高中数学必修一练习题一集合详细答案
- 格式:doc
- 大小:115.50 KB
- 文档页数:8
高中数学必修一第一章集合与常用逻辑用语专项训练题单选题1、设集合A ={x |x 2–4≤0},B ={x |2x +a ≤0},且A ∩B ={x |–2≤x ≤1},则a =( )A .–4B .–2C .2D .4答案:B分析:由题意首先求得集合A ,B ,然后结合交集的结果得到关于a 的方程,求解方程即可确定实数a 的值. 求解二次不等式x 2−4≤0可得:A ={x|−2≤x ≤2},求解一次不等式2x +a ≤0可得:B ={x|x ≤−a 2}. 由于A ∩B ={x|−2≤x ≤1},故:−a 2=1,解得:a =−2. 故选:B.小提示:本题主要考查交集的运算,不等式的解法等知识,意在考查学生的转化能力和计算求解能力.2、已知集合M ={x |1−a <x <2a },N =(1,4),且M ⊆N ,则实数a 的取值范围是( )A .(−∞,2]B .(−∞,0]C .(−∞,13]D .[13,2] 答案:C分析:按集合M 是是空集和不是空集求出a 的范围,再求其并集而得解.因M ⊆N ,而ϕ⊆N ,所以M =ϕ时,即2a ≤1−a ,则a ≤13,此时 M ≠ϕ时,M ⊆N ,则{1−a <2a 1−a ≥12a ≤4 ⇒{a >13a ≤0a ≤2,无解,综上得a ≤13,即实数a 的取值范围是(−∞,13].故选:C3、设全集U ={−3,−2,−1,0,1,2,3},集合A ={−1,0,1,2}, B ={−3,0,2,3},则A ∩(∁U B )=( )A .{−3,3}B .{0,2}C .{−1,1}D .{−3,−2,−1,1,3}答案:C分析:首先进行补集运算,然后进行交集运算即可求得集合的运算结果.由题意结合补集的定义可知:∁U B={−2,−1,1},则A∩(∁U B)={−1,1}.故选:C.小提示:本题主要考查补集运算,交集运算,属于基础题.4、下面四个命题:①∀x∈R,x2-3x+2>0恒成立;②∃x∈Q,x2=2;③∃x∈R,x2+1=0;④∀x∈R,4x2>2x-1+3x2.其中真命题的个数为()A.3B.2C.1D.0答案:D分析:对于①,计算判别式或配方进行判断;对于②,当x2=2时,只能得到x为±√2,由此可判断;对于③,方程x2+1=0无实数解;对于④,作差可判断.解:x2-3x+2>0,Δ=(-3)2-4×2>0,∴当x>2或x<1时,x2-3x+2>0才成立,∴①为假命题.当且仅当x=±√2时,x2=2,∴不存在x∈Q,使得x2=2,∴②为假命题.对∀x∈R,x2+1≠0,∴③为假命题.4x2-(2x-1+3x2)=x2-2x+1=(x-1)2≥0,即当x=1时,4x2=2x-1+3x2成立,∴④为假命题.∴①②③④均为假命题.故选:D小提示:此题考查特称命题和全称命题真假的判断,特称命题要为真,只要有1个成立即可,全称命题要为假,只要有1个不成立即可,属于基础题.5、已知集合S={s|s=2n+1,n∈Z},T={t|t=4n+1,n∈Z},则S∩T=()A.∅B.S C.T D.Z答案:C分析:分析可得T⊆S,由此可得出结论.任取t∈T,则t=4n+1=2⋅(2n)+1,其中n∈Z,所以,t∈S,故T⊆S,因此,S∩T=T.故选:C.6、若集合U={0,1,2,3,4,5},A={0,2,4},B={3,4},则(∁U A)∩B=().A.{3}B.{5}C.{3,4,5}D.{1,3,4,5}答案:A分析:根据补集的定义和运算求出∁U A,结合交集的概念和运算即可得出结果.由题意知,∁U A={1,3,5},又B={3,4},所以(∁U A)∩B={3}.故选:A7、集合A={x|x<−1或x≥3},B={x|ax+1≤0}若B⊆A,则实数a的取值范围是()A.[−13,1)B.[−13,1]C.(−∞,−1)∪[0,+∞)D.[−13,0)∪(0,1)答案:A分析:根据B⊆A,分B=∅和B≠∅两种情况讨论,建立不等关系即可求实数a的取值范围.解:∵B⊆A,∴①当B=∅时,即ax+1⩽0无解,此时a=0,满足题意.②当B≠∅时,即ax+1⩽0有解,当a>0时,可得x⩽−1a,要使B⊆A,则需要{a>0−1a<−1,解得0<a<1.当a<0时,可得x⩾−1a,要使B⊆A,则需要{a<0−1a⩾3,解得−13⩽a<0,综上,实数a的取值范围是[−13,1).故选:A.小提示:易错点点睛:研究集合间的关系,不要忽略讨论集合是否为∅.8、已知集合满足{1,2}⊆A⊆{1,2,3},则集合A可以是()A.{3}B.{1,3}C.{2,3}D.{1,2}答案:D分析:由题可得集合A可以是{1,2},{1,2,3}.∵{1,2}⊆A⊆{1,2,3},∴集合A可以是{1,2},{1,2,3}.故选:D.多选题9、下列存在量词命题中真命题是()A.∃x∈R,x≤0B.至少有一个整数,它既不是合数,也不是素数C.∃x∈{x|x是无理数},x2是无理数D.∃x0∈Z,1<5x0<3答案:ABC分析:结合例子,逐项判断即可得解.对于A,∃x=0∈R,使得x≤0,故A为真命题.对于B,整数1既不是合数,也不是素数,故B为真命题;对于C,若x=π,则x∈{x|x是无理数},x2是无理数,故C为真命题.对于D,∵1<5x0<3,∴15<x0<35,∴∃x0∈Z,1<5x0<3为假命题.故选:ABC.10、对任意实数a、b、c,给出下列命题,其中真命题是()A.“a=b”是“ac=bc”的充要条件B.“a>b”是“a2>b2”的充分条件C.“a<5”是“a<3”的必要条件D.“a+5是无理数”是“a是无理数”的充要条件答案:CD分析:利用特殊值法以及充分条件、必要条件的定义可判断A、B选项的正误;利用必要条件的定义可判断C 选项的正误;利用充要条件的定义可判断D选项的正误.对于A,因为“a=b”时ac=bc成立,ac=bc且c=0时,a=b不一定成立,所以“a=b”是“ac=bc”的充分不必要条件,故A错;对于B,a=−1,b=−2,a>b时,a2<b2;a=−2,b=1,a2>b2时,a<b.所以“a>b”是“a2>b2”的既不充分也不必要条件,故B错;对于C,因为“a<3”时一定有“a<5”成立,所以“a<3”是“a<5”的必要条件,C正确;对于D“a+5是无理数”是“a是无理数”的充要条件,D正确.故选:CD.小提示:本题考查充分条件、必要条件的判断,考查了充分条件和必要条件定义的应用,考查推理能力,属于基础题.11、非空集合A具有下列性质:①若x,y∈A,则xy∈A;②若x,y∈A,则x+y∈A.下列选项正确的是()A.−1∉A B.20202021∉AC.若x,y∈A,则xy∈A D.若x,y∈A,则x−y∉A答案:AC分析:若−1∈A,利用条件可得当x=−1∈A,y=0∈A时,不满足xy∈A,可判断A,利用条件可得若x≠0且x∈A,进而得2020∈A,2021∈A,可判断B,利用题设可得若x,y∈A,则xy∈A,x−y=1∈A可判断CD.对于A,若−1∈A,则−1−1=1∈A,此时−1+1=0∈A,而当x=−1∈A,y=0∈A时,−1显然无意义,不满足xy∈A,所以−1∉A,故A正确;对于B,若x≠0且x∈A,则1=xx∈A,所以2=1+1∈A,3=2+1∈A,以此类推,得对任意的n∈N∗,有n∈A,所以2020∈A,2021∈A,所以20202021∈A,故B错误;对于C,若x,y∈A,则x≠0且y≠0,又1∈A,所以1y ∈A,所以xy=x1y=∈A,故C正确;对于D,取x=2,y=1,则x−y=1∈A,故D错误.故选:AC.填空题12、设集合A={1,2,a},B={2,3}.若B⊆A,则a=_______.答案:3分析:由题意可知集合B是集合A的子集,进而求出答案.由B⊆A知集合B是集合A的子集,所以3∈A⇒a=3,所以答案是:3.13、在整数集Z中,被5除所得余数为k的所有整数组成一个“类”,记为[k],即[k]={5n+k|n∈Z},k= 0,1,2,3,4;给出下列四个结论:①2015∈[0];②−3∈[3];③Z=[0]∪[1]∪[2]∪[3]∪[4];④“整数a,b属于同一‘类’”的充要条件是“a−b∈[0]”.其中,正确结论的个数..是_______.答案:3分析:根据2015被5除的余数为0,可判断①;将−3=−5+2,可判断②;根据整数集就是由被5除所得余数为0,1,2,3,4,可判断③;令a=5n1+m1,b=5n2+m2,根据“类”的定理可证明④的真假.①由2015÷5=403,所以2015∈[0],故①正确;②由−3=5×(−1)+2,所以−3∉[3],故②错误;③整数集就是由被5除所得余数为0,1,2,3,4的整数构成,故③正确;④假设a=5n1+m1,b=5n2+m2,a−b=5(n1−n2)+m1−m2,a,b要是同类.则m1=m2,即m1−m2=0,所以a−b∈[0],反之若a−b∈[0],即m1−m2=0,所以m1=m2,则a,b是同类,④正确;所以答案是:3小提示:本题考查的知识点是命题的真假判断与应用,正确理解新定义“类”是解答的关键,以及进行简单的合情推理,属中档题.14、设P为非空实数集满足:对任意给定的x、y∈P(x、y可以相同),都有x+y∈P,x−y∈P,xy∈P,则称P为幸运集.①集合P={−2,−1,0,1,2}为幸运集;②集合P={x|x=2n,n∈Z}为幸运集;③若集合P1、P2为幸运集,则P1∪P2为幸运集;④若集合P为幸运集,则一定有0∈P;其中正确结论的序号是________答案:②④解析:①取x=y=2判断;②设x=2k1∈P,y=2k2∈P判断;③举例P1={x|x=2k,k∈Z},P2={x|x=3k,k∈Z}判断;④由x、y可以相同判断;①当x=y=2,x+y=4∉P,所以集合P不是幸运集,故错误;②设x=2k1∈P,y=2k2∈P,则x+y=2(k1+k2)∈A,x−y=2(k1−k2)∈A,xy=2k1⋅k2∈A,所以集合P是幸运集,故正确;③如集合P1={x|x=2k,k∈Z},P2={x|x=3k,k∈Z}为幸运集,但P1∪P2不为幸运集,如x=2,y=3时,x+y=5∉P1∪P2,故错误;④因为集合P为幸运集,则x−y∈P,当x=y时,x−y=0,一定有0∈P,故正确;所以答案是:②④小提示:关键点点睛:读懂新定义的含义,结合“给定的x、y∈P(x、y可以相同),都有x+y∈P,x−y∈P,xy∈P”,灵活运用举例法.解答题15、已知集合A={x|x=m+√6n,其中m,n∈Q}.(1)试分别判断x1=−√6,x2=√2−√3+√2+√3与集合A的关系;(2)若x1,x2∈A,则x1x2是否一定为集合A的元素?请说明你的理由.答案:(1)x1∈A,x2∈A(2)x1x2∈A,理由见解析分析:(1)将x1,x2化简,并判断是否可以化为m+√6n,m,n∈Q的形式即可判断关系.(2)由题设,令x1=m1+√6n1,x2=m2+√6n2,进而判断是否有x1x2=m+√6n,m,n∈Q的形式即可判断.(1)x1=−√6=0+√6×(−1)∈A,即m=0,n=−1符合;x2=√(√3−1)22+√(√3+1)22=√6=0+√6×1∈A,即m=0,n=1符合.(2)x1x2∈A.理由如下:由x1,x2∈A知:存在m1,m2,n1,n2∈Q,使得x1=m1+√6n1,x2=m2+√6n2,∴x1x2=(m1+√6n1)(m2+√6n2)=(m1m2+6n1n2)+√6(m1n2+m2n1),其中m1m2+6n1n2,m1n2+ m2n1∈Q,∴x1x2∈A.。
高一数学集合试题答案及解析1.集合S={x|x≤10,且x∈N*},A S,B S,且A∩B={4,5},(B)∩A={1,2,3},(A)∩(B)={6,7,8},求集合A和B.【答案】A={1,2,3,4,5},B={4,5,9,10}.【解析】如下图所示.因为A∩B={4,5},所以将4,5写在A∩B中.因为(B)∩A={1,2,3},所以将1,2,3写在A中.因为(B)∩(A)={6,7,8},所以将6,7,8写在S中A,B外.因为(B)∩A与(B)∩(A)中均无9,10,所以9,10在B中.故A={1,2,3,4,5},B={4,5,9,10}.【考点】本题主要考查集合的交集,集合的补集。
点评:涉及实数构成集合问题,常常借助于韦恩图。
2.已知集合A={ |-≤x≤},则必有 ()A.-1∈A B.0∈A C.∈A D.1∈A【答案】D【解析】∵,-≤x≤,∴x=1,2,即A={1,2},∴1∈A.故选D.【考点】元素与集合的关系点评:本题先根据x是正整数和-≤x≤确定集合A,再判断各元素是否属于集合。
3.已知函数f(x)的定义域是(0,1),那么f(2x)的定义域是()A.(0,1)B.(,1)C.(-∞,0)D.(0,+∞)【答案】C【解析】因为函数f(x)的定义域是(0,1),所以,即,,故选C。
【考点】本题主要考查函数的概念,指数函数的图象和性质。
点评:简单题,解答指数不等式,通常要化为同底数指数,利用指数函数的单调性,转化为代数不等式。
4.已知集合A={x|x>0},B={x|-1≤x≤2},则A∪B= ()A.{x|x≥-1}B.{x|x≤2}C.{x|0<x≤2}D.{x|-1≤x≤2}【答案】A【解析】集合A、B用数轴表示如图,A∪B={x|x≥-1}.故选A.【考点】本题主要考查集合的并集。
点评:简单题,借助于数轴求集合的并集。
5.满足{0}∪B={0,2}的集合B的个数是 ()A.1B.2C.3D.4【答案】B【解析】依题意知,B中至少含有元素2,故B可能为{2},{0,2},共两个.【考点】本题主要考查集合的子集,集合的并集。
高一数学集合试题答案及解析1.已知集合M={},P={},则M P=()A.B.(3,)C.{3,}D.{(3,)}【答案】D【解析】即求两个一次函数与图象的交点,并用点集形式给出.因为M={(x,y)|x+y=2},P={(x,y)|x-y=4},所以M∩P=={(3,-1)},故选D。
【考点】本题主要考查交集的概念、二元一次方程组解法。
点评:本题主要考查交集的概念、二元一次方程组解法。
应特别注意结合中元素是有序数对。
2.对于非空集合M、P,把所有属于M而不属于P的元素组成的集合称为M与P的差集,记作,用数学符号描述这一集合则__________________,且在下列给出的4个集合中,必与相等的集合的序号是______________.①M;②P;③;④;⑤【答案】,且,③【解析】由定义,表示的是在M中而不在P中的元素,∴,且,从而表示的是在M中且在P中的元素,故选③.【考点】本题主要考查差集的概念、集合中元素的性质。
点评:这是一道新定义问题,考查学生的学习能力、阅读能力。
3.设全集U={x||x|<4,且x∈Z},S={-2,1,3},且P是U的子集,若P S,则这样的集合PU共有()A.5个B.6个C.7个D.8个【答案】D【解析】U=,由P S知,而,∴共有子集U个.一般地,有n个元素的集合有2n个子集,有2n-1个真子集.【考点】本题主要考查子集的概念。
点评:注意从集合中元素的有无、多少依次考虑。
一般地,有n个元素的集合有2n个子集,有2n-1个真子集。
特别注意空集是任何集合的子集。
P=()4.已知全集U={x|x为小于或等于20的素数},P={3,7,11,17},则UA.{5,9,13,19}B.{1,5,13,19}C.{2,5,13,19}D.{1,2,5,13,19}【答案】C【解析】U={2,3,5,7,11,13,17,19},由补集的概念比较两个集合即得,选C。
高一数学必修一第一章集合练习题(附答案和解释)一、选择题1.下列各组对象能构成集合的有()①美丽的小鸟;②不超过10的非负整数;③立方接近零的正数;④高一年级视力比较好的同学A.1个B.2个C.3个D.4个【解析】①③中“美丽”“接近零”的范畴太广,标准不明确,因此不能构成集合;②中不超过10的非负整数有:0,1,2,3,4,5,6,7,8,9,10共十一个数,是确定的,故能够构成集合;④中“比较好”,没有明确的界限,不满足元素的确定性,故不能构成集合.【答案】A2.小于2的自然数集用列举法可以表示为()A.{0,1,2}B.{1}C.{0,1}D.{1,2}【解析】小于2的自然数为0,1,应选C.【答案】C3.下列各组集合,表示相等集合的是()①M={(3,2)},N={(2,3)};②M={3,2},N={2,3};③M={(1,2)},N ={1,2}.A.①B.②C.③D.以上都不对【解析】①中M中表示点(3,2),N中表示点(2,3),②中由元素的无序性知是相等集合,③中M表示一个元素:点(1,2),N中表示两个元素分别为1,2.【答案】B4.集合A中含有三个元素2,4,6,若a∈A,则6-a∈A,那么a为() A.2B.2或4C.4D.0【解析】若a=2,则6-a=6-2=4∈A,符合要求;若a=4,则6-a=6-4=2∈A,符合要求;若a=6,则6-a=6-6=0∉A,不符合要求.∴a=2或a=4.【答案】B5.(2013•曲靖高一检测)已知集合M中含有3个元素;0,x2,-x,则x满足的条件是()A.x≠0B.x≠-1C.x≠0且x≠-1D.x≠0且x≠1【解析】由x2≠0,x2≠-x,-x≠0,解得x≠0且x≠-1.【答案】C二、填空题6.用符号“∈”或“∉”填空(1)22________R,22________{x|x<7};(2)3________{x|x=n2+1,n∈N+};(3)(1,1)________{y|y=x2};(1,1)________{(x,y)|y=x2}.【解析】(1)22∈R,而22=8>7,∴22∉{x|x<7}.(2)∵n2+1=3,∴n=±2∉N+,∴3∉{x|x=n2+1,n∈N+}.(3)(1,1)是一个有序实数对,在坐标平面上表示一个点,而{y|y=x2}表示二次函数函数值构成的集合,故(1,1)∉{y|y=x2}.集合{(x,y)|y=x2}表示抛物线y=x2上的点构成的集合(点集),且满足y=x2,∴(1,1)∈{(x,y)|y=x2}.【答案】(1)∈∉(2)∉(3)∉∈7.已知集合C={x|63-x∈Z,x∈N*},用列举法表示C=________. 【解析】由题意知3-x=±1,±2,±3,±6,∴x=0,-3,1,2,4,5,6,9.又∵x∈N*,∴C={1,2,4,5,6,9}.【答案】{1,2,4,5,6,9}8.已知集合A={-2,4,x2-x},若6∈A,则x=________.【解析】由于6∈A,所以x2-x=6,即x2-x-6=0,解得x=-2或x=3.【答案】-2或3三、解答题9.选择适当的方法表示下列集合:(1)绝对值不大于3的整数组成的集合;(2)方程(3x-5)(x+2)=0的实数解组成的集合;(3)一次函数y=x+6图像上所有点组成的集合.【解】(1)绝对值不大于3的整数是-3,-2,-1,0,1,2,3,共有7个元素,用列举法表示为{-3,-2,-1,0,1,2,3};(2)方程(3x-5)(x+2)=0的实数解仅有两个,分别是53,-2,用列举法表示为{53,-2};(3)一次函数y=x+6图像上有无数个点,用描述法表示为{(x,y)|y=x +6}.10.已知集合A中含有a-2,2a2+5a,3三个元素,且-3∈A,求a的值.【解】由-3∈A,得a-2=-3或2a2+5a=-3.(1)若a-2=-3,则a=-1,当a=-1时,2a2+5a=-3,∴a=-1不符合题意.(2)若2a2+5a=-3,则a=-1或-32.当a=-32时,a-2=-72,符合题意;当a=-1时,由(1)知,不符合题意.综上可知,实数a的值为-32.11.已知数集A满足条件:若a∈A,则11-a∈A(a≠1),如果a=2,试求出A中的所有元素.【解】∵2∈A,由题意可知,11-2=-1∈A;由-1∈A可知,11--=12∈A;由12∈A可知,11-12=2∈A.故集合A中共有3个元素,它们分别是-1,12,2.。
数学必修一集合练习题及答案数学必修一集合练习题及答案集合练习题一.选择题1.满足条件{1,2,3}⊂M ⊂{1,2,3,4,5,6}的集合M 的个数是≠≠()A 、8 B、7C 、6D 、52.若集合A =x |x 2≤0,则下列结论中正确的是()A 、A=0 B 、0⊆A C 、A =∅ D 、∅⊆A3.下列五个写法中①⑤0 ∅{}{0}∈{0, 1, 2},②∅⊂{0},③{0, 1, 2}⊆{1, 2, 0},④0∈∅,≠=∅,错误的写法个数是()A 、1个B 、2个C 、3个D 、4个4.方程组⎨⎨x +y =1的解集是()⎨x -y =-1A {x =0, y =1}B {0, 1}C {(0, 1) }D {(x , y ) |x =0或y =1} 5.设A 、B 是全集U 的两个子集,且A ⊆B ,则下列式子成立的是()(A )C U A ⊆C U B (B )C U A ⋃C U B=U (C )A ⋂C U B=φ (D )C U A ⋂B=φ6.已知全集M =⎨a |⎨⎨6⎨∈N 且a ∈Z ⎨, 则M=( ) 5-a ⎨A 、{2,3}B 、{1,2,3,4}C 、{1,2,3,6}D 、{-1,2,3,4}7.集合M ={x x +2x -a =0, x ∈R },且φA 、a ≤-1B 、a ≤1C 、a ≥-12M ,则实数a 的范围是()D 、a ≥1()(D )S=P。
8. 设集合P 、S 满足P ⋂S=P,则必有(A );(B )P ⊆S ;(C );9. 设全集U ={a , b , c , d , e },A 、B 都是U 的子集A ⋂B ={e },C U A ⋂B ={d },C U A ⋂C U B ={a , b },则下列判断中正确的是(A )c ∉ A 且c ∉ B ;(B )c ∈A 且c ∈B ;(C )c ∉A 且c ∈B ;10. 若A ⋃B =A ⋃C ,则一定有()(D )c ∈A 且c ∉B 。
1.1 集合一、选择题(本大题共10小题,每小题5分,共50分)1.若{1,2}⊆A⊆{1,2,3,4,5},则这样的集合A有()A.6个B.7个C.8个D.9个2.设A={y|y=a²-6a+10,a∈N*},B={x|x=b²+1,b∈N*},则()A.A⊆BB.A∈BC.A=BD.B⊆A3.设A={x|x=6m+1,m∈Z},B={y|y=3n+1,n∈Z},C={z|z=3p2,p∈Z},D={a|a=3q²2,q∈Z},则四个集合之间的关系正确的是()A.D=B=CB.D⊆B=CC.D⊆A⊆B=CD.A⊆D⊆B=C4.A={a,a+b,a+2b},B={a,ac,ac²},若A=B,则c的值为()A.1B.1或C. D.15.映射f:A→A满足f()≠,若A={1,2,3},则这样的映射有()A.8个B.18个C.26个D.27个6.50名同学参加跳远和铅球测验,跳远和铅球测验成绩分别为及格40人和31人,2项测验成绩均不及格的有4人,2项测验成绩都及格的人数是()A.35B.25C.28D.157.设S={x||x2|>3},T={x|a<x<a+8},S∪T=R,则 a 的取值范围是()A.3<a<1B.3≤a≤1C.a≤3或a≥1D.a<3或a>18. 设全集U={(x,y)|x,y∈R},集合M={(x,y)|32yx--=1},N={(x,y)|y≠x+1},那么(U M)∩(U N)=( )A. ∅B.{(2,3)}C.(2,3)D.{(x,y)|y=x+1}9.设U 为全集,123,,S S S 为U 的三个非空子集且1S ∪2S ∪3S =U ,下列推断正确的是( )A.( U 1S )∩(2S ∪3S )=∅B. (U1S )∩(U2S )∩(U3S )=∅C. 1S ⊆(U2S )∩(U3S )D. 1S ⊆(U2S )∪(U3S )10.集合A ={a ²,a +1,3},B ={a 3,2a 1,a ²1},若A ∩B ={3},则a 的值是( )A.0B.1 C .1 D.2二、 填空题(本大题共5小题,每小题5分,共 25分) 11.M ={65a-∈N |a ∈Z },用列举法表示集合 M =___ ___. 12.设集合{}{}{}1,2,1,2,3,2,3,4A B C ===,则A B C =() . 13.已知集合P 满足{}{}464P=,,{}{}81010P =,,并且{}46810P ⊆,,,,则P =14.某校有17名学生,每人至少参加全国数学、物理、化学三科竞赛中的一科,已知其中参加数学竞赛的有11人,参加物理竞赛的有7人,参加化学竞赛的有9人,同时参加数学和物理竞赛的有4人,同时参加数学和化学竞赛的有5人,同时参加物理和化学竞赛的有3人,则三科竞赛都参加的人数是_ __.15.A ={2,1,x ²x 1},B ={2y ,4,x 4},C ={1,7},A ∩B =C ,则x ,y 的值分别是__ _. 三、解答题 (本大题共5小题,共75分) 16.(12分)已知集合A ={x |x ²3x 10≤0}.(1)设U =R ,求UA ;(2)B ={x |x <a },若A ⊆B ,求a 的取值范围.17. (15分)设A ={x ∈R |ax ²+2x +1=0,a ∈R }. (1)当A 中元素个数为1时,求a 和A ;(2)当A 中元素个数至少为1时,求a 的取值范围; (3)求A 中各元素之和.18.(15分)已知集合{}|2A x x a =-≤≤,{}|23,B y y x x A ==+∈,{}2|,C z z x x A ==∈,且C B ⊆,求a 的取值范围19.(16分)已知A ={12345,,,,a a a a a },B ={2222212345,,,,a a a a a },其中12345,,,,a a a a a ∈Z ,12345a a a a a <<<<,且A ∩B ={14,a a },14a a +=10,又A ∪B 的元素之和为224,求:(1)14,a a ;(2)5a ;(3)A .20.(17分)设}019|{22=-+-=a ax x x A ,22{|560}{|280}B x x x C x x x =-+==+-=,.(1)AB =A B ,求a 的值;(2)A B =A C ≠∅,求a 的值一、选择题1.C 解析:列举法,易知满足条件的集合共8个,选C.2.D 解析:A ={y |y =(a 3)²+1,a ∈N *},因此a 3∈N ,故集合A 比集合B 多出一个元素,为1,选D.3.B 解析:首先看B 和C ,这两个集合都表示被3除余1的所有整数,故B =C. 而D 相对于C 而言,相当于C 中的p 只能取完全平方数,故D ⊆C ,也可以说D ⊆B . A 表示被6除余1的所有整数,与D 是交叉的关系,故选B. 4.C 解析:A =B 有两种可能:①2,2,a b ac a b ac +=⎧⎨+=⎩易解出c =1,但此时a =ac =ac ²,与集合元素的互异性矛盾,故c ≠1. ②2,2,a b ac a b ac ⎧+=⎨+=⎩易解出c =12-或,经检验c =12-符合题意.综上,应选C.5.A 解析:直接列举出每种情况即可,共有8种,选A.6. B 解析:全班分4类人:设两项测验成绩都及格的人数为x ;仅跳远及格的人数为40x -;仅铅球及格的人数为31x -;两项均不及格的人数为4 .∴4031450x x x -+-++=,∴25x =.7.A 解析:易解出S =(∞,1)∪(5,∞),因此可列出不等式组1,85,a a <-⎧⎨+>⎩解得3<a <1,选A.8. B 解析:(UM )∩(UN )=U(M ∪N ),集合M 表示直线y =x +1上除(2,3)点外的所有点,集合N 表示不在直线y =x +1上的所有点,因此所求的集合是一个单元素点集{(2,3)},选B. 9.B 解析:排除法,对于A 选项,不在1S 中的元素可以在2S 或3S 中,即一定在集合(2S ∪3S )中,故两集合的交集不为空,A 错,对于C,D 两项画出Venn 图易知C,D 均错,选B. 10.B 解析:集合A 中已经有元素3,集合B 中a ²+1不会为负,故a 3=3或2a 1=3,解出a =0或a =1,但a 0时a 1a ²11,不合题意,故a 不为0,而a =1符合题意,选B. 二、填空题11. {1,2,3,6} 解析:注意集合中的元素是65a-而不是a ,否则极易出错.要满足集合的条件只需让5a 为6的正约数,相应地得出集合中的4个元素:1,2,3,6. 12.{}1234,,, 解析:{}12A B =,,故(){}12,3,4.A B C =,13. {4,10} 解析:由第一个条件知P 中有元素4而没有元素6,由第二个条件知P 中有元素10而没有元素8,再由最后一个条件知P ={4,10}.14. 2 解析:设三科竞赛都参加的人数为,由题意可列方程1179453x =17,解得x =2.15. 3,0.5 解析:对于集合A 易得x ²x +1=7,解得x =3或x =2,但x =2时B 中有元素2不满足题意,故x =3,对于B 易得2y =1,故y =0.5. 三、解答题16.解:(1)A ={x |x ²3x 10≤0}={x |2≤x ≤5}.∵ U =R,∴UA ={x |x <2或x >5}.(2)∵A ⊆B ={x |x <a }, ∴a >5. 故a 的取值范围是(5,+∞). 17. 解:(1)当A 中元素个数为1时,包括两种情况,分类讨论如下: 当0a =时,有210x +=,解得12x =-,此时12A ⎧⎫=-⎨⎬⎩⎭;当0a ≠时,有∆=044a -=,得1a =,代入解得x =-1,此时{}1A =-. 综上可得0a =,12A ⎧⎫=-⎨⎬⎩⎭或1a =,{}1A =-.(2)当A 中元素个数至少为1时有0a =或∆=044a -≥,解得1a ≤. 即a 的取值范围是(]1,-∞.(3)当∆=044a -<,即a >1时,A =∅,无元素; 当a =1时,元素之和为1-;当∆=4-4a >0,即a <1且时,元素之和为2a-. 当a =0时,元素之和为12-. 18.解: {}|123B y y a =-≤≤+,当20a -≤≤时,{}2|4C z a z =≤≤,而C B ⊆,则1234,,20,2a a a +≥≥-≤≤即而 这是矛盾的;当02a <≤时,{}|04C z z =≤≤,而C B ⊆,则1234,,22a a a +≥≥≤≤1即所以2; 当2a >时,{}2|0C z z a=≤≤,而C B ⊆,则223,323a a a a a +≥>即-1≤≤,又,所以2<≤.综上所述,132a ≤≤.19.解:(1)∵A ∩B ={14,a a }, ∴14,a a ∈B ,因此14,a a 均为完全平方数.∵14a a +=10,14a a <,∴只能有1a =1,4a =9. (2)∵1234a a a a <<<,∴2a =3或3a =3 . 若3a =3,则2a =2,这时A ∪B 的元素之和224=1+2+4+3+9+81+5a +25a ,此时5a 不是整数,因此应该是2a =3.这时224>1+3+9+81+5a +25a ,故5a <11,而5a >4a =9,故5a =10. (3)由上面的结论知道224=1+3+9+81+10+100+3a +23a ,解得3a =4. ∴A ={1,3,4,9,10} . 20.解:(1)∵AB =A B ,∴A =B ,∴25196a a =⎧⎨-=⎩,,解得a =5.(2)∵AB =AC ≠∅,∴A B =A C ={2},∴ 2A .将x =2代入A 中的方程得a =5或a =3 . a =5时经检验A B ≠A C ,舍去.∴ a =3。
高一数学集合练习题及答案(5篇)高一数学练习题及答案篇1一、填空题.(每题有且只有一个正确答案,5分×10=50分)1、已知全集U = {1 ,2 ,3 ,4 ,5 ,6 ,7 ,8 }, A= {3 ,4 ,5 }, B= {1 ,3 ,6 },那么集合 { 2 ,7 ,8}是 ( )2 . 假如集合A={x|ax2+2x+1=0}中只有一个元素,则a的值是 ( )A.0B.0 或1C.1D.不能确定3. 设集合A={x|1A.{a|a ≥2}B.{a|a≤1}C.{a|a≥1}.D.{a|a≤2}.5. 满意{1,2,3} M {1,2,3,4,5,6}的集合M的个数是 ( )A.8B.7C.6D.56. 集合A={a2,a+1,1},B={2a1,| a2 |, 3a2+4},A∩B={1},则a的值是( )A.1B.0 或1C.2D.07. 已知全集I=N,集合A={x|x=2n,n∈N},B={x|x=4n,n∈N},则 ( )A.I=A∪BB.I=( )∪BC.I=A∪( )D.I=( )∪( )8. 设集合M= ,则 ( )A.M =NB. M NC.M ND. N9 . 集合A={x|x=2n+1,n∈Z},B={y|y=4k±1,k∈Z},则A 与B的关系为 ( )A.A BB.A BC.A=BD.A≠B10.设U={1,2,3,4,5},若A∩B={2},( UA)∩B={4},( UA)∩( UB)={1,5},则以下结论正确的选项是( )A.3 A且3 BB.3 B且3∈AC.3 A且3∈BD.3∈A且3∈B二.填空题(5分×5=25分)11 .某班有同学55人,其中音乐爱好者34人,体育爱好者43人,还有4人既不爱好体育也不爱好音乐,则班级中即爱好体育又爱好音乐的有人.12. 设集合U={(x,y)|y=3x1},A={(x,y)| =3},则 A= .13. 集合M={y∣y= x2 +1,x∈ R},N={y∣ y=5 x2,x∈ R},则M∪N=_ __.14. 集合M={a| ∈N,且a∈Z},用列举法表示集合M=_15、已知集合A={1,1},B={x|mx=1},且A∪B=A,则m的值为三.解答题.10+10+10=3016. 设集合A={x, x2,y21},B={0,|x|,,y}且A=B,求x, y的值17.设集合A={x|x2+4x=0},B={x|x2+2(a+1)x+a21=0} ,A∩B=B,求实数a的值.18. 集合A={x|x2ax+a219=0},B={x|x25x+6=0},C={x|x2+2x8=0}.?(1)若A∩B=A∪B,求a的值;(2)若A∩B,A∩C= ,求a的值.19.(本小题总分10分)已知集合A={x|x23x+2=0},B={x|x2ax+3a5=0}.若A∩B=B,求实数a的取值范围.20、已知A={x|x2+3x+2 ≥0}, B={x|mx24x+m10 ,m∈R}, 若A∩B=φ, 且A∪B=A, 求m的取值范围.21、已知集合,B={x|2参考答案C B AD C D C D C B26 {(1,2)} R {4,3,2,1} 1或1或016、x=1 y=117、解:A={0,4} 又(1)若B= ,则,(2)若B={0},把x=0代入方程得a= 当a=1时,B=(3)若B={4}时,把x=4代入得a=1或a=7.当a=1时,B={0,4}≠{4},∴a≠1.当a=7时,B={4,12}≠{4},∴a≠7.(4)若B={0,4},则a=1 ,当a=1时,B={0,4},∴a=1综上所述:a18、.解:由已知,得B={2,3},C={2,4}.(1)∵A∩B=A∪B,∴A=B于是2,3是一元二次方程x2ax+a219=0的两个根,由韦达定理知:解之得a=5.(2)由A∩B ∩ ,又A∩C= ,得3∈A,2 A,4 A,由3∈A,得323a+a219=0,解得a=5或a=2?当a=5时,A={x|x25x+6=0}={2,3},与2 A冲突;当a=2时,A={x|x2+2x15=0}={3,5},符合题意.∴a=2.19、解:A={x|x23x+2=0}={1,2},由x2ax+3a5=0,知Δ=a24(3a5)=a212a+20=(a2)(a10).(1)当2(2)当a≤2或a≥10时,Δ≥0,则B≠ .若x=1,则1a+3a5=0,得a=2,此时B={x|x22x+1=0}={1} A;若x=2,则42a+3a5=0,得a=1,此时B={2,1} A.综上所述,当2≤a10时,均有A∩B=B.20、解:由已知A={x|x2+3x+2 }得得.(1)∵A非空,∴B= ;(2)∵A={x|x }∴ 另一方面,,于是上面(2)不成立,否则,与题设冲突.由上面分析知,B= .由已知B= 结合B= ,得对一切x 恒成立,于是,有的取值范围是21、∵A={x|(x1)(x+2)≤0}={x|2≤x≤1},B={x|1∵ ,(A∪B)∪C=R,∴全集U=R。
必修1 第一章 集合测试一、选择题(共12小题,每题5分,四个选项中只有一个符合要求)1.下列选项中元素的全体可以组成集合的是 ( )A.学校篮球水平较高的学生B.校园中长的高大的树木C.2007年所有的欧盟国家D.中国经济发达的城市2.方程组20{=+=-y x y x 的解构成的集合是 ( )A .)}1,1{(B .}1,1{C .(1,1)D .}1{ 3.已知集合A ={a ,b ,c },下列可以作为集合A 的子集的是 ( )A. aB. {a ,c }C. {a ,e }D.{a ,b ,c ,d }4.下列图形中,表示N M ⊆的是 ( )5.下列表述正确的是 ( )A.}0{=∅B. }0{⊆∅C. }0{⊇∅D. }0{∈∅6、设集合A ={x|x 参加自由泳的运动员},B ={x|x 参加蛙泳的运动员},对于“既参 加自由泳又参加蛙泳的运动员”用集合运算表示为 ( )A.A∩BB.A ⊇BC.A ∪BD.A ⊆B7.集合A={x Z k k x ∈=,2} ,B={Z k k x x ∈+=,12} ,C={Z k k x x ∈+=,14} 又,,B b A a ∈∈则有 ( )A.(a+b )∈ AB. (a+b) ∈BC.(a+b) ∈ CD. (a+b) ∈ A 、B 、C 任一个8.集合A ={1,2,x },集合B ={2,4,5},若B A ={1,2,3,4,5},则x =( )A. 1B. 3C. 4D. 59.满足条件{1,2,3}⊂≠M ⊂≠{1,2,3,4,5,6}的集合M 的个数是( ) A. 8 B . 7C. 6D. 510.全集U = {1 ,2 ,3 ,4 ,5 ,6 ,7 ,8 }, A= {3 ,4 ,5 }, B= {1 ,3 , 6 },那么集合 { 2 ,7 ,8}是 ( )M N A M N B N M C M NDA. A BB. B AC. B C A C U UD. B C A C U U11.设集合{|32}M m m =∈-<<Z ,{|13}N n n MN =∈-=Z 则,≤≤ ( ) A .{}01,B .{}101-,,C .{}012,,D .{}1012-,,, 12. 如果集合A={x |ax 2+2x +1=0}中只有一个元素,则a 的值是( ) A .0 B .0 或1 C .1 D .不能确定二、填空题(共4小题,每题4分,把答案填在题中横线上)13.用描述法表示被3除余1的集合 .14.用适当的符号填空:(1)∅ }01{2=-x x ; (2){1,2,3} N ;(3){1} }{2x x x =; (4)0 }2{2x x x =.15.含有三个实数的集合既可表示成}1,,{ab a ,又可表示成}0,,{2b a a +,则=+20042003b a .16.已知集合}33|{≤≤-=x x U ,}11|{<<-=x x M ,}20|{<<=x x N C U 那么集合=N ,=⋂)(N C M U ,=⋃N M .三、解答题(共4小题,共44分,解答应写出文字说明,证明过程或演算步骤)17. 已知集合}04{2=-=x x A ,集合}02{=-=ax x B ,若A B ⊆,求实数a 的取值集合.18. 已知集合}71{<<=x x A ,集合}521{+<<+=a x a x B ,若满足 }73{<<=x x B A ,求实数a 的值.19. 已知方程02=++b ax x .(1)若方程的解集只有一个元素,求实数a ,b 满足的关系式;(2)若方程的解集有两个元素分别为1,3,求实数a ,b 的值20. 已知集合}31{≤≤-=x x A ,},{2A x y x y B ∈==,},2{A x a x y y C ∈+==,若满足B C ⊆,求实数a 的取值范围.必修1 第一章 集合测试集合测试参考答案:一、1~5 CABCB 6~10 CBBCC 11~12 BB 二、13 },13{Z n n x x ∈+=,14 (1)φ⊆}01{2=-x x ;(2){1,2,3}⊆N ; (3){1}⊆}{2x x x =;(4)0∈}2{2x x x =; 15 -1 16 03|{≤≤-=x x N 或}32≤≤x ;}10|{)(<<=⋂x x N C M U ; 13|{<≤-=⋃x x N M 或}32≤≤x . 三、17 .{0.-1,1};18. 2=a ; 19. (1) a 2-4b=0 (2) a=-4, b=3 20. 32≤≤a .。
高一数学集合的练习题及答案一、、知点:本周主要学集合的初步知,包括集合的有关概念、集合的表示、集合之的关系及集合的运算等。
在行集合的运算要注意使用Venn。
本章知构集合的概念列法集合的表示法集合特征性描述法真子集包含关系子集相等集合与集合的关系交集集合的运算并集集1、集合的概念集合是集合中的不定的原始概念,教材中集合的概念行了描述性明:“一般地,把一些能确定的不同的象看成一个整体,就个整体是由些象的全体构成的集合〔或集〕〞。
理解句,把握4个关:象、确定的、不同的、整体。
象――即集合中的元素。
集合是由它的元素唯一确定的。
整体――集合不是研究某一一象的,它关注的是些象的全体。
确定的――集合元素确实定性――元素与集合的“附属〞关系。
不同的――集合元素的互异性。
2、有限集、无限集、空集的意有限集和无限集是非空集合来的。
我理解起来并不困。
我把不含有任何元素的集合叫做空集,做Φ。
理解它不妨思考一下“0与Φ〞及“Φ与{Φ}〞的关系。
几个常用数集N、N*、N+、Z、Q、R要牢。
3、集合的表示方法1〕列法的表示形式比容易掌握,并不是所有的集合都能用列法表示,同学需要知道能用列法表示的三种集合:①元素不太多的有限集,如{0,1,8}②元素多但呈一定的律的有限集,如{1,2,3,⋯,100}③呈一定律的无限集,如{1,2,3,⋯,n,⋯}●注意a与{a}的区●注意用列法表示集合,集合元素的“无序性〞。
2〕特征性描述法的关是把所研究的集合的“特征性〞找准,然后适当地表示出来就行了。
但关点也是点。
学多加就可以了。
另外,弄清“代表元素〞也是非常重要的。
如{x|y=x2},{y|y=x2},{〔x,y〕|y=x2}是三个不同的集合。
4、集合之的关系●注意区分“附属〞关系与“包含〞关系“附属〞关系是元素与集合之的关系。
“包含〞关系是集合与集合之间的关系。
掌握子集、真子集的概念,掌握集合相等的概念,学会正确使用“〞等符号,会用Venn图描述集合之间的关系是根本要求。
➢• 高中数学必修一复习练习(一)班号姓名❖❖集合的含义与表示1.下面的结论正确的是()A.a∈Q,则a∈N B.a∈Z,则a∈NC.x2-1=0的解集是{-1,1} D.以上结论均不正确2.下列说法正确的是()A.某班中年龄较小的同学能够形成一个集合B.由1,2,3和9,1,4组成的集合不相等C.不超过20的非负数组成一个集合D.方程x2-4=0和方程|x-1|=1的解构成了一个四元集3.用列举法表示{(x,y)|x∈N+,y∈N+,x+y=4}应为()A.{(1,3),(3,1)} B.{(2,2)}C.{(1,3),(3,1),(2,2)} D.{(4,0),(0,4)}4.下列命题:(1)方程x-2+|y+2|=0的解集为{2,-2};(2)集合{y|y=x2-1,x∈R}与{y|y=x-1,x∈R}的公共元素所组成的集合是{0,1};(3)集合{x|x-1<0}与集合{x|x>a,a∈R}没有公共元素.其中正确的个数为()A.0 B.1 C.2 D.32,4,6,8,若a∈A,则8-a∈A,则a的取值构成的集合是________.5.对于集合A={}6.定义集合A*B={x|x=a-b,a∈A,b∈B},若A={1,2},B={0,2},则A*B中所有元素之和为________.7.若集合A={-1,2},集合B={x|x2+ax+b=0},且A=B,则求实数a,b的值.8.已知集合A={a-3,2a-1,a2+1},a∈R.(1)若-3∈A,求实数a的值;(2)当a为何值时,集合A的表示不正确.➢•集合间的基本关系1.下列关系中正确的个数为()①0∈{0};②∅{0};③{(0,1)}⊆{(0,1)};④{(a,b)}={(b,a)}.A.1 B.2 C.3 D.42.已知集合A={x|-1<x<2},B={x|0<x<1},则()A.A>B B.A B C.B A D.A⊆B3.已知{1,2}⊆M{1,2,3,4},则符合条件的集合M的个数是() A.3 B.4 C.6 D.84.集合M={1,2,a,a2-3a-1},N={-1,3},若3∈M且N M,则a的取值为() A.-1 B.4 C.-1或-4 D.-4或15.集合A中有m个元素,若在A中增加一个元素,则它的子集增加的个数是__________.6.已知M={y|y=x2-2x-1,x∈R},N={x|-2≤x≤4},则集合M与N之间的关系是________.7.若集合M={x|x2+x-6=0},N={x|(x-2)(x-a)=0},且N⊆M,求实数a的值.8.设集合A={x|a-2<x<a+2},B={x|-2<x<3},(1)若A B,求实数a的取值范围;(2)是否存在实数a使B⊆A?☺☺并集与交集1.A∩B=A,B∪C=C,则A,C之间的关系必有()A.A⊆C B.C⊆A C.A=C D.以上都不对2.A={0,2,a},B={1,a2},A∪B={0,1,2,4,16},则a的值为() A.0 B.1 C.2 D.43.已知全集U=R,集合M={x|-2≤x-1≤2}和N={x|x=2k-1,k∈N*}的关系的韦恩(V enn)图如图所示,则阴影部分所示的集合的元素共有()A.2个B.3个C.1个D.无穷多个4.设集合M={x|-3≤x<7},N={x|2x+k≤0},若M∩N≠∅,则k的取值范围是()A.k≤3 B.k≥-3 C.k>6 D.k≤65.已知集合M={x|-3<x≤5},N={x|-5<x<-2或x>5},则M∪N=________,M∩N=________.6.已知集合A={(x,y)|y=x2,x∈R},B={(x,y)|y=x,x∈R},则A∩B中的元素个数为___.7.已知集合A={x|x2+px+q=0},B={x|x2-px-2q=0},且A∩B={-1},求A∪B.8.已知A={x|x<-2或x>3},B={x|4x+m<0,m∈R},当A∩B=B时,求m的取值范围.集合的补集运算1.已知全集U={1,2,3,4,5,6,7,8},M={1,3,5,7},N={5,6,7},则∁U (M ∪N )=( )A .{5,7}B .{2,4}C .{2,4,8}D .{1,3,5,6,7}2.已知全集U ={2,3,5},集合A ={2,|a -5|},若∁U A ={3},则a 的值为( )A .0B .10C .0或10D .0或-103.已知全集U =R ,集合A ={x |-2≤x ≤3},B ={x |x <-1或x >4},那么集合A ∩(∁U B )等于( )A .{x |-2≤x <4}B .{x |x ≤3或x ≥4}C .{x |-2≤x <-1}D .{x |-1≤x ≤3}4.如图所示,U 是全集,A ,B 是U 的子集,则阴影部分所表示的集合是( )A .A ∩B B .A ∪BC .B ∩(∁U A )D .A ∩(∁U B )5.已知全集S =R ,A ={x |x ≤1},B ={x |0≤x ≤5},则(∁S A )∩B =________.6.定义集合A *B ={x |x ∈A ,且x ∉B },若A ={1,2,3,4,5},B ={2,4,5},则A *B 的子集的个数是________.7.已知全集U =R ,A ={x |-4≤x ≤2},B ={x |-1<x ≤3},P ={x |x ≤0或x ≥52},(1)求A ∩B ; (2)求(∁U B )∪P ; (3)求(A ∩B )∩(∁U P ).8.已知集合A ={x |2a -2<x <a },B ={x |1<x <2},且A ∁R B ,求a 的取值范围.参考答案❖❖集合的含义与表示1.选C 对于A ,a 属于有理数,则a 属于自然数,显然是错误的,对于B ,a 属于整数,则a 属于自然数当然也是错的,对于C 的解集用列举法可用它来表示.故C 正确.2.选C A 项中元素不确定;B 项中两个集合元素相同,因集合中的元素具有无序性,所以两个集合相等;D 项中两个方程的解分别是±2,0,2,由互异性知,可构成一个三元集.3.选C x =1时,y =3;x =2时,y =2;x =3时,y =1.4.选A (1)⇔⎩⎨⎧x -2=0,|y +2|=0⇔⎩⎪⎨⎪⎧x =2,y =-2.故解集为{(2,-2)},而不是{2,-2}; (2) 集合{y |y =x 2-1,x ∈R }表示使y =x 2-1有意义的因变量y 的范围,而y =x 2-1≥-1,故{y |y =x 2-1,x ∈R }={y |y ≥-1}.同理集合{y |y =x -1,x ∈R }=R .结合数轴(图1)知,两个集合的公共元素所组成的集合为{y |y ≥-1};(3) 集合{x |x -1<0}表示不等式x -1<0的解集,即{x |x <1}.而{x |x >a ,a ∈R }就是x >a 的解集.结合图2,当a ≥1时两个集合没有公共元素;当a <1时,两个集合有公共元素,形成的集合为{x |a <x <1}.5.解析:当a =2时,8-a =6∈A ;a =4时,8-a =4∈A ;a =6时,8-a =2∈A ;a =8时,8-a =0∉A .∴所求集合为{2,4,6}.答案:{2,4,6}6.解析:A*B ={1,-1,2,0},∴A*B 中所有元素之和为1-1+2+0=2. 答案:27.解:由题意知-1,2是方程x 2+ax +b =0的两个根,由根与系数的关系可知有⎩⎪⎨⎪⎧1-a +b =0,4+2a +b =0,故有a =-1,b =-2. 8.解:(1)由题意知,A 中的任意一个元素都有等于-3的可能,所以需要讨论.当a -3=-3时,a =0,集合A ={-3,-1,1},满足题意;当2a -1=-3时,a =-1,集合A ={-4,-3,2},满足题意;当a 2+1=-3时,a 无解.综上所述,a =0或a =-1.(2)若元素不互异,则集合A 的表示不正确若a -3=2a -1,则a =-2;若a -3=a 2+1,则方程无解;若2a -1=a 2+1,则方程无解.综上所述,a =-2.➢ 集合间的基本关系1.选C ①、②、③均正确;④不正确.a ≠b 时,(a ,b )与(b ,a )是不同的元素.2.C3.选A 符合条件的集合M 有{1,2},{1,2,3},{1,2,4}共3个.4.选B (1)若a =3,则a 2-3a -1=-1,即M ={1,2,3,-1},显然N ⊆M ,不合题意.(2)若a 2-3a -1=3,即a =4或a =-1(舍去),当a =4时,M ={1,2,4,3},满足要求.5.解析:由2m +1-2m =2·2m -2m =2m. 答案:2m6.解析:∵y =(x -1)2-2≥-2,∴M ={y|y≥-2},∴N M. 答案:N M7.解:由x 2+x -6=0,得x =2或x =-3. 因此,M ={2,-3}.若a =2,则N ={2},此时N ⊆M ;若a =-3,则N ={2,-3},此时N =M ; 若a ≠2且a ≠-3,则N ={2,a },此时N 不是M 的子集,故所求实数a 的值为2或-3.8.解:(1)借助数轴可得,a 应满足的条件为⎩⎪⎨⎪⎧a -2 >-2,a +2 ≤ 3,或⎩⎪⎨⎪⎧a -2 ≥-2,a +2 < 3,解得0≤ a ≤ 1. (2)同理可得a 应满足的条件为⎩⎪⎨⎪⎧a -2 ≤ -2,a +2 ≥ 3,得a 无解,所以不存在实数a 使B ⊆A .☺☺并集与交集1.选A A∩B =A ⇒A ⊆B ,B ∪C =C ⇒B ⊆C ,∴A ⊆C.2.选D ∵A ={0,2,a },B ={1,a 2},A ∪B ={0,1,2,4,16},则⎩⎪⎨⎪⎧a =4,a 2=16.∴a =4. 3.选A M ={x|-1≤x≤3},N ={x|x =2k -1,k ∈N*},∴M∩N ={1,3}.4.选D 因为N ={x|2x +k≤0}={x|x≤-k 2},且M∩N≠∅,所以-k 2≥-3⇒k ≤ 6. 5.解析:借助数轴可知:M ∪N ={x|x>-5},M ∩N ={x |-3<x <-2}.答案:{x |x >-5} {x |-3<x <-2}6.解析:由⎩⎪⎨⎪⎧y =x2,y =x ,得⎩⎪⎨⎪⎧x =0,y =0或⎩⎪⎨⎪⎧x =1,y =1. 答案:2 7.解:因为A∩B ={-1},所以-1∈A 且-1∈B ,将x =-1分别代入两个方程,得⎩⎪⎨⎪⎧1-p +q =01+p -2q =0,解得⎩⎪⎨⎪⎧p =3q =2. 所以A ={x |x 2+3x +2=0}={-1,-2}, B ={x |x 2-3x -4=0}={-1,4},所以A ∪B ={-1,-2,4}.8. 解:由题知,B ={x|x<-m 4,m ∈R},因为A∩B =B ,所以A ⊇B , 所以由数轴(如图)可得-m 4≤-2,所以m ≥8,即m 的取值范围是m ≥8.☯☯集合的补集运算1.选C M ∪N ={1,3,5,6,7}.∴∁U (M ∪N)={2,4,8}.2.选C 由∁U A ={3},知3∉A ,3∈U. ∴|a -5|=5,∴a =0或a =10.3.选D 由题意可得,∁U B ={x|-1≤x ≤4},A ={x |-2≤x ≤3},所以A ∩(∁U B )={x |-1≤x ≤3}.端点处的取舍易出错.4.选C 阴影部分表示集合B 与集合A 的补集的交集.因此,阴影部分所表示的集合为B ∩(∁U A ).5.解析:由已知可得∁S A ={x |x >1},∴(∁S A)∩B ={x |x >1}∩{x |0≤x ≤5}={x |1<x ≤5}.答案:{x |1<x ≤5}6.解析:由题意知A*B ={1,3}.则A*B 的子集有22=4个.答案:47.解:借助数轴,如图.(1) A ∩B ={x |-1<x ≤2},(2) ∵∁U B ={x |x ≤-1或x >3},∴(∁U B )∪P ={x |x ≤0或x ≥52}. (3) ∁U P ={x |0<x <52}.(A ∩B )∩(∁U P )={x |-1<x ≤2}∩{x |0<x <52}={x |0<x ≤2}. 8.解:∁R B ={x|x≤1或x≥2}≠∅,∵A ∁R B ,∴分A =∅和A≠∅两种情况讨论.(1)若A =∅,此时有2a -2≥a ,∴a ≥2.(2)若A ≠∅,则有⎩⎪⎨⎪⎧2a -2<a a ≤1或⎩⎪⎨⎪⎧2a -2<a 2a -2≥2. ∴a ≤1. 综上所述,a ≤1或a ≥2.。