.在销售中,通过分析销售情况发现这种头盔的月销售量y(个)与售价x(元/个)(42≤x≤72)满足一次函数关系,下表是其中的两组对应值.售价x(元/个)…5055…月销售量y(个)…10090…(1)求y与x之间的函数关系式;(2)专卖店的优惠活动:若购买一个这种头盔,就赠送一个成本为6元的头盔面罩.请问这种头盔的售价定为多少元时,月销售利润最大,最大月销售利润是多少元?24.(2023•金湖县三模)某超市购进甲、乙两种商品,已知购进5件甲商品和2件乙商品,需80元:购进3件甲商品和4件乙商品,需90元.(1)甲、乙两种商品的进货单价分别是多少?(2)设甲商品的销售单价为x(单位:元/件),在销售过程中发现:当12≤x≤18时,甲商品的日销售量y(单位:件)与销售单价x之间存在一次函数关系,x、y之间的部分数值对应关系如表:销售单价x(元/件)1218日销售量y(件)164请写出当12≤x≤18时,y与x之间的函数关系式;(3)在(2)的条件下,设甲商品的日销售利润为w元,当甲商品的销售单价x(元/件)定为多少时,日销售利润最大?最大利润是多少?25.(2022秋•新抚区期末)疫情防控常态化,全国人民同心抗疫.某商家决定将一个月获得的利润全部捐赠给社区用于抗疫.已知商家购进一批产品,成本为10元/件,拟采取线上和线下两种方式进行销售,市场调查发现,线下的月销量y(件)与线下售价x(元/件,且12≤x≤16)之间满足一次函数关系,部分数据如下表:x(元/件)12131415y(件)1000900800700(1)求y与x之间的函数关系式;(2)若线上售价始终比线下每件便宜2元,且线上的月销量固定为600件.当x为何值时,线上和线下销售月利润总和W达到最大?最大利润是多少?(3)要使(2)中月利润总和W不低于4400元,请直接写出x的取值范围.26.(2023•嘉鱼县模拟)为巩固扶贫攻坚成果,我县政府督查各部门和单位对口扶贫情况.某单位的帮扶对象种植的农产品在某月(按30天计)的第x天(x为正整数)的销售价格p(元/千克)关于x的函数关系为p=,销售量y(千克)与x之间的关系如图所示.(1)直接写出y与x之间的函数关系式和x的取值范围;(2)求该农产品的销售量有几天不超过60千克?(3)当月第几天,该农产品的销售额最大,最大销售额是多少?(销售额=销售量×销售价格)27.(2023•云梦县校级三模)李丽大学毕业后回家乡创业,开了一家服装专卖店代理品牌服装的销售.已知该品牌服装进价每件40元,日销售y(件)与销售价x(元/件)之间的关系如图所示(实线),每天付员工的工资每人82元,每天应支付其他费用106元.(1)直接写出日销售y(件)与销售价x(元/件)之间的函数关系式;(2)当某天的销售价为48元/件时,收支恰好平衡(收入=支出),求该店员工人数;(3)若该店只有2名员工,则每天能获得的最大利润是多少元?此时,每件服装的价格应定为多少元?28.(2023•卧龙区二模)如图,在斜坡底部点O处安装一个自动喷水装置,喷水头(视为点A)的高度(喷水头距喷水装置底部的距离)是1.8米,自动喷水装置喷射出的水流可以近似地看成抛物线.当喷射出的水流与喷水装置的水平距离为8米时,达到最大高度5米.以点O为原点,自动喷水装置所在的直线为y轴,建立平面直角坐标系.(1)求抛物线的函数关系式;(2)斜坡上距离O水平距离为10米处有一棵高度为1.75米的小树NM,MN垂直水平地面,且M点到水平地面的距离为2米,绿化工人向左水平移动喷水装置后,水流恰好喷射到小树顶端的点N,求自动喷水装置向左水平平移(即抛物线向左)了多少米?29.(2023•竞秀区二模)过山车是一项富有刺激性的娱乐工具,深受年轻游客的喜爱.某游乐场修建了一款大型过山车.如图所示,A→B→C为这款过山车的一部分轨道(B为轨道最低点),它可以看成一段抛物线,其中OA=16.9米,OB=13米(轨道厚度忽略不计).(1)求抛物线A→B→C的函数表达式;(2)在轨道上有两个位置P和C到地面的距离均为n米,当过山车运动到C处时,又进入下坡段C→E (接口处轨道忽略不计,E为轨道最低点),已知轨道抛物线C→E→F的形状与抛物线A→B→C完全相同,E点坐标为(33,0),求n的值;(3)现需要对轨道下坡段A→B进行安全加固,建造某种材料的水平和竖直支架GD、GM、HI、HN,且要求MN=2OM,已知这种材料的价格是100000元/米,请计算OM多长时,造价最低?最低造价为多少元?30.(2023•利辛县模拟)如图,某小区的景观池中安装一雕塑OA,OA=2米,在点A处安装喷水装置,喷出两股水流,两股水流可以抽象为平面直角坐标系中的两条抛物线(图中的C1,C2)的部分图象,两条抛物线的形状相同且顶点的纵坐标相同,且经测算发现抛物线C2的最高点(顶点)C距离水池面2.5米,且与OA的水平距离为2米.(1)求抛物线C2的解析式;(2)求抛物线C1与x轴的交点B的坐标;(3)小明同学打算操控微型无人机在C1,C2之间飞行,为了无人机的安全,要求无人机在竖直方向上的活动范围不小于0.5米,设无人机与OA的水平距离为m,求m的取值范围.。
第2单元二次函数(易错30题7个考点)一.二次函数的性质(共1小题)1.如图,抛物线y=ax2+bx+c交x轴于(﹣1,0)、(3,0)两点,则下列判断中,错误的是()A.图象的对称轴是直线x=1B.当x>1时,y随x的增大而减小C.一元二次方程ax2+bx+c=0的两个根是﹣1和3D.当﹣1<x<3时,y<0二.二次函数图象与系数的关系(共3小题)2.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,对称轴为x=﹣,下列结论中,正确的是()A.abc>o B.b2﹣4ac<0C.2b+c>0D.4a﹣2b+c<0 3.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,有下列结论:①a﹣b+c >0;②2abc>0;③4a﹣2b+c>0;④b2﹣4ac>0;⑤3a+c>0;⑥a﹣c>0,其中正确的结论的个数是()A.2B.3C.4D.54.二次函数y=ax2+bx+c(a≠0)的图象如图所示.下列结论:①abc>0;②2a+b =0;③m为任意实数,则a+b>am2+bm;④a﹣b+c>0;⑤若ax12+bx1=ax22+bx2且x1≠x2,则x1+x2=2.其中正确的有()A.①④B.③④C.②⑤D.②③⑤三.二次函数图象上点的坐标特征(共1小题)5.若抛物线y=2x2﹣px+4p+1中不管p取何值时都通过定点,则定点坐标为.四.二次函数的最值(共1小题)6.若函数y=x2﹣6x+5,当2≤x≤6时的最大值是M,最小值是m,则M﹣m =.五.抛物线与x轴的交点(共1小题)7.二次函数y=x2+bx+c的图象如图所示,则下列结论正确的是()A.顶点坐标(﹣1,﹣4)B.当x>﹣1时,y随x的增大而减小C.线段AB的长为3D.当﹣3<x<1时,y>0六.二次函数的应用(共4小题)8.施工队要修建一个横断面为抛物线的公路隧道,其高度为6米,宽度OM为12米.现以O点为原点,OM所在直线为x轴建立直角坐标系(如图1所示).(1)求出这条抛物线的函数解析式,并写出自变量x的取值范围;(2)隧道下的公路是双向行车道(正中间是一条宽1米的隔离带),其中的一条行车道能否行驶宽2.5米、高5米的特种车辆?请通过计算说明;(3)施工队计划在隧道门口搭建一个矩形“脚手架”CDAB,使A、D点在抛物线上.B、C点在地面OM线上(如图2所示).为了筹备材料,需求出“脚手架”三根木杆AB、AD、DC的长度之和的最大值是多少,请你帮施工队计算一下.9.嘉兴某公司抓住“一带一路”的机遇不断创新发展,生产销售某产品,该产品销售量y(万件)与售价x(元件)之间存在图1(一条线段)所示的变化趋势,总成本P(万元)与销售量y(万件)之间存在图2所示的变化趋势,当6≤y≤10时可看成一条线段,当10≤y≤18时可看成抛物线P=﹣y2+8y+m(1)写出y与x之间的函数关系式(2)若销售量不超过10万件时,利润为45万元,求此时的售价为多少元/件?(3)当售价为多少元时,利润最大,最大值是多少万元?(利润=销售总额一总成本)10.某商场经营某种品牌的童装,购进时的单价是60元.根据市场调查,在一段时间内,销售单价是80元时,销售量是200件,而销售单价每降低1元,就可多售出20件.(1)写出销售量y件与销售单价x元之间的函数关系式;写出销售该品牌童装获得的利润w元与销售单价x元之间的函数关系式;(2)若童装厂规定该品牌童装销售单价不低于76元,且商场要完成不少于240件的销售任务,则商场销售该品牌童装获得的最大利润是多少?11.为了落实国务院的指示精神,某地方政府出台了一系列“精准扶贫”优惠政策,使贫困户收入大幅度增加.某农户生产经销一种农产品,已知这种产品的成本价为每千克20元,市场调查发现,该产品每天的销售量y(千克)与销售价x(元/千克)有如下关系:y=﹣2x+80.设这种产品每天的销售利润为w元.(1)求w与x之间的函数关系式;(2)该产品销售价定为每千克多少元时,每天的销售利润最大?最大利润是多少元?(3)如果物价部门规定这种产品的销售价不高于每千克30元,该农户想要每天获得150元的销售利润,销售价应定为每千克多少元?七.二次函数综合题(共19小题)12.如图(1)所示,E为矩形ABCD的边AD上一点,动点P,Q同时从点B 出发,点P沿折线BE﹣ED﹣DC运动到点C时停止,点Q沿BC运动到点C 时停止,它们运动的速度都是1cm/秒.设P、Q同时出发t秒时,△BPQ的面积为ycm2.已知y与t的函数关系图象如图(2)(曲线OM为抛物线的一部分),则下列结论:①AD=BE=5;②;③当0<t≤5时,;④当秒时,△ABE∽△QBP;其中正确的结论是()A.①②③B.②③C.①③④D.②④13.如图,分别过点P i(i,0)(i=1、2、…、n)作x轴的垂线,交的图象于点A i,交直线于点B i.则=.14.如图,已知二次函数y=ax2+bx+c(a≠0)的顶点是(1,4),且图象过点A(3,0),与y轴交于点B.(1)求二次函数y=ax2+bx+c的解析式;(2)求直线AB的解析式;(3)在直线AB上方的抛物线上是否存在一点C,使得S=3,如果存在,△ABC 请求出C点的坐标,如果不存在,请说明理由.15.如图,已知抛物线y=﹣x2+bx+c经过B(﹣3,0),C(0,3)两点,与x 轴的另一个交点为A.(1)求抛物线的解析式;(2)若直线y=mx+n经过B,C两点,则m=;n=;(3)在抛物线对称轴上找一点E,使得AE+CE的值最小,直接写出点E的坐标;(4)设点P为x轴上的一个动点,是否存在使△BPC为等腰三角形的点P,若存在,直接写出点P的坐标;若不存在,说明理由.16.在平面直角坐标系xOy中,已知抛物线y=ax2﹣2(a+1)x+a+2(a≠0).(1)当a=﹣时,求抛物线的对称轴及顶点坐标;(2)请直接写出二次函数图象的对称轴(用含a的代数式表示)及二次函数图象经过的定点坐标是.(3)若当1≤x≤5时,函数值有最大值为8,求二次函数的解析式;(4)已知点A(0,﹣3)、B(5,﹣3),若抛物线与线段AB只有一个公共点,请直接写出a的取值范围.17.如图,抛物线y=﹣x2+bx+c与x轴交于A,B两点,与y轴交于点C,抛物线的对称轴交x轴于点D.已知A(﹣1,0),C(0,3).(1)求抛物线的解析式;(2)在抛物线的对称轴上有一点M,使得MA+MC的值最小,求此点M的坐标;(3)在抛物线的对称轴上是否存在P点,使△PCD是等腰三角形,如果存在,求出点P的坐标,如果不存在,请说明理由.18.如图1,抛物线y=ax2+x+c与x轴交于点A、B(4,0)(A点在B点左侧),与y轴交于点C(0,6),点P是抛物线上一个动点,连接PB,PC,BC(1)求抛物线的函数表达式;(2)若点P的横坐标为3,求△BPC的面积;(3)如图2所示,当点P在直线BC上方运动时,连接AC,求四边形ABPC 面积的最大值,并写出此时P点坐标.(4)若点M是x轴上的一个动点,点N是抛物线上一动点,P的横坐标为3.试判断是否存在这样的点M,使得以点B,M,N,P为顶点的四边形是平行四边形,若存在,请直接写出点M的坐标;若不存在,请说明理由.19.如图,抛物线y=﹣x2+2x+3与x轴交于A、B两点(点A在点B的左边),与y轴交于点C,点D和点C关于抛物线的对称轴对称.(1)求直线AD的解析式;(2)如图,直线AD上方的抛物线上有一点F,过点F作FG⊥AD于点G,求线段FG的最大值;(3)点M是抛物线的顶点,点P是y轴上一点,点Q是坐标平面内一点,以A,M,P,Q为顶点的四边形是以AM为边的矩形,求点Q的坐标.20.如图所示,在平面直角坐标中,抛物线的顶点P到x轴的距离是4,抛物线与x轴相交于O、M两点,OM=4;矩形ABCD的边BC在线段的OM上,点A、D在抛物线上.(1)求这条抛物线的解析式;(2)设点D的横坐标是m,矩形ABCD的周长为L,求L与m的关系式,并求出L的最大值;(3)点E在抛物线的对称轴上,在抛物线上是否存在点F,使得以E、F、O、M为顶点的四边形是平行四边形?如果存在,求F点的坐标.21.如图,一次函数y=x+1的图象与x轴交于点A,与y轴交于点B,二次函数y=x2+bx+c的图象与一次函数y=x+1的图象交于B、C两点,与x轴交于D、E两点,且D点坐标为(1,0).(1)求抛物线的解析式;(2)在x轴上找一点P,使|PB﹣PC|最大,求出点P的坐标;(3)在x轴上是否存在点P,使得△PBC是以点P为直角顶点的直角三角形?若存在,求出点P的坐标,若不存在,请说明理由.22.如图,抛物线y=﹣x2+bx+c与x轴交于A,B两点,与y轴交于点C,抛物线的对称轴交x轴于点D,已知A(﹣1,0),C(0,2).(1)求抛物线的解析式;(2)在抛物线的对称轴上是否存在点P,使△PCD是以CD为腰的等腰三角形?如果存在,直接写出点P的坐标;如果不存在,请说明理由;(3)点E是线段BC上的一个动点,过点E作x轴的垂线与抛物线相交于点F,求△CBF的最大面积及此时点E的坐标.23.已知二次函数y =﹣x 2+bx +c 的图象与直线y =x +3相交于点A 和点B ,点A 在x 轴上,点B 在y 轴上.抛物线的顶点为P .(1)求这个二次函数的解析式;(2)现将抛物线向右平移m 个单位,当抛物线与△ABP 有且只有一个公共点时,求m 的值;(3)在直线AB 下方的抛物线上是否存在点Q ,使得S △ABQ =2S △ABP ,若存在,请求出点Q 的坐标,若不存在,请说明理由.24.如图1和图2,已知抛物线y =ax 2+bx +c (a ≠0)的对称轴为直线x =﹣1,且抛物线经过B (1,0),C (0,3)两点,与x 轴交于点A .(1)求抛物线的解析式;(2)如图1,在抛物线的对称轴直线x =﹣1上找一点M ,使点M 到点B 的距离与到点C 的距离之和最小,求出点M 的坐标;(3)如图2,点Q 为直线AC 上方抛物线上一点,若∠CBQ =45°,请求出点Q 坐标.25.如图,二次函数y=ax2+bx+c(a≠0)的图象与x轴交于点A(﹣1,0)、B (3,0)两点,与y轴交于点C(0,3),D为抛物线的顶点.(1)求此二次函数的表达式;(2)求△CDB的面积.(3)在其对称轴右侧的抛物线上是否存在一点P,使△PDC是等腰三角形?若存在,请直接写出点P的坐标;若不存在,请说明理由.26.如图,在平面直角坐标系中,已知抛物线y=ax2﹣2x+c与直线y=kx+b都经过A(0,﹣3),B(3,0)两点,该抛物线的顶点为C.(1)求此抛物线和直线AB的解析式;(2)设点P是直线AB下方抛物线上的一动点,当△P AB面积最大时,试求出点P的坐标,并求出△P AB面积的最大值;(3)设直线AB与该抛物线的对称轴交于点E,在射线EB上是否存在一点M,过点M作x轴的垂线交抛物线于点N,使点M、N、C、E是平行四边形的四个顶点?若存在,试求出点M的坐标;若不存在,请说明理由.27.矩形OABC在直角坐标系中的位置如图所示,A,C两点的坐标分别为A(6,0),C(0,3),直线y=x与BC边相交于点D.(1)求点D的坐标;(2)若抛物线y=ax2+bx经过D,A两点,试确定此抛物线的表达式;(3)设(2)中抛物线的对称轴与直线OD交于点M,点P为对称轴上一动点,以P,O,M为顶点的三角形与△OCD相似,求符合条件的P点的坐标.28.已知一次函数y1=﹣3x+3与x轴,y轴分别交于点A,B两点,抛物线y2=ax2﹣2ax+a+4(a<0);(1)若抛物线经过点B,求出抛物线的解析式;(2)抛物线是否经过一定点,若经过定点,求出定点坐标,若不经过,请说明理由;(3)在(1)的条件下,第一象限一点M是抛物线上一动点,连接AM,BM,设点M的横坐标为t,四边形BOAM的面积为S,求出S与t的函数关系式,当t取何值时,S有最大值是多少?29.已知抛物线y=﹣x2+x+3与x轴交于点A、B(A在B的左侧),与y 轴交于点C.∠BAC的平分线AD交y轴于点D.过点D的直线l与射线AC、AB分别交于点M、N.(1)求抛物线的对称轴;(2)当实数a>﹣2时,求二次函数y=﹣x2+x+3在﹣2<x≤a时的最大值;(可用含a的代数式表示)(3)当直线l绕点D旋转时,试证明为定值,并求出该定值.30.如图,已知关于x的二次函数y=﹣x2+bx+c(c>0)的图象与x轴相交于A、B两点(点A在点B的左侧),与y轴交于点C,且OB=OC=3,顶点为M.(1)求出二次函数的关系式;(2)点P为线段MB上的一个动点,过点P作x轴的垂线PD,垂足为D.若OD=m,△PCD的面积为S,求S关于m的函数关系式,并写出m的取值范围;(3)探索线段MB上是否存在点P,使得△PCD为直角三角形?如果存在,求出P的坐标;如果不存在,请说明理由.。
二次函数(单元重点综合测试)一、选择题(本大题共10小题,每小题2分,共20分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.(2023秋·河南驻马店·九年级统考期末)关于二次函数()215y x =++,下列说法正确的是()A .函数图象的开口向下B .函数图象的顶点坐标为()1,5C .该函数有最大值,最大值为5D .当1x >时,y 随x 的增大而增大【答案】D 【分析】通过分析二次函数顶点式判断函数图象开口方向、顶点坐标、最值以及增减性即可求解.【详解】解:()215y x =++中,2x 的系数为1,10>,函数图象开口向上,A 错误;函数图象的顶点坐标是()1,5-,B 错误;函数图象开口向上,有最小值为5,C 错误;函数图象的对称轴为=1x -,1x <-时y 随x 的增大而减小;1x >-时,y 随x 的增大而增大,所以,当1x >时,y 随x 的增大而增大,故D 正确.故选:D .【点睛】本题考查了二次函数图象的基本知识和性质,熟练掌握二次函数图象是解题的关键.2.(2022秋·河北唐山·九年级校考阶段练习)若()221m y m x -=-是二次函数,最大值为0,则m 的值为()A .2m =±B .m =C .2m =D .m =【答案】C【分析】根据二次函数的定义(形如2y ax bx c =++,,,a b c 为常数,且0a ≠的函数叫做二次函数)可得222m -=,由最大值为0,可得10m -<,由此即可求解.【详解】解:由题意得:22210m m ⎧-=⎨-<⎩,解得2m =,故选:C .【点睛】本题考查了二次函数的定义和性质,熟练掌握二次函数的性质是解题关键.3.(2023·福建宁德·模拟预测)若二次函数2(0)y ax bx c a =++>图象,过不同的六点()1,A n -、()5,1B n -、()6,1C n +、()14,D y 、)2Ey 、()32,F y ,则1y 、2y 、3y 的大小关系是()A .123y y y <<B .132y y y <<C .213y y y <<D .321y y y <<【答案】D 【分析】由解析式可知抛物线开口向上,点()1,A n -,()5,1B n -,()6,1C n +求得抛物线对称轴的范围,然后根据二次函数性质判定可得.【详解】解:由二次函数2(0)y ax bx c a =++>可知,抛物线开口向上,()1,A n - 、()5,1B n -、()6,1C n +,即有11n n n -<<+,A ∴点关于对称轴的对称点在5与6之间,∴对称轴的取值范围为2 2.5x <<,13y y ∴>,点E 到对称轴的距离小于2.5D 到对称轴的距离大于4 2.5 1.5-=,321y y y ∴<<,故选:D .【点睛】本题主要考查二次函数的图象上点的坐标特征,二次函数的性质,根据题意得到抛物线的对称轴和开口方向是解题的关键.4.(2023秋·河北张家口·九年级统考期末)某商店购进一批单价为20元的日用商品,如果以单价30元销售,那么半月内可以售出400件,根据销售经验,提高销售单价会导致销售量的减少,即销售单价每提高1元,销售量相应减少20件,若设每件商品涨x 元,销售利润为y 元,可列函数为:()()302040020y x x =+--.对所列函数中出现的代数式,下列说法错误的是()A .()3020x +-表示涨价后商品的单价B .20x 表示涨价后少售出商品的数量C .()40020x -表示涨价后商品的数量D .()30x +表示涨价后商品的单价【答案】A 【分析】根据题意,分析得出涨价后的单价为()30x +元,涨价后销量为()40020x -件,再根据利润等于售价减去进价得出涨价后每件利润为()3020x +-元即可.【详解】解:A 、()3020x +-表示涨价后单件商品的利润,不是商品的单价,故本选项不符合题意;B 、由销售单价每提高1元,销售量相应减少20件,得每件商品涨x 元后,20x 表示涨价后少售出商品的数量,故本选项符合题意;C 、由题可知,原销量为400件,涨价后少售出20x 件,则涨价后的商品数量为()40020x -件,故本选项符合题意;D 、由题可知,每件商品原价为30元,涨x 元后单价为()30x +元,故本选项符合题意.故选:A .【点睛】本题考查了应用题中的利润问题,根据题意准确得出涨价前后的售价和销量以及熟练掌握利润的计算公式是本题的重点.5.(2023·陕西渭南·统考二模)将抛物线22y ax bx =+-(a 、b 是常数,0a ≠)向下平移2个单位长度后,得到的新抛物线恰好和抛物线2142y x x =+-关于y 轴对称,则a 、b 的值为()A .1a =-,2b =-B .12a =-,1b =-C .12a =,1b =-D .1a =,2b =【答案】C 【分析】先求出抛物线2142y x x =+-关于y 轴对称的抛物线为()219122y x =--,再根据抛物线平移的性质得出抛物线22y ax bx =+-向下平移2个单位长度后为24y ax bx =+-,即可得出a 和b 的值.【详解】解:∵()2211941222y x x x =+-=+-,∴抛物线2142y x x =+-关于y 轴对称的抛物线为()219122y x =--,∵抛物线22y ax bx =+-向下平移2个单位长度后为24y ax bx =+-,∵24y ax bx =+-与2142y x x =+-关于y 轴对称,∴()22419122y ax bx x =-+-=-,整理得:224412y x x a bx x +-=--=,∴12a =,1b =-,故选:C .【点睛】本题主要考查了二次函数的平移规律,解题的关键是掌握将二次函数化为顶点式的方法和步骤,以及二次函数的平移规律:上加下减,左加右减.6.(2020秋·河南安阳·九年级校考期中)如图,一段抛物线:y =﹣x (x ﹣4)(0≤x ≤4)记为C 1,它与x 轴交于两点O ,A 1;将C 1绕A 1旋转180°得到C 2,交x 轴于A 2;将C 2绕A 2旋转180°得到C 3,交x 轴于A 3…如此变换进行下去,若点P (21,m )在这种连续变换的图象上,则m 的值为()A .2B .﹣2C .﹣3D .3【答案】C 【分析】根据题意和题目中的函数解析式,可以得到点A 1的坐标,从而可以求得OA 1的长度,然后根据题意,即可得到点P (21,m )中m 的值和x =1时对应的函数值互为相反数,从而可以解答本题.【详解】解:∵y =﹣x (x ﹣4)(0≤x ≤4)记为C 1,它与x 轴交于两点O ,A 1,∴点A 1(4,0),∴OA 1=4,∵OA 1=A 1A 2=A 2A 3=A 3A 4,∴OA 1=A 1A 2=A 2A 3=A 3A 4=4,∵点P (21,m )在这种连续变换的图象上,∴x =21和x =1∴﹣m =﹣1×(1﹣4)=3,∴m =﹣3,故选:C.【点睛】本题考查抛物线与x 轴的交点、二次函数的性质、二次函数与几何变换,解答本题的关键是明确题意,利用二次函数的性质和数形结合的思想解答.7.(2023·浙江杭州·统考中考真题)设二次函数()()(0,,y a x m x m k a m k =--->是实数),则()A .当2k =时,函数y 的最小值为a-B .当2k =时,函数y 的最小值为2a -C .当4k =时,函数y 的最小值为a-D .当4k =时,函数y 的最小值为2a -【答案】A【分析】令0y =,则()()0a x m x m k =---,解得:1x m =,2x m k =+,从而求得抛物线对称轴为直线222m m k m k x +++==,再分别求出当2k =或4k =时函数y 的最小值即可求解.【详解】解:令0y =,则()()0a x m x m k =---,解得:1x m =,2x m k =+,∴抛物线对称轴为直线222m m k m k x +++==当2k =时,抛物线对称轴为直线1x m =+,把1x m =+代入()()2y a x m x m =---,得y a =-,∵0a >∴当1x m =+,2k =时,y 有最小值,最小值为a -.故A 正确,B 错误;当4k =时,抛物线对称轴为直线2x m =+,把2x m =+代入()()4y a x m x m =---,得4y a =-,∵0a >∴当2x m =+,4k =时,y 有最小值,最小值为4a -,故C 、D 错误,故选:A .【点睛】本题考查抛物线的最值,抛物线对称轴.利用抛物线的对称性求出抛物线对称轴是解题的关键.8.(2023·广东深圳·模拟预测)如图,排球运动员站在点O 处练习发球,将球从点O 正上方2m 的A 处发出,把球看成点,其运行的高度()m y 与运行的水平距离()m x 满足关系式2(6) 2.6y a x =-+.已知球网与点O 的水平距离为9m ,高度为2.43m ,球场的边界距点O 的水平距离为18m .下列判断正确的是()A .球运行的最大高度是2.43mB .150a =-C .球会过球网但不会出界D .球会过球网并会出界【答案】D 【分析】根据顶点式2(6) 2.6y a x =-+的特征即可判断A 选项;将点()0,2代入函数解析式中即可求得a 的值,即可判断B 选项;分别求出9x =和18x =的函数值,再分别和2.43、0比较大小即可判断C 、D 选项.【详解】解: 球的运行的高度()m y 与运行的水平距离()m x 满足关系式2(6) 2.6y a x =-+,∴当6x =时,y 取得最大值2.6,∴运行的最大高度时2.6m ,故A 错误;球从点O 正上方2m 的A 处发出,2(6) 2.6y a x ∴=-+的图象经过点()0,2,22(06) 2.6a ∴=-+,解得:160a =-,故B 错误;当9x =时,21(96) 2.6 2.4560y =--+=,2.45 2.43> ,∴球会过球网,当18x =时,21(186) 2.60.260y =--+=,0.20> ,∴球会出界,故C 选项错误,D 选项正确.故选:D .【点睛】本题主要考查了二次函数的应用,掌握用待定系数求二次函数解析式以及将实际问题转化为二次函数问题是解题关键.9.(2023·河南周口·周口恒大中学校考三模)如右图,直线l 的解析式为4y x =-+,它与x 轴和y 轴分别相交于A 、B 两点,点C 为线段OA 上一动点,过点C 作直线l 的平行线m ,交y 轴于点D .点C 从原点O 出发,沿OA 以每秒1个单位长度的速度向终点A 运动,运动时间为t 秒,以CD 为斜边作等腰直角三角形CDE (E ,O 两点分别在CD 两侧).若CDE 和OAB 的重合部分的面积为S ,则S 与t 之间的函数关系图象大致是()A .B.C.D.【答案】C【分析】分类讨论02,24t t ≤<≤≤时,S 与t 之间的函数关系式式即可求解.【详解】解:①当02t ≤<时,如图所示:可知:212DCE S S == ②当24t ≤≤时,如图所示:此时,DCE EFGS S S =- (),0C t ,(),4G t t -+,(),E t t ()424EG EF t t t ∴==--+=-()2221132488222DCE EFG S S S t t t t ∴=-=--=-+- 综上:()()22102238822t t S t t t ⎧≤⎪⎪=⎨⎪-+-≥⎪⎩<显然只有C 选项符合题意故选:C【点睛】本题考查二次函数的实际应用.根据题意找到S 与t 之间的函数关系式是解题关键.10.(2023秋·河北张家口·九年级统考期末)题目:“如图,抛物线2y x mx =+与直线y x b =-+相交于点()2,0A 和点B .点M 是直线AB 上的一个动点,将点M 向左平移3个单位长度得到点N ,若线段MN 与抛物线只有一个公共点,直接写出点M 的横坐标M x 的取值范围.”对于其答案,甲答:3M x =,乙答:12M x -≤<,丙答:12M x -<≤,丁答:12M x -≤≤,则正确的是()A .只有甲答的对B .甲、乙答案合在一起才完整C .甲、丙答案合在一起才完整D .甲、丁答案合在一起才完整【答案】B 【分析】当点M 在线段AB 上时,当点M 在点B 的左侧时,当点M 在点A 的右侧时,分类求解确定MN 的位置,进而求解.【详解】解:将点A 的坐标代入抛物线表达式得:420m +=,解得2m =-,将点A 的坐标代入直线表达式得:20b -+=,解得2b =,∴抛物线的解析式为22y x x =-,直线的解析式为2y x =-+,当点M 在线段AB 上时,线段MN 与抛物线只有一个公共点,M ,N 的距离为3,而A ,B 的水平距离是3,故此时只有一个交点,即12M x -≤<,当点M 在点A 的右侧时,当3M x =时,抛物线和MN 交于抛物线的顶点(1,1)-,即3M x =时,线段MN 与抛物线只有一个公共点,综上所述,12M x -≤<或3M x =,即甲、乙答案合在一起才完整,故选:B .【点睛】本题考查的是二次函数综合运用,涉及到一次函数的性质、不等式的性质等,分类求解确定MN 位置是解题的关键.二、填空题(本大题共6小题,每小题3分,共18分)请把答案直接填写在横线上11.(2022秋·九年级单元测试)已知二次函数()224y x =--+,当2x >时,若y 随着x 的增大而(填“增大”“不变”或“减小”).【答案】减小【分析】根据二次函数顶点式的图象与性质进行解答即可.【详解】∵1a =-,对称轴2x =,∴当2x >时,若y 随着x 的增大而减小,故答案为:减小.【点睛】本题考查二次函数顶点式()2y a x h k =-+的图象与性质,分清a 、h 的符号和二次函数顶点式的增减性是解题的关键.12.(2020秋·广东广州·九年级广州市第二中学校考阶段练习)已知点()()A a m B b m ,、,、(),P a b n +为抛物线224y x x =-+上的点,则n =.【答案】4【分析】由抛物线的解析式可知抛物线的对称轴是直线1x =,根据点A 和B 的坐标知,则点A 和B 关于直线1x =对称.据此易求a b +的值,进而把P 点的坐标代入解析式即可求得n 的值.【详解】∵抛物线解析式为224y x x =-+,∴该抛物线的对称轴是直线212x -=-=,∵点()()A a m B b m ,、,为抛物线24y x x =-+上的点,∴点()()A a m B b m ,、,关于直线1x =对称,∴12a b +=,∴2a b +=,∴()2,P n 把2x =代入抛物线的解析式得,222244n =-⨯+=.故答案是:4.【点睛】本题考查了二次函数图象上点的坐标特征、二次函数的性质.二次函数图象上所有点的坐标均满足该函数解析式.13.(2022秋·天津西青·九年级校考期中)行驶中的汽车刹车后,由于惯性的作用,还会继续向前滑行一段距离,这段距离我们将它称为“刹车距离”.某车的刹车距离s (m )与车速x (km/h )之间的函数关系是20.010.002s x x =+,现在该车在限速120km/h 的高速公路上出了交通事故,事后测得刹车距离为46.5m ,请推测该车刹车时是否超速(填“是”或“否”),车速为km/h .【答案】是150【分析】将46.5s =代入函数解析式,求出车速x ,与120km/h 比较即可得出答案.【详解】根据题意,当46.5s =时,得:20.010.00246.5x x +=,解得:1155x =-(舍),2150120x =>,∴刹车前,汽车超速.故答案为:是,150.【点睛】本题考查了二次函数的应用,解答本题的关键是将s 的值代入,解一元二次方程,注意将实际问题转化为数学模型.14.(2022秋·山东济宁·九年级济宁学院附属中学校考期末)若二次函数()20y ax bx c a =++≠中,函数值y与自变量x 的部分对应值如表:x…2-1-012…y …02-2-04…则当32x -≤≤时,y 的最大值为.【答案】4【分析】根据表中点的坐标得出函数的对称轴,设二次函数的表达式是21(2y a x k =++,把点的坐标代入求出该二次函数的表达式是22y x x =+-;再画出图象,即可利用图象法求解.【详解】解:根据表中可知:点(1,2)--和点(0,2)-关于对称轴对称,即对称轴是直线12x =-,设二次函数的表达式是21(2y a x k =++,把点(2,0)-和点(0,2)-代入得:221(2)021(0)22a k a k ⎧-++=⎪⎪⎨⎪++=-⎪⎩,解得:1a =,94k =-,2219(224y x x x =+-=+-,所以该二次函数的表达式是2219224y x x x ⎛⎫=+-=+- ⎪⎝⎭;函数图象如图所示,由图象可得∶当32x -≤≤时,﹣944y ≤≤,最大值为4.故答案为∶4.【点睛】本题考查了二次函数的图象和性质,用待定系数法求二次函数的解析式等知识点,能求出二次函数的解析式是解此题的关键.15.(2023·吉林长春·统考中考真题)2023年5月8日,C919商业首航完成——中国民商业运营国产大飞机正式起步.12时31分航班抵达北京首都机场,穿过隆重的“水门礼”(寓意“接风洗尘”、是国际民航中高级别的礼仪).如图①,在一次“水门礼”的预演中,两辆消防车面向飞机喷射水柱,喷射的两条水柱近似看作形状相同的地物线的一部分.如图②,当两辆消防车喷水口A 、B 的水平距离为80米时,两条水柱在物线的顶点H 处相遇,此时相遇点20米,喷水口A 、B 距地面均为4米.若两辆消防车同时后退10米,两条水柱的形状及喷水口A '、B '到地面的距离均保持不变,则此时两条水柱相遇点H '距地面米.【答案】19【分析】根据题意求出原来抛物线的解析式,从而求得平移后的抛物线解析式,再令0x =求平移后的抛物线与y 轴的交点即可.【详解】解:由题意可知:()40,4A -、()40,4B 、()0,20H ,设抛物线解析式为:220y ax =+,将()40,4A -代入解析式220y ax =+,解得:1100a =-,220100x y ∴=-+,消防车同时后退10米,即抛物线220100x y =-+向左(右)平移10米,平移后的抛物线解析式为:()21020100x y +=-+,令0x =,解得:19y =,故答案为:19.【点睛】本题考查了待定系数法求抛物线解析式、函数图像的平移及坐标轴的交点;解题的关键是求得移动前后抛物线的解析式.16.(2023秋·河南驻马店·九年级统考期末)已知二次函数224y x x =--+,当1a x a ≤≤+时,函数值y 的最小值为1,则a 的值为.【答案】0或-31y =时自变量x 的值,结合1a x a ≤≤+时,函数值y 的最小值为1,可得到关于a 的一元一次方程,解即可.【详解】解:令1y =,则2241x x --+=,解得:12x =-,21x =.1a x a ≤≤+时,函数值y 的最小值为1∴12a +=-或11a +=,∴3a =-或0a =.故答案为:3-或0.【点睛】本题考查了二次函数图像上点的坐标特征以及函数的最值.利用二次函数图像上点的特征找出1y =时自变量x 的值是解题的关键.三、解答题(本大题共7小题,共62分.解答时应写出文字说明、证明过程或演算步骤)17.(2023秋·河北张家口·九年级统考期末)如图,坐标平面上有一透明片,透明片上有一抛物线L :()227y x =+-.(1)写出L 的对称轴和y 的最小值;(2)点P 为透明片上一点,P 的坐标为()9,6.平移透明片,平移后,P 的对应点为P ',抛物线L 的对应抛物线为L ',其表达式恰为267y x x =-+,求PP '移动的最短路程.【答案】(1)对称轴为直线:7x =,y 的最小值为2(2)PP '=【分析】(1)直接根据解析式进行作答即可;(2)求出平移后的抛物线的顶点坐标,PP '移动的最短路程为两个顶点间的距离,进行求解即可.【详解】(1)解:∵()()222277y x x ==--++,顶点坐标为()7,2,∴对称轴为直线7x =,y 2;(2)∵()226732y x x x =-+=--,顶点坐标为()3,2-,∵抛物线L 的顶点坐标为()7,2,∴PP '=【点睛】本题考查二次函数的图象与性质,二次函数图象的平移.熟练掌握二次函数的图象和性质,是解题的关键.18.(2023秋·河南开封·九年级开封市第十三中学校考期末)某水果批发商销售每箱进价为40元的苹果,物价部门规定每箱售价不得高于60元,市场调查发现,若每箱以50元的价格销售,平均每天销售90箱,价格每提高1元,平均每天少销售2箱.(1)求平均每天销售量y 箱与销售价x 元/箱之间的函数关系式.(2)求批发商平均每天的销售利润w (元)与销售价x (元/箱)之间函数关系式.(3)当每箱苹果的销售价为多少元时,可以获得最大利润?最大利润是多少?【答案】(1)()21905060y x x =-+≤≤(2)()2227076005060w x x x =-+-≤≤(3)当每箱苹果的销售价为60元时,可以获得1400元的最大利润.【分析】(1)在销售90箱的基础上,价格每提高1元,平均每天少销售2箱,再列函数关系式即可;(2)由销售量乘以每箱苹果的利润可得总利润,可得函数关系式;(3)再依据二次函数的增减性求得最大利润.【详解】(1)解:根据题意,平均每天的销售量y (箱)与销售单价x (元/箱)之间得()90250y x =--,即()21905060y x x =-+≤≤.(2)由(1)可得:()()()2402190227076005060w x x x x x =--+=-+-≤≤;(3)∵222707600w x x =-+-,∵20a =-<,∴抛物线开口向下.当()27067.522x =-=⨯-时,w 有最大值.又67.5x <,w 随x 的增大而增大.∴当60x =元时,w 的最大值为1400元.∴当每箱苹果的销售价为60元时,可以获得1400元的最大利润.【点睛】本题考查了二次函数的性质在实际生活中的应用.最大销售利润的问题常利函数的增减性来解答,我们首先要吃透题意,确定变量,建立函数模型,然后结合实际选择最优方案.其中要注意应该在自变量的取值范围内求最大值(或最小值),也就是说二次函数的最值不一定在2b x a=-时取得.19.(2020秋·广东广州·九年级广州市第十三中学校考期中)如图,矩形花圃ABCD ,它的一边AD 利用已有的围墙,可利用的围墙长度不超过30m ,另外三边所围的栅栏的总长度是60m ,设AB 长为x 米.(1)若矩形的面积为2400m ,求AB 的长度.(2)若矩形的面积是S ,求当x 为何值时,S 有最大值?【答案】(1)20米(2)15x =【分析】(1)设AB 长为x 米,则BC 长为(602)x -米,根据矩形的面积公式列出方程,解之取合适的值即可;(2)列出S 关于x 的函数关系式,再根据二次函数的最值求解即可.【详解】(1)解:设AB 长为x 米,则BC 长为(602)x -米,依题意,得()602400x x -=,解得:110x =,220x =,当10x =时,6021040BC =-⨯=,超过了围墙的长度,∴不合题意,舍去,∴20x =,即AB 的长为20米;(2)设矩形的面积是S ,则()()22602260215450S x x x x x =-=-+=--+,∵20-<,∴()2215450S x =--+开口向下,∴当15x =时,S 有最大值.【点睛】此题主要考查了二次函数的应用以及一元二次方程的应用,根据题意正确表示出BC 的长是解题关键.20.(2022秋·河北张家口·九年级张家口市实验中学校考期中)在平面直角坐标系中,已知点()1,3A ,()3,5B ,()3,7C -,直线:l y x m =+经过点A ,抛物线2:b 2L y ax x =++恰好经过A ,B ,C 三点中的两点.(1)判断点B 是否在直线l 上,并说明理由;(2)求,a b 的值;(3)平移抛物线L ,①使其顶点为B ,求此时抛物线与y 轴交点的坐标;②使其顶点仍在直线l 上,求平移后所得抛物线与y 轴交点纵坐标的最大值.【答案】(1)点B 在直线l 上,理由见解析,(2)2a =-,3b =(3)①()013-,;②178【分析】(1)先将A 代入y x m =+,求出直线解析式,然后将3x =代入解析式即可求解;(2)先根据抛物线22y ax bx =++与直线AB 都经过()02,点,且B ,C 两点的横坐标相同,判断出抛物线只能经过A ,C 两点,然后将A ,C 两点坐标代入22y ax bx =++得出关于a ,b 的二元一次方程组;(3)①根据题意,可得抛物线解析式为()2235y x =--+,令0x =,即可求解;②设平移后所得抛物线的对应表达式为22()=--+y x h k ,根据顶点在直线2y x =+上,得出1k h =+,令0x =,得到平移后抛物线与y 轴交点的纵坐标为221h h -++,再将式子配方即可求出最大值.【详解】(1)解:∵直线:l y x m =+经过点()1,3A ,∴31m =+,解得:2m =,∴直线l :2y x =+,当3x =时,325y =+=,∴()3,5B 在直线l 上,(2) 抛物线22y ax bx =++与直线AB 都经过()0,2点,且B ,C 两点的横坐标相同,∴抛物线只能经过A ,C 两点,将A ,C 两点坐标代入22y ax bx =++得239327a b a b ++=⎧⎨++=-⎩,解得:2a =-,3b =;(3)解:①依题意,点()3,5B ,则抛物线解析式为()2235y x =--+,令0x =,解得:13y =-,∴抛物线与y 轴交点的坐标为()013-,;②设平移后所得抛物线的对应表达式为22()=--+y x h k ,∵顶点在直线2y x =+上,∴2k h =+,令0x =,得到平移后抛物线与y 轴交点的纵坐标为222h h -++,∵2211722248h h h ⎛⎫-++=--+ ⎪⎝⎭,∴当14h =时,此抛物线与y 轴交点的纵坐标取得最大值178.【点睛】本题考查了求一次函数解析式,用待定系数法求二次函数解析式,二次函数的平移和求最值,求出两个函数的表达式是解题关键.21.(2023春·山东德州·九年级德州市第十中学校考阶段练习)某班“数学兴趣小组”对函数22y x x =-的图象和性质进行了探究,探究过程如下,请补充完整.(1)自变量x 的取值范围是全体实数,x 与y 的几组对应值列表如下:x...3-52--21-012523...y (35)4m 1-01-0543…其中,m =___________.(2)根据表中数据,在如图所示的平面直角坐标系中描点,并画出了函数图象的一部分,请画出该函数图象的另一部分.(3)观察函数图象,写出两条函数的性质.(4)进一步探究函数图象发现:①函数图象与x 轴有___________个交点,所以对应的方程220x x -=有___________个实数根;②方程222x x -=有___________个实数根;③关于x 的方程22x x a -=有4个实数根时,a 的取值范围是___________.【答案】(1)0(2)见解析(3)见解析(4)①3,3;②2;③10a -<<【分析】(1)根据函数的对称性,即可求解;(2)描点即可画出函数图象;(3)任意指出函数的两条性质即可,如函数的最小值为1-;1x >时,y 随x 的增大而增大,答案不唯一;(4)①从图象上看函数与x 轴有3个交点,即可求解;②设22||y x x =-,从图象看2y =与22||y x x =-有两个交点,即可求解;③当y a =与22||y x x =-有2个交点时,a 在x 轴的下方,即可求解.【详解】(1)解:根据函数的对称性,0m =,故答案为:0;(2)描点画出如下函数图象:(3)函数的最小值为1-;1x >时,y 随x 的增大而增大(答案不唯一);(4)①从图象上看函数与x 轴有3个交点,故对应方程2|2||0x x -=有3个根,故答案为:3,3;②设22||y x x =-,从图象看2y =22||y x x =-有两个交点;故答案为:2;③当y a =与22||y x x =-有2个交点时,a 在x 轴的下方,故10a -<<,故答案为:10a -<<.【点睛】本题考查了抛物线的性质,描点法画函数图象,抛物线与x 轴的交点,数形结合是解答本题的关键.22.(2023·内蒙古赤峰·统考中考真题)乒乓球被誉为中国国球.2023年的世界乒乓球标赛中,中国队包揽了五个项目的冠军,成绩的取得与平时的刻苦训练和精准的技术分析是分不开的.如图,是乒乓球台的截面示意图,一位运动员从球台边缘正上方以击球高度OA 为28.75cm 的高度,将乒乓球向正前方击打到对面球台,乒乓球的运行路线近似是抛物线的一部分.乒乓球到球台的竖直高度记为y (单位:cm ),乒乓球运行的水平距离记为x (单位:cm ).测得如下数据:水平距离x /cm0105090130170230竖直高度y /cm 28.7533454945330(1)在平面直角坐标系xOy 中,描出表格中各组数值所对应的点(),x y ,并画出表示乒乓球运行轨迹形状的大致图象;(2)①当乒乓球到达最高点时,与球台之间的距离是__________cm ,当乒乓球落在对面球台上时,到起始点的水平距离是__________cm ;②求满足条件的抛物线解析式;(3)技术分析:如果只上下调整击球高度OA ,乒乓球的运行轨迹形状不变,那么为了确保乒乓球既能过网,又能落在对面球台上,需要计算出OA 的取值范围,以利于有针对性的训练.如图②.乒乓球台长OB 为274cm ,球网高CD 为15.25cm .现在已经计算出乒乓球恰好过网的击球离度OA 的值约为1.27cm .请你计算出乒乓球恰好落在对面球台边缘点B 处时,击球高度OA 的值(乒乓球大小忽略不计).【答案】(1)见解析(2)①49;230;②()20.00259049y x =--+(3)乒乓球恰好落在对面球台边缘点B 处时,击球高度OA 的值为64.39cm【分析】(1)根据描点法画出函数图象即可求解;(2)①根据二次函数图象的对称性求得对称轴以及顶点,根据表格数据,可得当0y =时,230=x ;②待定系数法求解析式即可求解;(3)根据题意,设平移后的抛物线的解析式为()20.0025904928.75y x h =--++-,根据题意当274x =时,0y =,代入进行计算即可求解.【详解】(1)解:如图所示,(2)①观察表格数据,可知当50x =和130x =时,函数值相等,则对称轴为直线90x =,顶点坐标为()90,49,又抛物线开口向下,可得最高点时,与球台之间的距离是49cm ,当0y =时,230=x ,∴乒乓球落在对面球台上时,到起始点的水平距离是230cm ;故答案为:49;230.②设抛物线解析式为()29049y a x =-+,将()230,0代入得,()202309049a =-+,解得:0.0025a =-,∴抛物线解析式为()20.00259049y x =--+;(3)∵当28.75OA =时,抛物线的解析式为()20.00259049y x =--+,设乒乓球恰好落在对面球台边缘点B 处时,击球高度OA 的值为h ,则平移距离为28.75h -()cm ,∴平移后的抛物线的解析式为()20.0025904928.75y x h =--++-,依题意,当274x =时,0y =,即()20.0025274904928.750h --++-=,解得:64.39h =.答:乒乓球恰好落在对面球台边缘点B 处时,击球高度OA 的值为64.39cm .【点睛】本题考查了二次函数的应用,画二次函数图象,二次函数图象的平移,熟练掌握二次函数图象的性质是解题的关键.23.(2023年湖南省娄底市中考数学真题)如图,抛物线2y x bx c =++过点()1,0A -、点()5,0B ,交y 轴于点C .(1)求b ,c 的值.(2)点()()000,05P x y x <<是抛物线上的动点①当0x 取何值时,PBC 的面积最大?并求出PBC 面积的最大值;②过点P 作PE x ⊥轴,交BC 于点E ,再过点P 作PF x ∥轴,交抛物线于点F ,连接EF ,问:是否存在点P ,使PEF !为等腰直角三角形?若存在,请求出点P 的坐标;若不存在,请说明理由.【答案】(1)4b =-,5c =-(2)①当052x =时,PBC 的面积由最大值,最大值为1258;②当点P 的坐标为72⎛ ⎝⎭或()4,5-时,PEF !为等腰直角三角形【分析】(1)将将()1,0A -、()5,0B 代入抛物线2y x bx c =++即可求解;(2)①由(1)可知:245y x x =--,得()0,5C -,可求得BC 的解析式为5y x =-,过点P 作PE x ⊥轴,交BC 于点E ,交x 轴于点Q ,易得20005E PE y y x x =-=-+,根据PBC 的面积PEC PEB S S =+△△,可得PBC的面积()()001122C B PE x x PE x x =⋅-+⋅-2055125228x ⎛⎫=--+ ⎪⎝⎭,即可求解;②由题意可知抛物线的对称轴为4221x -=-=⨯对,则04F x x =-,分两种情况:当点P 在对称轴左侧时,即002x <<时,当点P 在对称轴右侧时,即025x <<时,分别进行讨论求解即可.【详解】(1)解:将()1,0A -、()5,0B 代入抛物线2y x bx c =++中,可得:102550b c b c -+=⎧⎨++=⎩,解得:45b c =-⎧⎨=-⎩,即:4b =-,5c =-;(2)①由(1)可知:245y x x =--,当0x =时,5y =-,即()0,5C -,设BC 的解析式为:y kx b =+,将()5,0B ,()0,5C -代入y kx b =+中,可得505k b b +=⎧⎨=-⎩,解得:15k b =⎧⎨=-⎩,∴BC 的解析式为:5y x =-,过点P 作PE x ⊥轴,交BC 于点E ,交x 轴于点Q ,∵()()000,05P x y x <<,则200045y x x =--,∴点E 的横坐标也为0x ,则纵坐标为05E y x =-,∴()()220000005455E PE y y x x x x x =-=----=-+,PBC 的面积PEC PEBS S =+△△()()001122C B PE x x PE x x =⋅-+⋅-()12B C PE x x =⋅-()200552x x =-+2055125228x ⎛⎫=--+ ⎪⎝⎭,。
函数的应用一、选择题(每小题5分,共25分)1.(2015·宜昌)如图,市煤气公司计划在地下修建一个容积为104m3的圆柱形煤气储存室,则储存室的底面积S(单位:m2)与其深度d(单位:m)的函数图象大致是( A),A) ,B),C) ,D)2.(大连模拟)A,B两地相距20千米,甲、乙两人都从A地去B地,图中l1和l2分别表示甲、乙两人所走路程s(千米)与时间t(小时)之间的关系,下列说法:①乙晚出发1小时;②乙出发3小时后追上甲;③甲的速度是4千米/小时;④乙先到达B地.其中正确的个数是( C)A.1 B.2 C.3 D.43.(2015·连云港)如图是本地区一种产品30天的销售图象,图①是产品日销售量y(单位:件)与时间t(单位:天)的函数关系,图②是一件产品的销售利润z(单位:元)与时间t(单位:天)的函数关系,已知日销售利润=日销售量×一件产品的销售利润,下列结论错误的是( C)A.第24天的销售量为200件B.第10天销售一件产品的利润是15元C.第12天与第30天这两天的日销售利润相等D.第30天的日销售利润是750元4.某广场有一喷水池,水从地面喷出,如图,以水平面为x轴,出水点为原点,建立平面直角坐标系,水在空中划出的曲线是抛物线y=-x2+4x(单位:米)的一部分,则水喷出的最大高度是( A)A.4米B.3米C.2米D.1米,第4题图) ,第5题图) 5.(葫芦岛模拟)如图,假设篱笆(虚线部分)的长度16 m,则所围成矩形ABCD的最大面积是( C )A .60 m 2B .63 m 2C .64 m 2D .66 m 2二、填空题(每小题5分,共25分)6.(2015·广州)某水库的水位在5小时内持续上涨,初始的水位高度为6米,水位以每小时0.3米的速度匀速上升,则水库的水位高度y 米与时间x 小时(0≤x ≤5)的函数关系式为__y =6+0.3x__.7.(抚顺模拟)如图是某地一座抛物线形拱桥,桥拱在竖直平面内,与水平面交于A ,B 两点,桥拱最高点C 到直线AB 的距离为9 m ,AB =36 m ,D ,E 为拱桥底部的两点,且DE∥AB,点E 到直线AB 的距离为7 m ,则DE 的长为__48__m .,第7题图) ,第8题图)8.(2015·武汉)如图所示,购买一种苹果,所付款金额y(元)与购买量x(千克)之间的函数图象由线段OA 和射线AB 组成,则一次购买3千克这种苹果比分三次每次购买1千克这种苹果可节省__2__元.9.(2014·苏州)如图,直线l 与半径为4的⊙O 相切于点A ,P 是⊙O 上的一个动点(不与点A 重合),过点P 作PB⊥l,垂足为B ,连接PA.设PA =x ,PB =y ,则(x -y)的最大值是__2__.解析:如图,作直径AC ,连接CP ,∴∠CPA =90°,∵AB 是切线,∴CA ⊥AB ,∵PB ⊥l ,∴AC ∥PB ,∴∠CAP =∠APB,∴△APC ∽△PBA,∴AP AC =BP AP,∵PA =x ,PB =y ,半径为4,∴x 8=y x ,∴y =18x 2,∴x -y =x -18x 2=-18x 2+x =-18(x -4)2+2,当x =4时,(x -y)有最大值是210.(辽阳模拟)科学家为了推测最适合某种珍奇植物生长的温度,将这种植物分别放在不同温度的环境中,经过一定时间后,测试出这种植物高度的增长情况,部分数据如表:长的温度为__-1__℃.三、解答题(共50分)11.(10分)一个批发商销售成本价为每千克20元的某产品,根据物价部门规定:该产品每千克售价不得超过90元,在销售过程中发现销售量y(千克)与售价x(元/千克)满足一次函数关系,对应关系如下表:(1)求y (2)该批发商若想获得4000元的利润,应将售价定为每千克多少元?(3)该产品售价为每千克多少元时,批发商获得的利润w(元)最大?此时的最大利润为多少元?解:(1)设y 与x 的函数关系式为y =kx +b(k≠0),根据题意得⎩⎪⎨⎪⎧50k +b =100,60k +b =90,解得⎩⎪⎨⎪⎧k =-1,b =150.故y 与x 的函数关系式为y =-x +150 (2)根据题意得(-x +150)(x -20)=4000,解得x 1=70,x 2=100>90(不合题意,舍去),故该批发商若想获得4000元利润,应将售价定为70元 (3)w 与x 的函数关系式为:w =(-x +150)(x -20)=-x 2+170x -3000=-(x -85)2+4225,∵-1<0,∴当x =85时,w 值最大,w 最大值是4225,∴该产品每千克售价为85元时,批发商获得的利润w(元)最大,此时的最大利润为4225元12.(12分)(盘锦模拟)如图,某足球运动员站在点O 处练习射门,将足球从离地面0.5 m 的A 处正对球门踢出(点A 在y 轴上),足球的飞行高度y(单位:m )与飞行时间t(单位:s )之间满足函数关系y =at 2+5t +c ,已知足球飞行0.8 s 时,离地面的高度为3.5 m .(1)足球飞行的时间是多少时,足球离地面最高?最大高度是多少?(2)若足球飞行的水平距离x(单位:m )与飞行时间t(单位:s )之间具有函数关系x =10 t ,已知球门的高度为2.44 m ,如果该运动员正对球门射门时,离球门的水平距离为28 m ,他能否将球直接射入球门?解:(1)由题意得:函数y =at 2+5t +c 的图象经过(0,0.5)(0.8,3.5),∴⎩⎪⎨⎪⎧0.5=c ,3.5=0.82a +5×0.8+c ,解得⎩⎪⎨⎪⎧a =-2516,c =12,∴抛物线的解析式为:y =-2516t 2+5t +12,∴当t =85时,y 最大=4.5 (2)把x =28代入x =10t 得t =2.8,∴当t =2.8时,y =-2516×2.82+5×2.8+12=2.25<2.44,∴他能将球直接射入球门13.(14分)某文具店购进A ,B 两种铅笔,若购进A 种钢笔2支,B 种钢笔3支,共需90元;购进A 种钢笔3支,B 种钢笔5支,共需145元.(1)求A ,B 两种钢笔每支各多少元?(2)若该文具店要购进A ,B 两种钢笔共90支,总费用不超过1588元,并且A 种钢笔的数量少于B 种钢笔的数量,那么文具店有哪几种购买方案?(3)文具店以每支30元的价格销售B 种钢笔,很快销售一空,于是,文具店决定在进价不变的基础上再购进一批B 种钢笔,涨价卖出,经统计,B 种钢笔售价为30元时,每月可卖68支;每涨价1元,每月将少卖4支,设文具店将新购进的B 种钢笔每支涨价a 元(a 为正整数),销售这批钢笔每月获利W 元,试求W 与a 之间的函数关系式,并且求出B 种钢笔销售单价定为多少元时,每月获利最大,最大利润是多少元?解:(1)A 种钢笔每支15元,B 种钢笔每支20元 (2)两种购买方案:①A:43,B :47;②A:44,B :46 (3)当B 种单价定为33或34元时,获最大利润728元14.(14分)(2014·鄂州)大学生小张利用暑假50天在一超市勤工俭学,被安排销售一款成本为40元/件的新型商品,此类新型商品在第x 天的销售量p 件与销售的天数x 的关系如下表:销售单价q(元/件)与x 满足:当1≤x<25时,q =x +60;当25≤x≤50时,q =40+1125x. (1)请分析表格中销售量p 与x 的关系,求出销售量p 与x 的函数关系;(2)求该超市销售该新商品第x 天获得的利润y 元与x 的函数关系式;(3)这50天中,该超市第几天获得利润最大?最大利润为多少?解:(1)设销售量p 件与销售的天数x 的函数解析式为p =kx +b ,代入(1,118),(2,116)得⎩⎪⎨⎪⎧k +b =118,2k +b =116,解得⎩⎪⎨⎪⎧k =-2,b =120,因此销售量p 件与销售的天数x 的函数解析式为p =-2x +120 (2)当1≤x <25时,y =(60+x -40)(-2x +120)=-2x 2+80x +2400,当25≤x≤50时,y =(40+1125x -40)(-2x +120)=135000x-2250 (3)当1≤x <25时,y =-2x 2+80x +2400=-2(x -20)2+3 200,∵-2<0,∴x =20时,y 的最大值y 1,且y 1=3200;当25≤x≤50时,y =135000x-2250;∵135000>0,∴135000x随x 的增大而减小,,∴x =25时,135000x 最大,于是,x =25时,y =135000x-2250有最大值y 2,且y 2=5400-2250=3150,∵y 1>y 2,∴这50天中第20天时该超市获得利润最大,最大利润为3200元如何学好初中数学经典介绍浅谈如何学好初中数学数学是必考科目之一,故从初一开始就要认真地学习数学。
那么,怎样才能学好数学呢,现介绍几种方法以供参考:一、课内重视听讲,课后及时复习。
新知识的接受,数学能力的培养主要在课堂上进行,所以要特点重视课内的学习效率,寻求正确的学习方法。
上课时要紧跟老师的思路,积极展开思维预测下面的步骤,比较自己的解题思路与教师所讲有哪些不同。
特别要抓住基础知识和基本技能的学习,课后要及时复习不留疑点。
首先要在做各种习题之前将老师所讲的知识点回忆一遍,正确掌握各类公式的推理过程,庆尽量回忆而不采用不清楚立即翻书之举。
认真独立完成作业,勤于思考,从某种意义上讲,应不造成不懂即问的学习作风,对于有些题目由于自己的思路不清,一时难以解出,应让自己冷静下来认真分析题目,尽量自己解决。
在每个阶段的学习中要进行整理和归纳总结,把知识的点、线、面结合起来交织成知识网络,纳入自己的知识体系。
二、适当多做题,养成良好的解题习惯。
要想学好数学,多做题目是难免的,熟悉掌握各种题型的解题思路。
刚开始要从基础题入手,以课本上的习题为准,反复练习打好基础,再找一些课外的习题,以帮助开拓思路,提高自己的分析、解决能力,掌握一般的解题规律。
对于一些易错题,可备有错题集,写出自己的解题思路和正确的解题过程两者一起比较找出自己的错误所在,以便及时更正。
在平时要养成良好的解题习惯。
让自己的精力高度集中,使大脑兴奋,思维敏捷,能够进入最佳状态,在考试中能运用自如。
实践证明:越到关键时候,你所表现的解题习惯与平时练习无异。