最新高考数学复习 函数模型及其应用 理(含解析)新人教A版
- 格式:doc
- 大小:221.50 KB
- 文档页数:6
课时规范练(A)课时规范练1集合的概念与运算课时规范练3命题及其关系、充要条件课时规范练5函数及其表示课时规范练7函数的奇偶性与周期性课时规范练9指数与指数函数课时规范练11函数的图象课时规范练13函数模型及其应用课时规范练15利用导数研究函数的单调性课时规范练17定积分与微积分基本定理课时规范练19同角三角函数基本关系式及诱导公式课时规范练21简单的三角恒等变换课时规范练23函数y=A sin(ωx+φ)的图象及三角函数的应用课时规范练25平面向量的概念及线性运算课时规范练27平面向量的数量积及其应用课时规范练29数列的概念课时规范练31等比数列课时规范练33二元一次不等式(组)与简单的线性规划问题课时规范练35合情推理与演绎推理课时规范练37数学归纳法课时规范练39空间几何体的表面积与体积课时规范练41空间直线、平面的平行关系课时规范练43空间向量及其运算课时规范练45直线的倾斜角、斜率与直线的方程课时规范练47圆的方程课时规范练49椭圆课时规范练51抛物线课时规范练53算法初步课时规范练55用样本估计总体课时规范练57分类加法计数原理与分步乘法计数原理课时规范练59二项式定理课时规范练61古典概型与几何概型课时规范练63二项分布与正态分布课时规范练65极坐标方程与参数方程课时规范练67绝对值不等式课时规范练(B)课时规范练2简单不等式的解法课时规范练4简单的逻辑联结词、全称量词与存在量词课时规范练6函数的单调性与最大(小)值课时规范练8幂函数与二次函数课时规范练10对数与对数函数课时规范练12函数与方程课时规范练14导数的概念及运算课时规范练16利用导数研究函数的极值、最大(小)值课时规范练18任意角、弧度制及任意角的三角函数课时规范练20两角和与差的正弦、余弦与正切公式及二倍角公式课时规范练22三角函数的图象与性质课时规范练24余弦定理、正弦定理及应用举例课时规范练26平面向量基本定理及向量坐标运算课时规范练28复数课时规范练30等差数列课时规范练32数列求和课时规范练34基本不等式及其应用课时规范练36直接证明与间接证明课时规范练38空间几何体的结构及其三视图、直观图课时规范练40空间点、直线、平面之间的位置关系课时规范练42空间直线、平面的垂直关系课时规范练44空间几何中的向量方法课时规范练46点与直线、两条直线的位置关系课时规范练48直线与圆、圆与圆的位置关系课时规范练50双曲线课时规范练52直线与圆锥曲线的位置关系课时规范练54随机抽样课时规范练56变量间的相关关系、统计案例课时规范练58排列与组合课时规范练60随机事件的概率课时规范练62离散型随机变量及其分布列课时规范练64离散型随机变量的均值与方差课时规范练66极坐标方程与参数方程的应用课时规范练68不等式的证明解答题专项解答题专项一函数与导数的综合问题第1课时利用导数证明不等式第2课时利用导数研究不等式恒(能)成立问题第3课时利用导数研究函数的零点解答题专项二三角函数与解三角形解答题专项三数列解答题专项四立体几何中的综合问题解答题专项五直线与圆锥曲线第1课时圆锥曲线中的最值(或范围)问题第2课时圆锥曲线中的定点(或定值)问题第3课时圆锥曲线中的存在性(或证明)问题解答题专项六概率与统计单元质检卷单元质检卷一集合与常用逻辑用语单元质检卷二函数单元质检卷三导数及其应用单元质检卷四三角函数、解三角形单元质检卷五平面向量、数系的扩充与复数的引入单元质检卷六数列单元质检卷七不等式、推理与证明单元质检卷八立体几何单元质检卷九解析几何单元质检卷十算法初步、统计与统计案例单元质检卷十一计数原理单元质检卷十二概率。
[备考方向要明了] 考 什 么怎 么 考1.了解指数函数、对数函数以及幂函数的增长特征,知道直线上升、指数增长、对数增长等不同函数类型增长的含义. 2.了解函数模型(如指数函数、对数函数、幂函数、分段函数等在社会生活中普遍使用的函数模型)的广泛应用.1.函数模型考查的重点是函数模型的建立以及函数模型中的最值问题,命题的热点是二次函数的最值或利用基本不等式求解最值,如2012年江苏T17等.2.考查题型以解答题为主. [归纳·知识整合] 1.几种常见的函数模型 函数模型函数解析式一次函数模型f(x)=ax+b(a,b为常数,a≠0)二次函数模型f(x)=ax2+bx+c(a,b,c为常数,a≠0)指数函数模型f(x)=bax+c(a,b,c为常数,a>0且a≠1,b≠0)对数函数模型f(x)=blogax+c(a,b,c为常数,a>0且a≠1,b≠0)幂函数模型f(x)=axn+b(a,b,n为常数,a≠0,n≠0) 2.三种函数模型性质比较y=ax(a>1)y=logax(a>1)y=xn(n>0)在(0,+∞)上的单调性单调递增函数单调递增函数单调递增函数增长速度越来越快越来越慢相对平稳图象的变化随x值增大,图象与y轴接近平行随x值增大,图象与x轴接近平行随n值变化而不同[探究] 1.直线上升、指数增长、对数增长的增长特点是什么? 提示:直线上升:匀速增长,其增长量固定不变;指数增长:先慢后快,其增长量成倍增加,常用“指数爆炸”来形容;对数增长:先快后慢,其增长速度缓慢. 2.你认为解答数学应用题的关键是什么? 提示:解答数学应用题的关键有两点:一是认真读题,缜密审题,将实际问题中的自然语言转化为相应的数学语言;二是要合理选取变量,设定变量后,就要寻找它们之间的内在联系,选用恰当的代数式表示问题中的关系,建立相应的函数、方程、不等式等数学模型. [自测·牛刀小试] 1.(教材习题改编)在养分充足的情况下,细菌的数量会以指数函数的方式增加.假设细菌A的数量每2个小时可以增加为原来的2倍;细菌B的数量每5个小时可以增加为原来的4倍.现在若养分充足,且一开始两种细菌的数量相等,要使细菌A的数量是B的数量的两倍,需要的时间为( ) A.5 h B.10 h C.15 h D.30 h 解析:选B 假设一开始两种细菌数量均为m,则依题意经过x小时后,细菌A的数量是f(x)=m·2,细菌B的数量是g(x)=m·4,令m·2=2·m·4,解得x=10. 2.(教材习题改编)在某种新型材料的研制中,实验人员获得了下列一组实验数据.现准备用下列四个函数中的一个近似地表示这些数据的规律,其中最接近的一个是( ) x1.953.003.945.106.12y0.971.591.982.352.61A.y=2x B.y=log2x C.y=(x2-1) D.y=2.61cos x 解析:选B 通过检验可知,y=log2x较为接近. 3.据调查,苹果园地铁的自行车存车处在某星期日的存车量为4 000辆次,其中变速车存车费是每辆一次0.3元,普通车存车费是每辆一次0.2元,若普通车存车数为x辆次,存车费总收入为y元,则y关于x的函数关系是( ) A.y=0.1x+800(0≤x≤4 000) B.y=0.1x+1 200(0≤x≤4 000) C.y=-0.1x+800(0≤x≤4 000) D.y=-0.1x+1 200(0≤x≤4 000) 解析:选D y=0.2x+(4000-x)×0.3=-0.1x+1 200. 4.(教材习题改编)某种储蓄按复利计算利息,若本金为a元,每期利率为r,存期是x,本利和(本金加利息)为y元,则本利和y随存期x变化的函数关系式是________. 解析:因为储蓄按复利计算,所以本利和y随存期x变化的函数关系式是y=a(1+r)x,xN*. 答案:y=a(1+r)x,xN* 5.某种商品进价为每件100元,按进价增加25%出售,后因库存积压降价,按九折出售,每件还获利________元. 解析:九折出售时价格为100×(1+25%)×90%=112.5元,此时每件还获利112.5-100=12.5元. 答案:12.5 利用函数刻画实际问题 [例1] 如图下面的四个容器高度都相同,将水从容器顶部一个孔中以相同的速度注入其中,注满为止.用下面对应的图象表示该容器中水面的高度h和时间t之间的关系,其中不正确的有( ) A.1个 B.2个 C.3个 D.4个 [自主解答] 将水从容器顶部一个孔中以相同的速度注入其中,容器中水面的高度h和时间t之间的关系可以从高度随时间的变化率上反映出来,图应该是匀速的,故下面的图象不正确,中的变化率应该是越来越慢的,正确;中的变化规律是先快后慢再快,正确;中的变化规律是先慢后快再慢,也正确,故只有是错误的. [答案] A ——————————————————— 用函数图象刻画实际问题的解题思路 将实际问题中两个变量间变化的规律(如增长的快慢、最大、最小等)与函数的性质(如单调性、最值等)、图象(增加、减少的缓急等)相吻合即可. 1.一水池有两个进水口,一个出水口,每个水口的进、出水速度如图甲、乙所示.某天0点到6点,该水池的蓄水量如图丙所示. 给出以下3个论断:0点到3点只进水不出水;3点到4点不进水只出水;4点到6点不进水不出水,则一定正确的是( ) A. B. C. D. 解析:选A 由甲、乙两图知,进水速度是出水速度的,所以0点到3点不出水,3点到4点也可能一个进水口进水,一个出水口出水,但总蓄水量降低,4点到6点也可能两个进水口进水,一个出水口出水,一定正确的是. 利用已知函数模型解决实际问题 [例2] (2012·江苏高考)如图,建立平面直角坐标系xOy,x轴在地平面上,y轴垂直于地平面,单位长度为1千米,某炮位于坐标原点.已知炮弹发射后的轨迹在方程y=kx-(1+k2)x2(k>0)表示的曲线上,其中k与发射方向有关.炮的射程是指炮弹落地点的横坐标. (1)求炮的最大射程; (2)设在第一象限有一飞行物(忽略其大小),其飞行高度为3.2千米,试问它的横坐标a不超过多少时,炮弹可以击中它?请说明理由. [自主解答] (1)令y=0,得kx-(1+k2)x2=0,由实际意义和题设条件知x>0,k>0, 故x==≤=10,当且仅当k=1时取等号. 所以炮的最大射程为10千米. (2)因为a>0,所以炮弹可击中目标存在k>0,使3.2=ka-(1+k2)a2成立 关于k的方程a2k2-20ak+a2+64=0有正根 判别式Δ=(-20a)2-4a2(a2+64)≥0 a≤6. 所以当a不超过6千米时,可击中目标. ——————————————————— 利用已知函数模型解决实际问题的步骤 若题目给出了含参数的函数模型,或可确定其函数模型的图象,求解时先用待定系数法求出函数解析式中相关参数的值,再用求得的函数解析式解决实际问题. 2.某商品在近30天内每件的销售价格p(元)与时间t(天)的函数关系式是p=且该商品的日销售量Q(件)与时间t(天)的函数关系式是Q=-t+40(0900,知ymax=1 125, 即在第25天日销售额最大,为1 125元.构建函数模型解决实际问题 [例3] 某特许专营店销售西安世界园艺博览会纪念章,每枚进价为5元,同时每销售一枚这种纪念章还需向世博会管理处交特许经营管理费2元,预计这种纪念章以每枚20元的价格销售时该店一年可销售2 000枚,经过市场调研发现每枚纪念章的销售价格在每枚20元的基础上每减少1元则增加销售400枚,而每增加1元则减少销售100枚,现设每枚纪念章的销售价格为x(元). (1)写出该特许专营店一年内销售这种纪念章所获得的利润y(元)与每枚纪念章的销售价格x的函数关系式(并写出这个函数的定义域); (2)当每枚纪念章销售价格x为多少元时,该特许专营店一年内利润y(元)最大,并求出这个最大值. [自主解答] (1)依题意 y= y= 此函数的定义域为(0,40). (2)y= 若0<x≤20,则当x=16时, ymax=32 400(元). 若20<x4时,y=4×1.8+3x×1.8+3(5x-4)=20.4x-4.8. 当乙的用水量超过4吨,即3x>4时, y=2×4×1.8+3×[(3x-4)+(5x-4)]=24x-9.6. 所以y= (2)由于y=f(x)在各段区间上均单调递增, 当x时,y≤f<26.4; 当x时,y≤f3)千元.设该容器的建造费用为y千元. (1)写出y关于r的函数表达式,并求该函数的定义域; (2)求该容器的建造费用最小时的r. [快速规范审题] 第(1)问 1.审条件,挖解题信息 观察条件:中间为圆柱形,左右两端均为半球形的容器,球的半径为r,圆柱的母线为l,以及容器的体积+πr2l= S球=4πr2, S圆柱=2πrl. 2.审结论,明确解题方向 观察所求结论:求y关于r的函数表达式,并求该函数的定义域 球形部分的造价为4πr2c,圆柱型部分的造价为2πrl×3. 3.建联系,找解题突破口 总造价y=球形部分的造价+圆柱型部分的造价,即 y=4πr2c+2πrl×3由+πr2l=解得l=-,故可得建造费用y=-8πr2+4πcr20<r≤2,问题得以解决. 第(2)问 1.审条件,挖解题信息 观察条件:建造费用y=-8πr2+4πcr2,定义域为(0,2]. 2.审结论,明确解题方向 观察所求结论:求该容器的建造费用最小时的r问题转化为:当r为何值时,y取得最小值. 3.建联系,找解题突破口 分析函数特点:含分式函数 y′=--16πr+8πcr=,0<r≤2当r= 时,y′=0 分 ≥2和0< 0,导致定义域错误.V=+πr2l,又V=,(1分) 所以+πr2l=, 解得l=-,(2分) 由于l≥2r 易忽视导数为零的点与定义域的关系,即忽视对c的取值的讨论而造成解题错误.因此0<r≤2.(3分) 所以圆柱的侧面积为 2πrl=2πr=-, 两端两个半球的表面积之和为4πr2, 所以建造费用y=-8πr2+4πcr2,定义域为(0,2].(4分) (2)由(1),得y′=--16πr+8πcr= ·,03,所以c-2>0. 当r3-=0时,r= . 令 =m,则m>0. 所以y′=(r-m)(r2+rm+m2).(7分) 当0<m时, 当r=m时,y′=0; 当r(0,m)时,y′0, 易忽视将问题“返本还原”,即没将函数的最小值还原为建造费用最小而草率收兵.所以r=m是函数y的极小值点,也是最小值点.(9分) 当m≥2,即3<c≤时, 当r(0,2)时,y′<0,函数单调递减, 所以r=2是函数y的最小值点.(11分) 综上,当3时,建造费最小时 r= .(12分) [答题模板速成] 解决函数实际应用问题的一般步骤: 第一步 审清题意弄清题意,理顺条件和结论,找到关键量,明确数量关系第二步 找数量关系把问题中所包含的关系可先用文字语言描述关键量之间的数量关系,这是问题解决的一把钥匙 第三步 建数学模型将数量关系转化为数学语言,建立相应的数学模型第四步 解数学问题利用所学数学知识解决转化后的数学问题,得到相应的数学结论 第五步 返本还原将数学结论还原为实际问题本身所具有的意义(如本题应还原建造费用最小时r的值)第六步 反思回顾查看关键点、易错点,如本题函数关系式,定义域,分类讨论等 一、选择题(本大题共6小题,每小题5分,共30分) 1.如图是张大爷晨练时所走的离家距离(y)与行走时间(x)之间的函数关系图,若用黑点表示张大爷家的位置,则张大爷散步行走的路线可能是( ) 解析:选C 由于中间一段时间,张大爷离家的距离不变,故应选C. 2.某公司在甲、乙两地销售一种品牌车,利润(单位:万元)分别为L1=5.06x-0.15x2和L2=2x,其中x为销售量(单位:辆).若该公司在这两地共销售15辆车,则能获得的最大利润为( ) A.45.606万元 B.45.6万元 C.45.56万元 D.45.51万元 解析:选B 设该公司在甲地销售x辆,则在乙地销售(15-x)辆,利润为L(x)=5.06x-0.15x2+2(15-x)=-0.15x2+3.06x+30=-0.152+0.15×+30,由于x为整数,所以当x=10时,L(x)取最大值L(10)=45.6,即能获得的最大利润为45.6万元. 3.某地2011年底人口为500万,人均住房面积为6 m2,如果该城市人口平均每年增长率为1%.问为使2021年底该城市人均住房面积增加到7 m2,平均每年新增住房面积至少为(1.0110≈1.104 6)( ) A.90万m2 B.87万m2 C.85万m2 D.80万m2 解析:选B 由题意≈86.6(万m2)≈87(万m2). 4.某文具店出售羽毛球拍和羽毛球,球拍每副定价20元,羽毛球每个定价5元,该店制定了两种优惠方法:买一副球拍赠送一个羽毛球;按总价的92%付款.现某人计划购买4副球拍和30个羽毛球,两种方法中,更省钱的一种是( ) A.不能确定 B.同样省钱 C.省钱 D.省钱 解析:选D 方法用款为4×20+26×5=80+130=210(元) 方法用款为(4×20+30×5)×92%=211.6(元) 因为210<211.6,故方法省钱. 5.如图所示,点P在边长为1的正方形的边上运动,设M是CD边的中点,则当点P沿着A-B-C-M运动时,以点P经过的路程x为自变量,将三角形APM的面积y看作路程x的函数,则其函数图象大致是( ) 解析:选A 当0≤x≤1时,y=·x·1=x; 当1<x≤2时,y=1-(x-1)-(2-x)-=-x+; 当2<x≤2.5时,y=×1=-x. 则y=根据函数可以画出其大致图象,故选A. 6.(2013·武汉模拟)某地区要建造一条防洪堤,其横断面为等腰梯形,腰与底边成角为60°(如图),考虑到防洪堤坚固性及石块用料等因素,设计其横断面面积为9平方米,且高度不低于米.记防洪堤横断面的腰长为x米,外周长(梯形的上底线段BC与两腰长的和)为y米.要使防洪堤横断面的外周长不超过10.5米,则其腰长x的范围为( ) A.[2,4] B.[3,4] C.[2,5] D.[3,5] 解析:选B 根据题意知,9=(AD+BC)h,其中 AD=BC+2·=BC+x,h=x, 9=(2BC+x)x,得BC=-,由得2≤x<6. 由y=BC+2x=+≤10.5得3≤x≤4. [3,4]?[2,6),腰长x的范围是[3,4]. 二、填空题(本大题共3小题,每小题5分,共15分) 7.一高为H,满缸水量为V的鱼缸截面如图所示,其底部破了一个小洞 ,满缸水从洞中流出.若鱼缸水深为h时的水的体积为v,则函数v=f(h)的大致图象可能是图中的________. 解析:当h=0时,v=0可排除、;由于鱼缸中间粗两头细,当h在附近时,体积变化较快;h小于时,增加越来越快;h大于时,增加越来越慢. 答案: 8.有一批材料可以建成200 m长的围墙,如果用此材料在一边靠墙的地方围成一块矩形场地,中间用同样材料隔成三个面积相等的矩形(如图所示),则围成场地的最大面积为________(围墙厚度不计). 解析:设矩形的宽为x m, 则矩形的长为200-4x m(0<x<50), 面积S=x(200-4x)=-4(x-25)2+2 500. 故当x=25时,S取得最大值2 500 (m2). 答案:2 500 m2 9.某商场宣传在节假日对顾客购物实行一定的优惠,商场规定: 如一次购物不超过200元,不予以折扣; 如一次购物超过200元,但不超过500元,按标价予以九折优惠; 如一次购物超过500元的,其中500元给予九折优惠,超过500元的给予八五折优惠; 某人两次去购物,分别付款176元和432元,如果他只去一次购买同样的商品,则应付款________元. 解析:由题意知付款432元,实际标价为432×=480元,如果一次购买标价176+480=656元的商品应付款500×0.9+156×0.85=582.6元. 答案:582.6 三、解答题(本大题共3小题,每小题12分,共36分) 10.某化工厂引进一条先进生产线生产某种化工产品,其生产的总成本y(万元)与年产量x(吨)之间的函数关系式可以近似地表示为y=-48x+8 000,已知此生产线年产量最大为210吨. (1)求年产量为多少吨时,生产每吨产品的平均成本最低,并求最低成本; (2)若每吨产品平均出厂价为40万元,那么当年产量为多少吨时,可以获得最大利润?最大利润是多少? 解:(1)每吨平均成本为(万元). 则=+-48≥2 -48=32, 当且仅当=,即x=200时取等号. 年产量为200吨时,每吨平均成本最低为32万元. (2)设年获得总利润为R(x)万元, 则R(x)=40x-y=40x-+48x-8 000 =-+88x-8 000 =-(x-220)2+1 680(0≤x≤210). R(x)在[0,210]上是增函数, x=210时,R(x)有最大值为 R(210)=-(210-220)2+1 680=1 660(万元). 年产量为210吨时,可获得最大利润1 660万元. 11.据气象中心观察和预测:发生于M地的沙尘暴一直向正南方向移动,其移动速度v(km/h)与时间t(h)的函数图象如图所示,过线段OC上一点T(t,0)作横轴的垂线l,梯形OABC在直线l左侧部分的面积即为t(h)内沙尘暴所经过的路程s(km). (1)当t=4时,求s的值; (2)将s随t变化的规律用数学关系式表示出来; (3)若N城位于M地正南方向,且距M地650 km,试判断这场沙尘暴是否会侵袭到N城.如果会,在沙尘暴发生后多长时间它将侵袭到N城?如果不会,请说明理由. 解:(1)由图象可知:当t=4时,v=3×4=12, s=×4×12=24. (2)当0≤t≤10时,s=·t·3t=t2; 当10<t≤20时,s=×10×30+30(t-10) =30t-150; 当20<t≤35时,s=×10×30+10×30+(t-20)×30-×(t-20)×2(t-20)=-t2+70t-550. 综上可知,s= (3)t∈[0,10]时,smax=×102=150<650, t(10,20]时,smax=30×20-150=450<650, 当t(20,35]时,令-t2+70t-550=650, 解得t1=30,t2=40. 20<t≤35, t=30,即沙尘暴发生30 h后将侵袭到N城. 12.某公司生产一种产品,每年需投入固定成本0.5万元,此外每生产100件这样的产品,还需增加投入0.25万元,经市场调查知这种产品年需求量为500件,产品销售数量为t件时,销售所得的收入为万元. (1)该公司这种产品的年生产量为x件,生产并销售这种产品所得到的利润关于当年产量x的函数为f(x),求f(x); (2)当该公司的年产量为多少件时,当年所获得的利润最大? 解:(1)当0500时,f(x)=0.05×500-×5002-=12-x, 故f(x)= (2)当0500时,f(x)=12-x<12-=<, 故当该公司的年产量为475件时,当年获得的利润最大. 1.A,B两城相距100 km,在两城之间距A城x(km)处建一核电站给A,B两城供电,为保证城市安全,核电站距城市距离不得小于10 km.已知供电费用等于供电距离(km)的平方与供电量(亿度)之积的0.25倍,若A城供电量为每月20亿度,B城为每月10亿度. (1)求x的取值范围; (2)把月供电总费用y表示成x的函数; (3)核电站建在距A城多远,才能使供电总费用y最少? 解:(1)x的取值范围为[10,90]. (2)y=5x2+(100-x)2(10≤x≤90). (3)由y=5x2+(100-x)2=x2-500x+25 000=2+,得x=时,ymin=, 即核电站建在距A城 km处,能使供电总费用y最少. 2.目前某县有100万人,经过x年后为y万人.如果年平均增长率是1.2%,请回答下列问题: (1)写出y关于x的函数解析式; (2)计算10年后该县的人口总数(精确到0.1万人); (3)计算大约多少年后该县的人口总数将达到120万(精确到1年). 解:(1)当x=1时,y=100+100×1.2%=100(1+1.2%); 当x=2时, y=100(1+1.2%)+100(1+1.2%)×1.2%=100(1+1.2%)2; 当x=3时, y=100(1+1.2%)2+100(1+1.2%)2×1.2%=100(1+1.2%)3; … 故y关于x的函数解析式为y=100(1+1.2%)x(xN*). (2)当x=10时,y=100×(1+1.2%)10=100×1.01210≈112.7. 故10年后该县约有112.7万人. (3)设x年后该县的人口总数为120万,即100×(1+1.2%)x=120,解得x=log1.012≈15.3 故大约16年后该县的人口总数将达到120万. 3.某上市股票在30天内每股的交易价格P(元)与时间t(天)组成有序数对(t,P),点(t,P)落在下图中的两条线段上,该股票在30天内的日交易量Q(万股)与时间t(天)的部分数据如下表所示: 第t天4101622Q(万股)36302418(1)根据提供的图象,写出该种股票每股交易价格P(元)与时间t(天)所满足的函数关系式; (2)根据表中数据确定日交易量Q(万股)与时间t(天)的一次函数关系式; (3)在(2)的结论下,用y表示该股票日交易额(万元),写出y关于t的函数关系式,并求在这30天中第几天日交易额最大,最大值是多少? 解:(1)P=(tN*). (2)设Q=at+b(a,b为常数),把(4,36),(10,30)代入,得解得a=-1,b=40. 所以日交易量Q(万股)与时间t(天)的一次函数关系式为 Q=-t+40,0<t≤30,tN*. (3)由(1)(2)可得 y= 即y=(tN*). 当0<t≤20时,y有最大值ymax=125万元,此时t=15;当20<t≤30时,y随t的增大而减小,ymax<(20-60)2-40=120万元. 所以,在30天中的第15天,日交易额取得最大值125万元.。
3·2 函数模型及其应用3·2·1 几类不同增长的函数模型 要点精讲1. 几类不同增长的函数模型:幂函数)0(>=n x y n 、指数函数)1(>=a a y x 、对数函数)1(log >=a x y a ,定义域均为).0(∞+.在区间).0(∞+上,尽管函数)1(>=a a y x 、)1(log >=a x y a 和)0(>=n x y n 斗是增函数,但它们的增长速度不同,而且不在同一个“档次”上,随着x 的增长,)1(>=a a y x 的增长速度越来越快,会超过并远远大于)0(>=n x y n 的增长速度,而)1(log >=a x y a 的 增长速度则会越来越慢.一般的,对于指数函数)1(>=a a y x 和幂函数)0(>=n x y n 在区间).0(∞+无论n 比a 打多少,尽管在x 的一定变化范围内,x a 会小于n x ,但由于x a 的增长速度快于n x 的增长,因此总存在一个0x ,当x >0x 时,就会有x a >n x .同样地,对于对数函数)1(log >=a x y a 和幂函数)0(>=n x y n ,在区间).0(∞+上,随着x 的增长,x a log 增长得越来越慢,图像就像是渐渐地与x 轴平行一样,尽管在x 的一定范围内,x a log 可能会大于nx ,但由于x a log 的增长慢于nx 的增长,因此总存在一个0x ,当x >0x 时,就会有x a log <n x .综上所述,存在0x ,当x >0x 时,就有x a log <nx <xa .2. 二次函数:应用二次函数的有关知识,可解决生产、生活实际中的最大(小)值的问题,解答时需遵循的基本步骤:(1)反复阅读理解,认真审清题意; (2)依据数量关系,建立数学模型; (3)利用数学方法,求解数学问题; (4)检验所得结果,译成实际答案.关键之处是第2步正确得到二次函数的模型,然后才能在第3步中利用二次函数的性质解决问题.3. 平均增长率的问题:可以用公式x N y )1(ρ+=表示.人口问题的应用模型,还可探究英国经济学家马尔萨斯提出的自然状态下的人口模型rt e y y 0=.4. 模型优选:解答数学建模等实用问题时,往往并不能确定所给出的数学模型,需要根据所得的数据,分析出其数字特征,选用合适的函数模型来解决实际问题.典型例题例1. 某人有资金2000元,拟投入在复利方式下年报酬为8%的投资项目,大约经过多少年后能使现有资金翻一番?(下列数据供参考:lg2≈0.3010,lg5.4≈0.7324,lg5.5≈0.7404,lg5.6≈0.7482). 【解析】:设经过x 年后能使现有资金翻一番,则2000x %)81(+⨯=4000,即1.08x=2. 两边取对数,有x=01.93010.017234.03010.0)2lg 1(4.5lg 2lg 54.5lg 2lg 08.1lg 2lg ≈+-=--==所以,经过10年后才能使现有资金翻一番.例2. 有甲乙两种商品,经销这两种商品所获得的利润依次为p 万元和q 万元,它们与投入的资金x 万元的关系有经验式p=101x ,q=x 52,现有资金9万元投入经销甲乙两种商品,为了获取最大利润,问:对甲乙两种商品的资金分别投入多少万元能获取最大利润?【解析】:设对乙商品投入x 万元,则对甲商品投入9-x 万元,x ∈[0,9] 设利润为y 万元,3.142)13)2((101)94(10152)9(101max 2===∴+--=++-=+-=∴y x x x x x x x y 时,时,即当 所以,投入甲商品5万元,乙商品4万元,能获得最大利润1.3万元.例3. 光线通过一块玻璃,其强度要损失10%,把几块这样的玻璃重叠起来,设光线原来的强度为a ,通过x 块玻璃后强度为y ,(1)写出y 关于x 的关系式;(2)通过多少块玻璃,光线强度减弱到原来的31以下? 【解析】:(1) )(,%)101(*N x a y x∈-= (2)11,4.1013lg 23lg 31log 319.0,31%)101(,319.0=∴≈--=≥≤∴≤-∴≤x x a a a y x x因此经过11块玻璃后,光线强度减弱为原来的31以下. 3·2·2 函数模型的应用实例 要点精讲我们学习过的一次函数、二次函数、指数函数、对数函数及幂函数都与现实世界有着紧密的联系.函数的综合应用主要体现在以下几方面:1.函数内容本身的相互综合,如函数概念、性质、图象等方面知识的综合.2.函数与其他数学知识点的综合,如方程、不等式、数列、解析几何等方面的内容与函数的综合.这是高考主要考查的内容.3.函数与实际应用问题的综合. 解函数应用问题的基本步骤: 第一步:阅读理解,审清题意. 读题要做到逐字逐句,读懂题中的文字叙述,理解叙述所反映的实际背景,在此基础上,分析出已知什么,求什么,从中提炼出相应的数学问题.第二步:引进数学符号,建立数学模型.一般地,设自变量为x ,函数为y ,必要时引入其他相关辅助变量,并用x 、y 和辅助变量表示各相关量,然后根据问题已知条件,运用已掌握的数学知识、物理知识及其他相关知识建立关系式,在此基础上将实际问题转化为一个函数问题,实现问题的数学化,即所谓建立数学模型.第三步:利用数学的方法将得到的常规函数问题(即数学模型)予以解答,求得结果. 第四步:将所得结果再转译成具体问题的解答. 这些步骤用框图表示:数学应用问题形式多样,解法灵活.在应用题的各种题型中,有这样一类题型:信息由表格数据的形式给出,要求对数据进行合理的转化处理,建立数学模型,解答有关的实际问题.解答此类题型主要有如下三种方法:(1)直接法:若由题中条件能明显确定需要用的数学模型,或题中直接给出了需要用的数学模型,则可直接代入表中的数据,问题即可获解;(2)列式比较法:若题所涉及的是最优化方案问题,则可根据表格中的数据先列式,然后进行比较;(3)描点观察法:若根据题设条件不能直接确定需要用哪种数学模型,则可根据表中的数据在直角坐标系中进行描点,作出散点图,然后观察这些点的位置变化情况,确定所需要用的数学模型,问题即可顺利解决.解决函数应用问题应着重培养下面一些能力:(1)阅读理解、整理数据的能力:通过分析、画图、列表、归类等方法,快速弄清数据之间的关系,数据的单位等等;(2)建立函数模型的能力:关键是正确选择自变量将问题的目标表示为这个变量的函数,建立函数的模型的过程主要是抓住某些量之间的相等关系列出函数式,注意不要忘记考察函数的定义域;(3)求解函数模型的能力:主要是研究函数的单调性,求函数的值域、最大(小)值,计算函数的特殊值等,注意发挥函数图象的作用.1. 建立或化归为一次函数模型如在市场经济大潮的现实生活中,普遍存在着最优化问题----最佳投资、最小成本等,常常归结为函数的最值问题,通过建立相应的目标函数,确定变量的限制条件,可运用一次函数知识和方法解决.2.建立或化归为二次函数模型现在人们注重对普遍存在的诸如造价成本最低,而产出、利润最大,风险决策、最优化等问题的研究,透过实际问题的背景,抓住本质,挖掘隐含的数量关系,可抽象成二次函数的最值模型.3.建立或化归为幂函数模型在气象学、工程学等科学与生产实践中蕴含着幂函数关系,这是一种应用十分广泛的函数模型,二次函数模型就是其中一种重要的模型.解析式:y=ax n+b,a·b≠0.4.建立或化归为指数函数模型细胞分裂、人口增长、利润增长、银行储蓄等经济生活和社会生活中都蕴含着指数函数关系.解析式:y=a·b x+c,a·b≠0.5.建立或化归为对数函数模型对数函数模型在生产、生活及航天等领域有着比较广泛的应用.解析式:y=log a x,a>0且a≠1.典型例题例1.某服装厂每天生产童装200套或西服50套,已知每生产一套童装需成本40元,可获得利润22元;每生产一套西服需成本150元,可获得利润80元;已知该厂每月成本支出不超过23万元,为使赢利尽量大,若每月按30天计算,应安排生产童装和西服各多少天?(天数为整数),并求出最大利润.【解析】:通过阅读、审题找出此问题的主要关系(目标与条件的关系),即是“生产童装和西服的天数”决定了“利润”,所以将生产童装的参数变量设为x天,则生产西服的天数为(30—x)天,于是每项利润即可表示了.在把“问题情景”译为“数学语言”时,为便于数据处理,运用表格或图形处理数据,有利于寻找数量关系.从而建立总利润模型为:22×200x+80×50(30—x),化简得400x+120000,同时注意到每月成本支出不超过23万元,据此可得40×200x+150×50(30—x)≤230000,从中求出x的取值限制为0≤x≤10,且x为正整数,显然当x取10时赢利最大,最大利润为124000元.评析:在运用一次函数知识和方法建模解决时,有时要涉及到多种方案,通过比较,从中挑选出最佳的方案.例2 某商品进货单价为40元,若销售价为50元,可卖出50个,如果销售单价每涨1元,销售量就减少1个,为了获得最大利润,则此商品的最佳售价应为多少?【解析】:设最佳售价为(50)x+元,最大利润为y元,(50)(50)(50)40y x x x=+---⨯240500x x=-++当20x=时,y取得最大值,所以应定价为70元.评析:本题考查二次函数模型,将最大利润问题转化为二次函数的最大值.例3. 1995年我国人口总数是12亿.如果人口的自然年增长率控制在1.25%,问哪一年我国人口总数将超过14亿.【解析】:设x年后我国人口总数为y,则有y=12·(1+0.0125)x,依题意,得y>14,即12·(1+0.0125)x>14,即(1+0.0125)x>14 12.两边取对数,得x lg1.0125>lg14-lg12.所以x>lg14lg12lg1.125-≈12.4.因此,3年后,即2008年我国人口总数将超过14亿.评析:本题考查指数函数模型.人口增长问题往往转化为指数函数模型.。
第九节函数模型及其应用考试要求:1.在实际情景中,会选择合适的函数模型刻画现实问题的变化规律.2.结合现实情景中的具体问题,理解“对数增长”“直线上升”“指数爆炸”等术语的现实含义.一、教材概念·结论·性质重现1.常见的函数模型(1)正比例函数模型:f (x )=kx (k 为常数,k ≠0).(2)反比例函数模型:f (x )=��(k 为常数,k ≠0).(3)一次函数模型:f (x )=kx +b (k ,b 为常数,k ≠0).(4)二次函数模型:f (x )=ax 2+bx +c (a ,b ,c 为常数,a ≠0).(5)指数型函数模型:f (x )=ab x +c (a ,b ,c 为常数,a ≠0,b >0,b ≠1).(6)对数型函数模型:f (x )=m log a x +n (m ,n ,a 为常数,m ≠0,a >0,a ≠1).(7)幂函数模型:f (x )=ax n +b (a ,b ,n 为常数,a ≠0,n ≠1).(8)“对勾”函数模型:y =x +��01.不要忽视实际问题中自变量的取值范围,需合理确定函数的定义域,必须验证数学结果的合理性.函数性质y =a x (a >1)y =log a x (a >1)y =x n (n >0)在(0,+∞)上的增减性单调递增单调递增单调递增增长速度越来越快越来越慢相对平稳图象的变化随x 的增大逐渐表现为与y 轴平行随x 的增大逐渐表现为与x 轴平行随n 值变化各有不同值的比较存在一个x 0,当x >x 0时,有log a x <x n <a x1.判断下列说法的正误,对的画“√”,错的画“×”.(1)幂函数增长比直线增长更快.(×)(2)不存在x0,使��0<�0�<log a x0.(×)(3)在(0,+∞)上,随着x的增大,y=a x(a>1)的增长速度会超过并远远大于y=x a(a>1)的增长速度.(√) (4)“指数爆炸”是指数型函数y=a·b x+c(a≠0,b>0,b≠1)增长速度越来越快的形象比喻.(×) 2.下列函数中,随x的增大,y的增长速度最快的是()A.y=0.001e x B.y=1000ln xC.y=x1000D.y=1000·2xA解析:在对数函数、幂函数、指数函数中,指数函数的增长速度最快,排除B,C;指数函数中,底数越大,函数增长速度越快.故选A.3.已知f(x)=x2,g(x)=2x,h(x)=log2x,当x∈(4,+∞)时,对三个函数的增长速度进行比较,下列选项中正确的是()A.f(x)>g(x)>h(x)B.g(x)>f(x)>h(x)C.g(x)>h(x)>f(x)D.f(x)>h(x)>g(x)B解析:当x∈(4,+∞)时,易知增长速度由大到小依次为g(x)>f(x)>h(x).故选B. 4.在某个物理实验中,测量得变量x和变量y的几组数据,如下表:x0.500.99 2.01 3.98y-0.990.010.98 2.00则对x,y最适合的拟合函数是()A.y=2x B.y=x2-1C.y=2x-2D.y=log2xD解析:根据x=0.50,y=-0.99,代入计算,可以排除A;根据x=2.01,y=0.98,代入计算,可以排除B,C;将各数据代入函数y=log2x,可知满足题意.故选D.5.用长度为24的材料围成一个矩形场地,中间加两道隔墙,要使矩形的面积最大,则隔墙的长度为_________.3解析:设隔墙的长度为x(0<x<6),矩形的面积为y,则y=x·24−4�=2x(6-x)=-2(x-3)22+18,∴当x=3时,y最大.考点1利用函数的图象刻画实际问题——基础性1.如图,一个高为H且装满水的鱼缸,其底部装有一个排水小孔,当小孔打开时,水从孔中匀速流出,水流完所用时间为T.若鱼缸水深为h时,水流出所用时间为t,则函数h=f(t)的图象大致是()B解析:函数h=f(t)是关于t的减函数,故排除C,D;开始时,h随着时间的变化,变化缓慢,水排出超过一半时,h随着时间的变化,变化加快,故对应的图象为B.故选B. 2.有一个盛水的容器,由悬在它上空的一条水管均匀地注水,最后把容器注满,在注水过程中时间t与水面高度y之间的关系如图所示.若图中PQ为一线段,则与之对应的容器的形状是()B解析:由函数图象可判断出该容器的形状不规则,又函数图象的变化先慢后快,所以容器下边粗,上边细.再由PQ为线段,知这一段是均匀变化的,所以容器上端必是直的一段,排除A,C,D.故选B.3.(多选题)(2022·北京东城区模拟)某部影片的盈利额(即影片的票房收入与固定成本之差)记为y,观影人数记为x,y关于x的函数图象如图(1)所示.由于目前该片盈利未达到预期,相关人员提出了两种调整方案,图(2)、图(3)中的实线分别为调整后y关于x的函数图象.给出下列四种说法,其中正确的是()A.图(2)对应的方案是:提高票价,并提高固定成本B.图(2)对应的方案是:保持票价不变,并降低固定成本C.图(3)对应的方案是:提高票价,并保持固定成本不变D.图(3)对应的方案是:提高票价,并降低固定成本BC 解析:由题图(1)可设y 关于x 的函数为y =kx +b ,k >0,b <0,k 为票价,当k =0时,y =b ,则-b 为固定成本.由题图(2)知,直线向上平移,k 不变,即票价不变,b 变大,则-b 变小,固定成本减小,故A 错误,B 正确;由题图(3)知,直线与y 轴的交点不变,直线斜率变大,即k 变大,票价提高,b 不变,即-b 不变,固定成本不变,故C 正确,D 错误.4.某人根据经验绘制了从12月21日至1月8日自己种植的西红柿的销售量y (单位:千克)随时间x (单位:天)变化的函数图象,如图所示,则此人在12月26日大约卖出了西红柿________千克.1909解析:前10天满足一次函数关系.设为y =kx +b .将点(1,10)和点(10,30)的坐标代入函数解析式得10=�+�,30=10�+�,解得k =209,b =709,所以y =209x +709.当x =6时,y =1909.1.解决这类问题一般要根据题意构建函数模型,先建立函数模型,再结合模型选图象,并结合五个幂函数的图象与性质来求解.2.有些题目,如第3题,根据实际问题中两变量的变化特点,结合图象的变化趋势,验证答案是否吻合,从中排除不符合实际的情况,选择出符合实际情况的答案.考点2已知函数模型解决实际问题——综合性汽车急刹车的停车距离与诸多因素有关,其中最为关键的两个因素是驾驶员的反应时间和汽车行驶的速度.设d 表示停车距离,d 1表示反应距离,d 2表示制动距离,则d =d 1+d 2.如图是根据美国公路局公布的试验数据制作的停车距离示意图.序号速度(km/h)停车距离14017.025026.536035.747046.058052.769070.7710085.48110101.0由图中数据得到如表的表格,根据表格中的数据,建立停车距离与汽车速度的函数模型.可选择模型①:d =av +b ;模型②:d =av 2+bv ;模型③:d =av +��;模型④:d =av 2+��(其中v 为汽车速度,a ,b 为待定系数)进行拟合.如果根据序号3和序号7两组数据分别求出四个函数模型的解析式,并通过计算120km/h 时的停车距离与实验数据比较,则拟合效果最好的函数模型是()A.d =av +b B.d =av 2+bv C.d =av +��D.d =av 2+��B 解析:若选择模型①,则60�+�=35.7,100�+�=85.4,解得a =1.2425,b =-38.85.故d =1.2425v -38.85.当v =120时,停车距离d 的预测值为1.2425×120-38.85=110.25.若选择模型②,则3600�+60�=35.7,10000�+100�=85.4,解得a =0.006475,b =0.2065.故d =0.006475v 2+0.2065v .当v =120时,停车距离d 的预测值为0.006475×1202+0.2065×120=118.02.若选择模型③,则60�+�60=35.7,100�+�100=85.4,解得a =0.9996875,b =-1456.875.故d =0.9996875v -1456.875�.当v =120时,停车距离d 的预测值为0.9996875×120-1456.875120=107.821875.若选择模型④,则3600�+�60=35.7,10000�+�100=85.4,解得a =15.9951960,b =379.2857143.故d =15.9951960v 2+379.2857143�.当v =120时,停车距离d 的预测值为15.9951960×1202+379.2857143120=120.675.由实验数据可知当v =120时,停车距离为118m.模型②的预测值更接近118m,故模型②拟合效果最好.解函数模型的实际应用题,首先应考虑该题考查的是何种函数,然后根据题意列出函数关系式(注意定义域),并进行相关求解,最后结合实际意义作答.→→→1.某市家庭煤气的使用量x (单位:m 3)和煤气费f (x )(单位:元)满足关系f (x )=�,0<�≤�,�+��−�,�>�.已知某家庭2021年前三个月的煤气费如表:月份用气量煤气费1月份4m 34元2月份25m 314元3月份35m 319元若4月份该家庭使用了20m 3的煤气,则其煤气费为()A.11.5元B.11元C.10.5元D.10元A 解析:根据题意可知f (4)=C =4,f (25)=C +B (25-A )=14,f (35)=C +B (35-A )=19,解得A =5,B =12,C =4,所以f (x )=4,0<�≤5,4−5,�>5,所以f (20)=4+12×(20-5)=11.5.2.某新型企业为获得更大利润,须不断加大投资,若预计年利润低于10%时,该企业考虑转型,下表显示的是某企业几年来年利润y (百万元)与年投资成本x (百万元)变化的一组数据:年份2018201920202021…投资成本x 35917…年利润y1234…给出以下3个函数模型:①y =kx +b (k ≠0);②y =ab x (a ≠0,b >0且b ≠1);③y =log a (x +b )(a >0且a ≠1).(1)选择一个恰当的函数模型来描述x ,y 之间的关系;(2)试判断该企业年利润超过6百万元时,该企业是否要考虑转型.解:(1)将(3,1),(5,2)代入y =kx +b (k ≠0),得1=3�+�,2=5�+�,解得�=12,�=−12,所以y =12x -12.当x =9时,y =4,不符合题意.将(3,1),(5,2)代入y =ab x (a ≠0,b >0且b ≠1),得1=��3,2=��5,解得�=24,�=2,所以y =24·(2)x=2�−32当x =9时,y =29−32=8,不符合题意.将(3,1),(5,2)代入y =log a (x +b )(a >0且a ≠1),得1=log �3+�,2=log �5+�,解得�=2,�=−1,所以y =log 2(x -1).当x =9时,y =log 28=3;当x =17时,y =log 216=4.故可用③来描述x ,y 之间的关系.(2)令log 2(x -1)>6,则x >65.因为年利润665<10%,所以该企业要考虑转型.考点3构造函数模型解决实际问题——应用性考向1二次函数、分段函数模型某景区提供自行车出租,该景区有50辆自行车供游客租赁使用,管理这些自行车的费用是每日115元.根据经验,若每辆自行车的日租金不超过6元,则自行车可以全部租出;若超过6元,则每超过1元,租不出的自行车就增加3辆.为了便于结算,每辆自行车的日租金x(元)只取整数,并且要求租自行车一日的总收入必须高于这一日的管理费用,用y(元)表示出租自行车的日净收入(即一日中出租自行车的总收入减去管理费用后得到的部分).(1)求函数y=f(x)的解析式;(2)试问当每辆自行车的日租金为多少元时,才能使一日的净收入最多?解:(1)当x≤6时,y=50x-115,令50x-115>0,解得x>2.3.因为x为整数,所以3≤x≤6,x∈Z.当x>6时,y=[50-3(x-6)]x-115=-3x2+68x-115.令-3x2+68x-115>0,有3x2-68x+115<0,结合x为整数得6<x≤20,x∈Z.所以y=f(x)=50�−115,3≤�≤6,�∈�,−3�2+68�−115,6<�≤20,�∈�.(2)对于y=50x-115,3≤x≤6,x∈Z,显然当x=6时,y max=185.对于y=-3x2+68x-115=-3�−+8113,6<x≤20,x∈Z,当x=11时,y max=270.因为270>185,所以当每辆自行车的日租金定为11元时,才能使一日的净收入最多.(1)实际问题中有些变量间的关系不能用同一个关系式给出,而是由几个不同的关系式构成.如出租车票价与路程之间的关系,应构建分段函数模型求解.(1)某高校为提升科研能力,计划逐年加大科研经费投入.若该高校2017年全年投入科研经费1300万元,在此基础上,每年投入的科研经费比上一年增长12%,则该高校全年投入的科研经费开始超过2000万元的年份是(参考数据:lg1.12≈0.05,lg 1.3≈0.11,lg 2≈0.30)()A.2020年B.2021年C.2022年D.2023年B解析:若2018年是第一年,则第n年科研费为1300×1.12n,由1300×1.12n>2000,可得lg 1.3+n lg 1.12>lg 2,得n ×0.05>0.19,n >3.8,n ≥4,即4年后,到2021年科研经费超过2000万元.故选B.(2)基本再生数R 0与世代间隔T 是流行病学基本参数.基本再生数指一个感染者传染的平均人数,世代间隔指相邻两代间传染所需的平均时间.在病毒感染初始阶段,可以用指数模型I (t )=e rt 描述累计感染病例数I (t )随时间t (单位:天)的变化规律,指数增长率r 与R 0,T 近似满足R 0=1+rT .有学者基于已有数据估计出R 0=3.28,T =6.据此,在病毒感染初始阶段,累计感染病例数增加1倍需要的时间约为(ln 2≈0.69)()A.1.2天B.1.8天C.2.5天D.3.5天B 解析:因为R 0=3.28,T =6,R 0=1+rT ,所以r =3.28−16=0.38,所以I (t )=e rt =e 0.38t .设在病毒感染初始阶段,累计感染病例数增加1倍需要的时间为t 1天,则e 0.38�+�1=2e 0.38t ,所以e 0.38�1=2,所以0.38t 1=ln 2,所以t 1=ln 20.38≈0.690.38≈1.8(天).故选B.(1)要先学会合理选择模型.与增长率、银行利率有关的问题都属于指数函数模型.1.某位股民买入某只股票,在接下来的交易时间内,他的这只股票先经历了3次涨停(每次上涨10%),又经历了3次跌停(每次下降10%),则该股民这只股票的盈亏情况(不考虑其他费用)为()A.略有盈利B.无法判断盈亏情况C.没有盈利也没有亏损D.略有亏损D解析:设买入股票时的价格为m (m >0)元.先经历了3次涨停(每次上涨10%),又经历了3次跌停(每次下降10%)后的价格为m ×(1+10%)3×(1-10%)3=0.993m <m ,所以该股民这只股票的盈亏情况(不考虑其他费用)为略有亏损.故选D.2.某汽车销售公司在A,B 两地销售同一种品牌的汽车,在A 地的销售利润(单位:万元)为y 1=4.1x -0.1x 2,在B 地的销售利润(单位:万元)为y 2=2x ,其中x 为销售量(单位:辆).若该公司在两地共销售16辆该种品牌的汽车,则能获得的最大利润是()A.10.5万元B.11万元C.43万元D.43.025万元C解析:设公司在A地销售该品牌的汽车x(0≤x≤16且x∈N)辆,则在B地销售该品牌的汽车(16-x)辆,所以可得利润y=4.1x-0.1x2+2(16-x)=-0.1x2+2.1x+32=-110·�−+110×2124+32.因为x∈[0,16]且x∈N,所以当x=10或11时,总利润取得最大值43万元.3.一个容器装有细沙a cm3,细沙从容器底部一个细微的小孔慢慢地漏出,t min后剩余的细沙量为y=a e-bt(cm3),经过8min后发现容器内还有一半的沙子,则再经过________min,容器中的沙子只有开始时的八分之一.16解析:当t=0时,y=a;当t=8时,y=a e-8b=12a.故e-8b=12.当容器中的沙子只有开始时的八分之一时,即y=a e-bt=18a,e-bt=18=(e-8b)3=e-24b,则t=24,所以再经过16min,容器中的沙子只有开始时的八分之一.课时质量评价(十四)A组全考点巩固练1.设甲、乙两地的距离为a(a>0),小王骑自行车匀速从甲地到乙地用了20分钟,在乙地休息10分钟后,他又匀速从乙地返回到甲地用了30分钟,则小王从出发到返回原地所经过的路程y和其所用的时间x(分钟)的函数图象为()D解析:y为“小王从出发到返回原地所经过的路程”而不是位移,故排除A,C.又因为小王在乙地休息10分钟,排除B.故选D.2.气象学院用32万元购置了一台天文观测仪,已知这台观测仪从启动的第1天开始连续使用,第n天的维修保养费为4n+46(n∈N*)元,使用它直至“报废最合算”(所谓“报废最合算”是指使用的这台仪器平均每天耗资最少)为止,则一共要使用()A.300天B.400天C.600天D.800天B 解析:使用n 天的平均耗资为3202�+2�+48元,当且仅当320000�=2n 时取得最小值,此时n =400.3.(2023·济南月考)某乡村一条污染河道的蓄水量为v 立方米,每天的进出水量为k 立方米.已知污染源以每天r 个单位污染河水,某一时段t (单位:天),河水污染质量指数m (t )(每立方米河水所含的污染物)满足m (t )=��+�0−e −���(m 0为初始质量指数),经测算,河道蓄水量是每天进出水量的80倍.若从现在开始关闭污染源,要使河水的污染水平下降到初始时的10%,需要的时间大约是(参考数据:ln 10≈2.30)()A.1个月B.3个月C.半年D.1年C 解析:由题意可知,m (t )=�0e−180�=0.1m 0,则e −180�=0.1,即-180t =ln 0.1≈-2.30,所以t ≈184,则要使河水的污染水平下降到初始时的10%,需要的时间大约是184天,即半年.故选C.4.某商场从生产厂家以每件20元的价格购进一批商品,若该商品零售价定为p 元,销售量为Q 件,销售量Q (单位:件)与零售价p (单位:元)有如下关系:Q =8300-170p -p 2,则最大毛利润为(毛利润=销售收入-进货支出)()A.30元B.60元C.28000元D.23000元D解析:设毛利润为L (p )元,则由题意知L (p )=pQ -20Q =Q (p -20)=(8300-170p -p 2)(p-20)=-p 3-150p 2+11700p -166000,所以L ′(p )=-3p 2-300p +11700.令L ′(p )=0,解得p =30或p =-130(舍去).当p ∈(0,30)时,L ′(p )>0;当p ∈(30,+∞)时,L ′(p )<0.故L (p )在p =30时取得极大值,即最大值,且最大值为L (30)=23000.5.某化工厂生产一种溶液,按市场要求杂质含量不超过0.1%.若初时含杂质2%,每过滤一次可使杂质含量减少13,至少应过滤________次才能达到市场要求.(参考数据:lg 2≈0.3010,lg 3≈0.4771)8解析:设至少过滤n 次才能达到市场要求,则2%×1−≤120,所以n lg 23≤-1-lg 2,所以n ≥7.39,所以n =8.6.我们经常听到这样一种说法:一张纸经过一定次数对折之后厚度能超过地月距离.但实际上,因为纸张本身有厚度,我们并不能将纸张无限次对折,当厚度超过纸张的长边时,便不能继续对折了,一张长边为w ,厚度为x 的矩形纸张沿两个方向不断对折,则经过两次对折,长边变为12w ,厚度变为4x ,在理想情况下,对折次数n 有下列关系:n ≤23·log 2��(注:lg 2≈0.3).根据以上信息,一张长为21cm,厚度为0.05mm 的纸最多能对折________次.8解析:由题知n ≤23log 24200=23log 24+log 21000+log =232+3log 210+log 2因为log 210=1lg 2≈10.3,0<log 22120<1,所以n ≤8+23log 22120,n 的最大值为8.B 组新高考培优练7.(2022·聊城一模)“环境就是民生,青山就是美丽,蓝天也是幸福”,随着经济的发展和社会的进步,人们的环保意识日益增强.某化工厂产生的废气中污染物的含量为1.2mg/cm 3,排放前每过滤一次,该污染物的含量都会减少20%.当地环保部门要求废气中该污染物的含量不能超过0.2mg/cm 3,若要使该工厂的废气达标排放,那么在排放前需要过滤的次数至少为()(参考数据:lg 2≈0.3,lg 3≈0.477)A.5B.7C.8D.9C 解析:设该污染物排放前过滤的次数为n (n ∈N *),由题意1.2×0.8n≥6,两边取以10为底的对数可得lg≥lg 6,即n lg2+lg 3,所以n ≥lg 2+lg 31−3lg 2.因为lg 2≈0.3,lg 3≈0.477,所以lg 2+lg 31−3lg 2≈0.3+0.4771−3×0.3=7.77,所以n ≥7.77,又n ∈N *,所以n min =8,即该污染物排放前需要过滤的次数至少为8次.故选C.8.(多选题)(2022·济南月考)甲、乙、丙、丁四个物体同时从某一点出发向同一方向运动,它们行走的路程f i (x )(i =1,2,3,4)关于时间x (x ≥0)的函数关系式分别为f 1(x )=2x -1,f 2(x )=x 2,f 3(x )=x ,f 4(x )=log 2(x +1),则下列结论正确的是()A.当x >1时,甲走在最前面B.当x >1时,乙走在最前面C.当0<x <1时,丁走在最前面,当x >1时,丁走在最后面D.如果它们一直运动下去,最终走在最前面的是甲CD 解析:甲、乙、丙、丁的路程f i (x )(i =1,2,3,4)关于时间x (x ≥0)的函数关系式分别为f 1(x )=2x -1,f 2(x )=x 2,f 3(x )=x ,f 4(x )=log 2(x +1),它们对应的函数模型分别为指数型函数模型、二次函数模型、一次函数模型、对数型函数模型.当x =2时,f 1(2)=3,f 2(2)=4,所以A 不正确;当x =5时,f 1(5)=31,f 2(5)=25,所以B 不正确.根据四种函数的变化特点,对数型函数的增长速度是先快后慢,又当x =1时,甲、乙、丙、丁四个物体走过的路程相等,从而可知,当0<x <1时,丁走在最前面,当x >1时,丁走在最后面,所以C 正确;指数型函数的增长速度是先慢后快,当运动的时间足够长时,最前面的物体一定是按照指数型函数模型运动的物体,即一定是甲物体,所以D 正确.9.李冶(1192-1279),真定栾城(今河北省石家庄市)人,金元时期的数学家、诗人,晚年在封龙山隐居讲学,有多部数学著作,其中《益古演段》主要研究平面图形问题,求圆的直径、正方形的边长等.其中一问:现有正方形方田一块,内部有一个圆形水池,其中水池的边缘与方田四边之间的面积为13.75亩,若方田的四边到水池的最近距离均为二十步,则圆池直径和方田的边长分别是________步、________步(注:240平方步为1亩,圆周率按3近似计算).2060解析:设圆池的半径为r 步,则方田的边长为(2r +40)步,由题意,得(2r +40)2-3r 2=13.75×240,解得r =10或r =-170(舍),所以圆池的直径为20步,方田的边长为60步.10.(2023·泰安模拟)某研究所开发了一种抗病毒新药,用小白鼠进行抗病毒实验.已知小白鼠服用1粒药后,每毫升血液含药量y (单位:微克)随着时间x (单位:时)变化的函数关系式近似为y=≤�≤6,12−�6<�≤12.当每毫升血液含药量不低于4微克时,该药能起到有效抗病毒的效果.(1)若小白鼠服用1粒药,多长时间后该药能起到有效抗病毒的效果?(2)某次实验:先给小白鼠服用1粒药,6小时后再服用1粒,请问这次实验该药能够有效抗病毒的时间为多少小时?解:(1)设服用1粒,经过x 小时能有效抗病毒,即血液含药量需不低于4微克,可得0≤�≤6,2�8−�≥4,解得163≤x ≤6.所以163小时后该药能起到有效抗病毒的效果.(2)设经过x 小时能有效抗病毒,即血液含药量需不低于4微克.若0≤x ≤6,药物浓度2�8−�≥4,解得163≤x ≤6.若6<x ≤12,药物浓度(12-x �−6x 2-20x +100≥0,所以6<x ≤12;若12<x ≤18,药物浓度12-(x -6)≥4,解得x ≤14,所以12<x ≤14.综上,x 14,所以这次实验该药能够有效抗病毒的时间为263小时.。
第20讲函数模型的应用模块一思维导图串知识模块二基础知识全梳理(吃透教材)模块三核心考点举一反三模块四小试牛刀过关测1.会利用已知函数模型解决实际问题;2.能建立函数模型解决实际问题;3.了解拟合函数模型并解决实际问题.知识点1函数模型的选择与建立1、几种常见的函数模型(1)一次函数模型:=+y kx b (k ,b 为常数,0≠k )(2)二次函数模型:2=++y ax bx c (,,a b c 为常数,0≠a )(3)指数函数模型:=+x y ba c (,,a b c 为常数,0≠b ,0>a 且1≠a )(4)对数函数模型:log =+a y m x n (,,m a n 为常数,0≠m ,0>a 且1≠a )(5)幂函数模型:=+n y ax b (,a b 为常数,0≠a )(6)分段函数模型:,,+<⎧=⎨+≥⎩ax b x my cx d x m .2、建立函数模型时,求函数解析式的方法(1)待定系数法:已知条件中给出了含参数的函数解析式或根据已知条件可确定函数的模型,这种情况下,运用待定系数法求出解析式中的相关参数,就可以确定函数的解析式.(2)归纳法:先给自变量一些特殊值,计算出相应函数值,从中发现规律,在推广到一般情形,从而得到函数的解析式.(3)方程法:用x 表示自变量或其他相关量,根据问题的实际意义,运用已掌握的数学、物理的方面的知识,列出函数的解析式,此种方法形式上与列方程解应用题相仿,故称为方程法,实际上函数的解析式就是关于,x y 的方程.3、用函数模型求解应用问题的四个步骤(1)审题:弄清题意,分清条件和结论,理顺数量关系,初步选择模型;(2)建模:将自然语言化为数学语言,将文字语言转化为符号语言,利用数学知识建立相应的数学模型;(3)求模:求解数学模型,得出数学模型;(4)还原:将数学结论还原为实际问题.知识点2拟合函数模型的建立与求解1、数学建模:研究实际问题时,要深入调查,了解对象信息,给出简化假设,用数学的符号和语言,把它表述为数学式子(也就是数学模型),然后计算得到模型的结果,并进行检验,最后解释实际问题.这个建立数学模型的全过程就成为数学建模.2、函数拟合:根据收集的数据或给出的数据画出散点图,然后选择函数模型并求出函数解析式,再进行拟合、比较,从而选出最恰当的函数模型的过程,称为函数拟合(或数据拟合).3、函数拟合与预测的一般步骤(1)通过原始数据、表格,绘出散点图;(2)通过观察散点图,画出拟合直线或拟合曲线;(3)求出拟合直线或拟合曲线的函数关系式;(4)根据拟合误差要求判断,选择最佳的拟合函数;(5)利用选取的拟合函数进行预测;(6考点一:指数型函数模型的应用例1.(23-24高一上·河北唐山·月考)某灭活疫苗的有效保存时间T (单位:h )与储藏的温度t (单位:C ︒)满足的函数关系为e kt b T +=(k ,b 为常数),超过有效保存时间,疫苗将不能使用.若在0C ︒时的有效保存时间是1080h ,在10C ︒时的有效保存时间是120h ,则该疫苗在15C ︒时的有效保存时间是()A .15hB .30hC .40hD .60h【答案】C【解析】由题意知1080e b =,1010120e e e k b k b +==⋅,所以()21051201ee 10809kk===,所以51e 3k =,所以151e 27k=,所以15151ee e 10804027k b k b +=⋅=⨯=.故选:C .【变式1-1】(23-24高一下·河北石家庄·月考)某造纸企业的污染治理科研小组积极探索改良工艺,已知第n 次改良工艺后排放的废水中含有的污染物数量n r (3g/m )满足函数模型()0.2512.250.043n n r -=-⨯(n *∈N ),其中n 为改良工艺的次数,假设废水中含有的污染物数量不超过30.25g/m 时符合废水排放标准,若该企业排放的废水符合排放标准,则改良工艺的次数最少要()(参考数据:lg 20.30≈,lg 30.48≈)A .14次B .15次C .16次D .17次【答案】C【解析】()0.2512.250.043n n r -=-⨯,由0.25n r ≤,得()0.251350n -≥,即()lg500.251lg3n -≥,得()42lg2115.17lg3n -≥+≈,又*n ∈N ,所以16n ≥,故若该企业排放的废水符合排放标准,则改良工艺的次数最少要16次.故选:C【变式1-2】(23-24高一下·湖北·1θ℃,空气的温度是0θ℃,则t min 后该物体的温度θ℃可由公式4010()e tθθθθ-=+-求得.若将温度分别为100℃和40℃的两块物体放入温度是20℃的空气中冷却,要使得这两块物体的温度之差不超过10℃,至少要经过()(取:ln 20.69=,ln 3 1.10=)A .4.14minB .5.52minC .6.60minD .7.16min【答案】D【解析】100℃的物体放入20℃的空气中冷却t min 后的温度是422080e tθ-=+,40℃的物体放入20℃的空气中冷却t min 后的温度是432020e t θ-=+,要使得这两块物体的温度之差不超过10℃,则42360e 10tθθ--=≤,解得4ln 64(ln 2ln 3)7.16t ≥=+=,所以至少要经过7.16min.故选:D【变式1-3】(23-24高一下·海南·月考)指数函数模型在生活生产中应用广泛,如在疾病控制与统计、物理学、生物学、人口预测等问题上都可以应用其进行解决.研究发现,某传染病传播累计感染人数I 随时间x (单位:天)的变化规律近似有如下的函数关系:0e kxI I =,其中0,I k 为常数,0I 为初始感染人数.若前3天感染人数累计增加了21%,则感染人数累计增加80%需要的时间大约为()(参考数据:ln3 1.1,ln5 1.6,ln10 2.3≈≈≈,ln11 2.4≈)A .10.5天B .9天C .8天D .6天【答案】B【解析】当3x =时,感染人数累计增加了21%,则()300e 10.21kI I I ==+,所以3e 1.21k =,则3ln1.212ln1.1k ==,所以2ln1.13k =,所以感染人数累计增加80%可得()00e 10.8kxI I I ==+,则2ln1.13e1.8x ⎛⎫ ⎪⎝⎭=,此时2ln1.1ln1.83x ⎛⎫= ⎪⎝⎭,所以9ln3ln1.8332ln 3ln 5321.1 1.659112ln1.122ln11ln102 2.4 2.3ln 10x -⨯-=⋅=⋅=⋅≈⨯=--,故感染人数累计增加80%需要的时间大约为9天.故选:B.考点二:对数型函数模型的应用例2.(23-24高一上·北京顺义·期末)燕子每年秋天都要从北方飞向南方过冬.专家发现两岁燕子的飞行速度v (单位:m /s )可以表示为25log 10Qv =,其中Q 表示燕子耗氧量的单位数.某只两岁燕子耗氧量的单位数为1Q 时的飞行速度为1v ,耗氧量的单位数为2Q 时的飞行速度为2v ,若()217.5m /s v v -=,则12Q Q 的值为()ABC.D.4【答案】D【解析】因为217.5v v -=,所以127.5v v -=-所以3121122222235log 5log 7.5log 2101024Q Q Q Q Q Q --=-⇒=-⇒===,故选:D 【变式2-1】(23-24高一下·广东茂名·月考)中国的5G 技术领先世界,5G 技术的数学原理之一便是著名的香农公式2log 1S C W N ⎛⎫=+ ⎪⎝⎭,它表示在受噪声干扰的信道中,最大信息传递速率C 取决于信通带宽W 、信道内信号的平均功率S 、信道内部的高斯噪声功率N 的大小,其中SN叫做信噪比.当信噪比比较大时,公式中真数中的1可以忽略不计,按照香农公式,由于技术提升,带宽W 在原来的基础上增加20%,信噪比S N从1000提升至5000,则C 大约增加了()(附:lg 20.3010≈)A .48%B .37%C .28%D .15%【答案】A【解析】由题意可得,当1000SN=时,12log 1000C W =,当5000SN=时,221.2log 5000C W =,所以()2221226lg1000lg 51.2log 50006log 50006lg 5000log 10005log 10005lg100015C W C W +====()231lg 282lg 2820.30101.48555+---⨯==≈≈,所以C 的增长率约为0048.故选:A【变式2-2】(23-24高一下·贵州遵义·月考)噪声污染问题越来越受到重视.用声压级来度量声音的强弱,定义声压级020lg p pL p =⨯,其中常数(0)p p > 是听觉下限阈值,p 是实际声压.下表为不同声源的声压级.已知在距离燃油汽车、混合动力汽车、电动汽车10m 处测得实际声压分别为123,,p p p ,则()A .12p p <B .2310p p >C .30100p p =D .12100p p >【答案】C【解析】对于燃油汽车,得106020lg90p p ≤⨯≤,则92010100010p p p ≤≤,对于混合动力汽车,有25020lg 60p p ≤⨯≤,则52020101000p p p ≤≤,则12p p ≥,A 错误;对于电动汽车,有320lg40p p ⨯=,即30100p p =,C 正确;由以上可知2310p p ≤,B 错误;又5922220011001010p p p p ≥=≥,D 错误,故选:C【变式2-3】(23-24高一上·山东菏泽·月考)里氏震级M 的计算公式:0lg lg M A A =-,其中A 是测震仪记录的地震曲线的最大振幅,0A 是相应的标准地震的振幅.假设在一次地震中,测震仪记录的最大振幅是1000,此时标准地震的振幅为0.001,则此次地震的震级为________级;9级地震的最大振幅是5级地震最大振幅的_______倍.()A .6,1000B .4,1000C .6,10000D .4,10000【答案】C【解析】根据题意,假设在一次地震中,测震仪记录的最大振幅是1000,此时标准地震的振幅为0.001,则()0lg lg lg1000lg0.001=336M A A =-=---=;设9级地震的最大的振幅是x ,5级地震最大振幅是y ,则有9lg lg 0.001,5lg lg 0.001x y =-=-,解得6210,10x y ==,所以62101000010x y ==,故选:C.考点三:根据增长率选择函数模型例3.(23-24高一上·江苏苏州·月考)在一次物理实验中,某同学采集到如下一组数据:x 0.50.99 2.01 3.98y﹣0.990.010.982.00在四个函数模型中,最能反映x ,y 函数关系的是()A .2y x =B .21y x =-C .22y x =-D .2log y x=【答案】D【解析】对于A ,当0.5x =时,1y =,与表格相差过大,故排除,对于B ,当 2.01x =时,y =3.0401,与表格相差过大,故排除,对于C ,当 2.01x =时,y =2.02,与表格相差过大,故排除,对于D ,由对数函数性质知,表格里的数与2log y x =上的点相差较小,故正确.故选:D【变式3-1】(23-24高一上·陕西西安·月考)2006年至2018年北京市电影放映场次(单位:万次)的情况如图所示,下列函数模型中,无法近似描述这13年间电影放映场次逐年变化规律的是()A .2()f x ax bx c =++B .()e x f x a b =+C .()e ax bf x +=D .()ln f x a x b=+【答案】D【解析】由图知:电影放映场次逐年递增,且增速有变快的趋势,函数2()f x ax bx c =++、()e x f x a b =+、()e ax b f x +=均可以描述变化规律,而()ln f x a x b =+可以描述逐年递增,但增速有变慢的趋势,故不能描述变化规律.故选:D【变式3-2】(23-24高一上·江苏·月考)若三个变量1y 、2y 、3y ,随着变量x 的变化情况如下表.则关于分别呈函数模型:a x q +、a y t kx =+变化的变量依次是()A .1y 、2y 、3y B .3y 、2y 、1y C .1y 、3y 、2y D .3y 、1y 、2y 【答案】B【解析】由表可知,2y 随着x 的增大而迅速的增大,是指数函数型的变化,3y 随着x 的增大而增大,但是变化缓慢,是对数函数型的变化,1y 相对于2y 的变化要慢一些,是幂函数型的变化.故选:B.【变式3-3】(22-23高一上·广东揭阳·期末)某同学参加研究性学习活动,得到如下实验数据:x 1.0 2.0 4.08.0y0.010.992.023现欲从理论上对这些数据进行分析并预测,则下列模拟函数合适的是()A .2log y x =B .2xy =C .223y x x =+-D .23y x =-【答案】A【解析】由表中的数据看出:y 随x 的增大而增大,且增大的幅度越来越小,而函数2x y =,223y x x =+-在()0+∞,的增大幅度越来越大,函数23y x =-呈线性增大,只有函数2log y x =与已知数据的增大趋势接近,故选:A.考点四:拟合函数模型的建立例4.(23-24高一上·河南南阳·月考)数据显示,某IT 公司2023年2月—6月的月收入情况如下表所示:月份23456月收入(万元)1.42.565.311121.3根据上述数据,在建立该公司2023年月收入y (万元)与月份x 的函数模型时,给出两个函数模型12y x =与23xy =供选择.(1)你认为哪个函数模型较好,并简单说明理由;(2)试用你认为较好的函数模型,分析大约从第几月份开始,该公司的月收入会超过100万元?(参考数据:lg20.3010≈,lg30.4771≈)【答案】(1)用函数23xy =这一模型较好,理由见解析;(2)大约从第9月份开始,该公司的月收入会超过100万元【解析】(1)对已知数据进行描点:由图可知点()2,1.4,()3,2.56,()4,5.31,()5,11,()6,21.3基本上是落在函数23x y =的图像的附近,因此用函数23xy =这一模型较好(2)解法一:当21003x>时,即2300x >,∴lg2lg300x >,即lg22lg3x >+,∴2lg320.47718.23lg20.3010x ++>=≈,故大约从第9月份开始,该公司的月收入会超过100万元.解法二:当21003x>时,即2300x >,∵82256300=<,92512300=>,故大约从第9月份开始,该公司的月收入会超过100万元【变式4-1】(23-24高一上·江苏·月考)2021年新冠肺炎疫情仍在世界好多国家肆虐,并且出现了传染性更强的“德尔塔”、“拉姆达”、“奥密克戎”变异毒株,尽管我国抗疫取得了很大的成绩,疫情也得到了很好的遏制,但由于整个国际环境的影响,时而也会出现一些散发病例,故而抗疫形势依然艰巨,日常防护依然不能有丝毫放松.某科研机构对某变异毒株在一特定环境下进行观测,每隔单位时间T 进行一次记录,用x 表示经过单位时间的个数,用y 表示此变异毒株的数量,单位为万个,得到如下观测数据:若该变异毒株的数量单位:万个与经过)*N 个单位时间T 的关系有两个函数模型2ypx q =+与)01(x y ka k a =>>,可供选择.( 2.236≈ 2.449≈,lg 20.301≈,lg 60.778.≈(1)判断哪个函数模型更合适,并求出该模型的解析式;(2)求至少经过多少个单位时间该病毒的数量不少于1亿个.【答案】(1)选择函数(0,1)=>>x y ka k a 更合适,解析式为2x y =⋅;(2)11个【解析】(1)若选2y px q =+,将2x =,10y =和4x =,50y =代入可得,4101650p q p q +=⎧⎨+=⎩,解得103103p q ⎧=⎪⎪⎨⎪=-⎪⎩,故2101033y x =-,将6x =代入2101033y x =-,250y ≠,不符合题意;若选(0,1)=>>x y ka k a ,将2x =,10y =和4x =,50y =代入可得,241050ka ka ⎧=⎨=⎩,解得2k a =⎧⎪⎨=⎪⎩,故2x y =⋅,将6x =代入2x y =⋅可得,250y =,符合题意;综上所述,选择函数(0,1)=>>x y ka k a更合适,解析式为2.x y =⋅(2)设至少需要x 个单位时间,则10000x ≥,即5000x ≥,两边同时取对数可得,lg53x ≥+,则332210.5811lg 5(1lg 2)22x ≥+=+≈-,*N x ∈ ,x ∴的最小值为11,故至少经过11个单位时间该病毒的数量不少于1亿个.【变式4-2】(22-23高一上·福建南安·月考)在密闭培养环境中,某类细菌的繁殖在初期会较快,随着单位体积内细菌数量的增加,繁殖速度又会减慢.在一次实验中,检测到这类细菌在培养皿中的数量y (单位:百万个)与培养时间x (单位:小时)的关系为:x234568y3.53.844.164.34.5为了描述从第2小时开始细菌数量随时间变化的关系,现有以下三种模型供选择:①2log y a x b =+,②y b =,③2x a y b -=+.(1)选出你认为最符合实际的函数模型,并说明理由;(2)利用()4,4和()8,4.5这两组数据求出你选择的函数模型的解析式,并预测从第2小时开始,至少再经过多少个小时,细菌数量达到5百万个.【答案】(1)2log y a x b =+,理由见解析;(2)21log 32y x =+,至少再经过14小时,细菌数量达到5百万个.【解析】(1)依题意,所选函数必须满足三个条件:(ⅰ)定义域包含[)2,+∞;(ⅱ)增函数;(ⅲ)随着自变量的增加,函数值的增长速度变小.因为函数y b =的定义域为[)3,+∞,2x =时无意义;函数2x a y b -=+随着自变量的增加,函数值的增长速度变大.函数2log y a x b =+可以同时符合上述条件,所以应该选择函数2log y a x b =+.(2)依题意知22log 424log 83 4.5a b a b a b a b +=+=⎧⎨+=+=⎩,解得123a b ⎧=⎪⎨⎪=⎩,所以21log 32y x =+.令21log 352y x =+≥,解得16x ≥.所以,至少再经过14小时,细菌数量达到5百万个.【变式4-3】(22-23高一上·贵州黔东南·期末)1766年人类已经发现太阳系中的行星有金星、地球、火星、木星和土星.科学家在研究了各行星离太阳的距离(单位:AU ,AU 是天文学中计量天体之间距离的一种单位)的排列规律后,预测在火星和木星之间应该还有一颗未被发现的行星(后被命名为谷神星)存在,并按离太阳的距离从小到大列出了如下表所示的数据:行星编号()x 1(金星)2(地球)3(火星)4()5(木星)6(土星)离太阳的距离()y 0.7 1.0 1.6 5.2110.01(1)为了描述行星离太阳的距离y 与行星编号x 之间的关系,根据表中已有的数据画出散点图,并根据散点图的分布状况,从以下三种模型中选出你认为最符合实际的一种函数模型(直接给出结论);①y ax b =+;②2x y a b =⨯+;③2log y a x b =+.(2)根据你的选择,依表中前三组数据求出函数解析式,并用剩下的两组数据检验模型的吻合情况;(误差小于0.2的为吻合)(3)请用你求得的模型,计算谷神星离太阳的距离.【答案】(1)散点图见解析,模型②符合题意(2)*0.1520.4()x y x =⨯+∈N ,模型与数据吻合;(3)2.8AU【解析】(1)散点图如图所示:根据散点图可知,模型②符合题意;(2)将()1,0.7,()2,1,()3,1.6分别代入2x y a b =⨯+,得12320.7212 1.6a b a b a b ⎧⨯+=⎪⨯+=⎨⎪⨯+=⎩,解得0.15a =,0.4b =,所以*0.1520.4()x y x =⨯+N 当5x =时,50.1520.4 5.2y =⨯+=,误差5.21 5.20.010.2-=<,吻合,当6x =时,60.1520.410y =⨯+=,误差10.01100.010.2-=<,吻合,所以,模型与数据吻合;(3)当4x =时,40.1520.4 2.8y =⨯+=,即谷神星距太阳的距离为2.8AU.一、单选题1.(23-24高一下·云南·月考)在一个空房间中大声讲话会产生回音,这个现象叫做“混响”.用声强来度量声音的强弱,假设讲话瞬间发出声音的声强为0W ,则经过t 秒后这段声音的声强变为()0e tW t W τ-=,其中τ是一个常数.把混响时间R T 定义为声音的声强衰减到原来的610-所需的时间,则R T 约为(参考数据:ln20.7,ln5 1.6≈≈)()A .6.72τB .8.3τC .13.8τD .148τ【答案】C【解析】由题意,()6010R W T W -=,即610R Tτ--=e ,等号两边同时取自然对数得6lne ln10R T τ--=,即6ln10R Tτ-=-,所以()6ln106ln2ln513.8R T τττ=⨯=⨯⨯+≈.故选:C .2.(23-24高一下·湖南衡阳·月考)某企业2018年全年投入研发资金150万元,为激励创新,该企业计划今后每年投入的研发资金比上年增长8%,则该企业全年投入的研发资金开始超过200万元的年份是()(参考数据:lg1.080.033lg 20.301lg 30.477≈≈≈,,)A .2021B .2022C .2023D .2024【答案】B【解析】设经过n 年该企业全年投入的研发资金开始超过200万元,则150180(%2)0n ⨯>+,于是()418%3n+>,即 1.084lg 4lg 32lg 2lg 320.3010.477log 3.83lg1.08lg1.080.033n --⨯->==≈≈,则4n =,所以该企业全年投入的研发资金开始超过200万元的年份是2022.故选:B3.(23-24高一下·安徽芜湖·月考)血氧饱和度是呼吸循环的重要生理参数.人体的血氧饱和度正常范围是95%100%~,当血氧饱和度低于90%时,需要吸氧治疗,在环境模拟实验室的某段时间内,可以用指数模型:()0e KtS t S =描述血氧饱和度()S t 随给氧时间t (单位:时)的变化规律,其中0S 为初始血氧饱和度,K为参数.已知060%S =,给氧1小时后,血氧饱和度为80%.若使得血氧饱和度达到90%,则至少还需要给氧时间(单位:时)为()(精确到0.1,参考数据:ln20.69,ln3 1.10≈≈)A .0.3B .0.5C .0.7D .1.5【答案】B【解析】设使得血氧饱和度达到正常值,给氧时间至少还需要1t -小时,由题意可得60%e 80%,60%e 90%K Kt ==,两边同时取自然对数并整理,得804lnln ln4ln32ln2ln3603K ===-=-,903lnln ln3ln2602Kt ===-;则ln3ln2 1.100.691.52ln2ln320.69 1.10t --=≈≈-⨯-,则给氧时间至少还需要0.5小时.故选:B4.(23-24高一上·湖南邵阳·月考)青少年视力是社会普遍关注的问题,视力情况可借助视力表测量,通常用五分记录法和小数记录法记录视力数据,五分记录法的数据L 和小数记录法的数据V 满足lg L a b V =+(其中a ,b 为常数),已知某同学视力的五分记录法的数据为3.0时小数记录法的数据为0.01,五分记录法的数据为4.0时小数记录法的数据为0.1,则()A .5a =,b lge =B .5a =,1b =C .5a =,ln10b =D .1a =,5b =【答案】B【解析】由五分记录法的数据为3.0时小数记录法的数据为0.01,五分记录法的数据为4.0时小数记录法的数据为0.1,则3lg0.014lg0.1a b a b =+⎧⎨=+⎩,解得15b a =⎧⎨=⎩.故选:B.5.(23-24高一上·北京·月考)在不考虑空气阻力的条件下,火箭的最大速度v (单位:km /s 与燃料的质量M (单位:kg ),火箭(除燃料外)的质量m (单位:kg )的函数关系是2000ln 1Mv m ⎫⎛=+⎪⎝⎭.当燃料质量与火箭质量的比值为0t 时,火箭的最大速度可达到0km /s v .若要使火箭的最大速度达到02km /s v ,则燃料质量与火箭质量的比值应为()A .22t B .2002t t +C .02t D .2002t t +【答案】B【解析】设燃料质量与火箭质量的比值为x 时,火箭的最大速度达到02km /s v ,根据题意得0002000ln(1),22000ln(1)v t v x =+=+,所以04000ln(1)2000ln(1)t x +=+,所以200ln(1)2ln(1)ln(1)x t t +=+=+,可得201(1)x t +=+,所以2002x t t =+,即要使火箭的最大速度达到02km /s v ,则燃料质量与火箭质量的比值应为2002t t +.故选:B.6.(23-24高一上·全国·月考)有一组实验数据如下:t 1.993.004.005.106.12V1.54.047.51218.01现准备用下列函数中的一个近似地表示这些数据满足的规律,其中最接近的一个是()A .2log V t =B .12log V t=C .212t V -=D .22V t =-【答案】C【解析】根据表中数据,作出数据的散点图,如图所示,结合选项,函数2log V t =的增长速度越来越缓慢,不符合题意;函数12log V t =随着t 的增大,V 不断减小,不符合题意;函数212t V -=的增长速度越来越快,符合题意;函数22V t =-增长速度不变,不符合题意;所以最接近的一个函数是212t V -=,故选:C二、多选题7.(23-24高三下·江西·月考)土壤是自然界中最大的生态系统,具有十分重要的作用.利用绿色化学药剂来降低土壤中的重金属含量是改善土壤环境的一项重要工作,若在使用绿色化学药剂降低土壤中重金属含量的过程中,重金属含量m (单位:mg /L)与时间t (单位:h )满足关系式()e btam t =,已知处理1h 后,重金属含量减少20%,则()(lg 20.301≈)A .a 表示未经处理时土壤中的重金属含量B .b 的值为ln 0.8C .使土壤中的重金属含量减少一半需要处理约2hD .函数()m t 为减函数【答案】AD【解析】当0=t 时,()m t a =,故a 表示未经处理时土壤中的重金属含量,A 正确,当1t =时,(120%)e b a a --=,e 0.8b -∴=①,故ln 0.8ln 0.8b b -=⇒=-,B 错误,(150%)e bt a a --=,0.5(e )b t -∴=②,联立①②解得,0.50.8t =,则0.8lg0.5lg 2lg2lg20.301log 0.5 3.103lg0.8lg 4lg52lg2(lg10lg2)3lg2130.3011t ---=====≈≈--⨯----,故使土壤中的重金属含量减少一半需要处理约3h .C 错误,由于ln 0.80b =->,0a >,所以e bt y =单调递增,因此()e btam t =单调递减,D 正确,故选:AD 8.(22-23高一下·广西柳州·月考)如图,某池塘里浮萍的面积y (单位:2m )与时间t (单位:月)的关系为t y a =(0a >,且1a ≠).下列说法正确的是()A .浮萍每月的增长率为2B .第5个月时,浮萍面积就会超过230mC .浮萍每月增加的面积都相等D .若浮萍蔓延到22m ,23m ,26m 所经过的时间分别是1t ,2t ,3t ,则123t t t +=【答案】BD【解析】由图可得,函数过点()1,2,则12a =,即2a =,故2t y =.对于A :浮萍每月的增长率为()122122122tt t t t+--==,故A 错误;对于B :第5个月时,即5t =时,萍的面积523230y ==>,故B 正确;对于C :第二个月比第一个月增加2121222y y -=-=,第三个月比第二个月增加3232224y y -=-=,即2132y y y y -≠-,故C 错误;对于D :由题意可得31222,32,62t t t ===,所以212232log lo 6g 3,l ,og 2t t t ===,则2123222log 2log 3log 23log 6t t t +=+=⨯==,故D 正确.故选:BD.三、填空题9.(22-23高一上·浙江台州·月考)声强级(单位:dB )由公式11210lg 10I L -⎛⎫= ⎪⎝⎭给出,其中I 为声强(单位:2W/m ).平时常人交谈时声强约为6210W/m -,则其声强级是dB .【答案】60【解析】由题意可得()16612121001061010I L ---⎛⎫⎛⎫==== ⎪ ⎪⎝⎭⎝⎭.故答案为:6010.(23-24高三上·云南楚雄·期中)生物学家为了了解某药品对土壤的影响,常通过检测进行判断.已知土壤中某药品的残留量y (mg )与时间t (年)近似满足关系式212log 1y a t =+(0a ≠),其中a 是残留系数,则大约经过年后土壤中该药品的残留量是2年后残留量的14. 1.41≈,答案保留一位小数)【答案】7.5【解析】当2t =时,212log =221y a a =+,由2121log 12a a t =+,得17.5t =≈故答案为:7.511.(23-24高一下·安徽·开学考试)中国茶文化源远流长,博大精深,茶水的口感与茶叶的类型和水的温度有关,某种绿茶用90℃的水泡制,再等到茶水温度降至50℃时饮用,可以产生最佳口感.为了控制水温,某研究小组联想到牛顿提出的物体在常温下的温度变化冷却规律:设物体的初始温度是0T ,经过min t 后的温度是T ,则()()0ee 2.71828t hT T T T αα--=-≈ ,其中T α表示环境温度,h 为常数.该研究小组经过测量得到,刚泡好的绿茶水温度是90℃,放在10℃的室温中,10min 以后茶水的温度是70℃,在上述条件下,大约需要再放置min 能达到最佳饮用口感.(结果精确到0.1,参考数据:ln 20.7≈,ln 3 1.1≈)【答案】13.3【解析】由题意得,()1070109010eh--=-,即103e4h-=,则102ln 2ln 3h =-.设大约需要再放置min t 能达到最佳饮用口感,则()1050109010e t h+--=-,即101e2t h+-=,则10ln 2t h +=,所以102ln 2ln 310ln 2t -=+,解得10ln 310ln 2101.1100.74013.32ln 2ln 320.7 1.13t -⨯-⨯===≈-⨯-.故答案为:13.3.四、解答题12.(22-23高一上·重庆·月考)为了迎接中国共产党第二十次全国代表大会胜利召开,某商场决定将一批进价为40元/件的商品降价出售,在市场试销中发现,此商品的销售单价x (单位:元)与日销售量y (单位:件)之间有如下表所示的关系.xL 40505560L yL603015L(1)根据表中提供的数据描出实数对(),x y 的对应点,确定y 与x 的一个函数关式()y f x =(2)设经营此商品的日销售利润为()L x (单位:元),根据上述关系,写出()L x 关于x 的函数解析式,并求日销售利润的最大值.【答案】(1)()3180,4060f x x x =-+≤≤(2)()()233004060L x x x x =-+-≤≤,所获日销售利润最大值为300元.【解析】(1)观察表格中,x y 的变化情况,猜测()f x 为一次函数,故设(),(,f x kx b k b =+为常数),则6040060k b k b =+⎧⎨=+⎩,解得:3180k b =-⎧⎨=⎩,则()3180,4060f x x x =-+≤≤,把点()()50,30,55,15代入函数解析式,检验成立;所以()3180,4060f x x x =-+≤≤.(2)结合(1)中结论可得日销售利润为:()()()()240318033007200,4060L x x x x x x =--+=-+-≤≤,则()23(50)300L x x =--+,所以当50x =时,()L x 取得最大值300,综上:()()233007200,4060L x x x x =-+-≤≤;当销售单价为50元时,所获日销售利润最大值为300元.13.(22-23高一上·山东济南·期末)“宸宸”“琮琮”“莲莲”是2023年杭州亚运会吉祥物,组合名为“江南忆”,出自唐朝诗人白居易的名句“江南忆,最忆是杭州”,它融合了杭州的历史人文、自然生态和创新基因.某中国企业可以生产杭州亚运会吉祥物“宸宸”“琮踪”“莲莲”,根据市场调查与预测,投资成本x (百万元)与利润y (百万元)的关系如下表:x (百万元)L 2L 4L 12L y (百万元)L0.4L0.8L12.8L当投资成本x 不高于12(百万元)时,利润y (百万元)与投资成本x (百万元)的关系有两个函数模型2(0)y Ax B A =+>与(0,1)x y Ta T a =>>可供选择.(1)当投资成本x 不高于12(百万元)时,选出你认为最符合实际的函数模型,并求出相应的函数解析式;(2)当投资成本x 高于12(百万元)时,利润y (百万元)与投资成本x (百万元)满足关系()()0.2121712.8y x x =---+,结合第(1)问的结果,要想获得不少于一千万元的利润,投资成本x (百万元)应该控制在什么范围.(结果保留到小数点后一位)(参考数据:lg20.30≈)【答案】(1)最符合实际的函数模型为(0,1)x y Ta T a =>>,解析式为15xy =⋅;(2)[]11.3,19【解析】(1)最符合实际的函数模型为(0,1)x y Ta T a =>>,理由如下:若选函数2(0)y Ax B A =+>,将点()()2,0.4,4,0.8代入可得40.4160.8A B A B +=⎧⎨+=⎩,解得14,3015A B ==,所以2143015y x =+,当12x =时,可得y =,与实际数据差别较大;若选函数(0,1)x y Ta Ta =>>,将点()()2,0.4,4,0.8代入可得240.40.8Ta Ta ⎧=⎨=⎩,解得15a T ==,所以15xy =,当12x =时,可得12.08y =,符合题意,综上可得,最符合实际的函数模型为15xy =⋅.(2)由题意知,利润y 与投资成本x 满足关系式()()1,01250.2121712.8,12x x y x x x ⎧⋅<≤⎪=⎨⎪---+>⎩,要获得不少于一个亿的利润,即10y ≥,当012x <≤时,即1105x≥,即2lg 502lg 52log 502211.3lg 2lg 2x -≥⋅=⋅=⋅≈,又因为012x <≤,所以11.312x ≤≤;当12x >时,即()()0.2121712.810x x ---+≥,可得2291900x x -+≤,解得1019x ≤≤,又因为12x >,所以1219x <≤,综上可得,11.319x ≤≤,所以要获得不少于一个亿的利润,投资成本x (千万)的范围是[]11.3,19.。
课后限时集训(十二) 函数模型及其应用(建议用时:60分钟) A 组 基础达标一、选择题1.某新产品投放市场后第一个月销售100台,第二个月销售200台,第三个月销售400台,第四个月销售790台,则下列函数模型中能较好地反映销量y 与投放市场的月数x 之间关系的是( ) A .y =100x B .y =50x 2-50x +100 C .y =50×2xD .y =100log 2 x +100C [根据函数模型的增长差异和题目中的数据可知,应为指数函数模型.故选C.]2.某市生产总值连续两年持续增加.第一年的增长率为p ,第二年的增长率为q ,则该市这两年生产总值的年平均增长率为( ) A.p +q2B.p +1q +1-12C.pqD.p +1q +1-1D [设年平均增长率为x ,原生产总值为a ,则a (1+p )(1+q )=a (1+x )2,解得x =1+p1+q -1,故选D.]3.(2017·北京高考)根据有关资料,围棋状态空间复杂度的上限M 约为3361,而可观测宇宙中普通物质的原子总数N 约为1080.则下列各数中与M N最接近的是(参考数据:lg 3≈0.48)( ) A .1033B .1053C .1073D .1093D [由题意,lg M N =lg 33611080=lg 3361-lg 1080=361lg 3-80lg 10≈361×0.48-80×1=93.28.又lg 1033=33,lg 1053=53,lg 1073=73,lg 1093=93, 故与MN最接近的是1093. 故选D.]4.血药浓度(Plasma Concentration)是指药物吸收后在血浆内的总浓度.药物在人体内发挥治疗作用时,该药物的血药浓度应介于最低有效浓度和最低中毒浓度之间.已知成人单次服用1单位某药物后,体内血药浓度及相关信息如图所示.根据图中提供的信息,下列关于成人使用该药物的说法中不正确的是( )A .首次服用该药物1单位约10分钟后,药物发挥治疗作用B .每次服用该药物1单位,两次服药间隔小于2小时,一定会产生药物中毒C .每间隔5.5小时服用该药物1单位,可使药物持续发挥治疗作用D .首次服用该药物1单位3小时后,再次服用该药物1单位,不会发生药物中毒 D [结合图象易知A ,B ,C 均正确,D 选项中的描述会中毒,故选D.] 5.某市家庭煤气的使用量x (m 3)和煤气费f (x )(元)满足关系f (x )=⎩⎪⎨⎪⎧C ,0<x ≤A ,C +Bx -A ,x >A .已知某家庭2018年前三个月的煤气费如下表:月份 用气量 煤气费 一月份 4 m 34元 二月份 25 m 3 14元 三月份35 m 319元若四月份该家庭使用了20 m 3的煤气,则其煤气费为( ) A .11.5元 B .11元 C .10.5元D .10元A [根据题意可知f (4)=C =4,f (25)=C +B (25-A )=14,f (35)=C +B (35-A )=19,解得A =5,B =12,C =4,所以f (x )=⎩⎪⎨⎪⎧4,0<x ≤5,4+12x -5,x >5,所以f (20)=4+12(20-5)=11.5,故选A.] 二、填空题6.拟定甲、乙两地通话m 分钟的电话费(单位:元)由f (m )=1.06(0.5[m ]+1)给出,其中m >0,[m ]是不超过m 的最大整数(如[3]=3,[3.7]=3,[3.1]=3),则甲、乙两地通话 6.5分钟的电话费为________元. 4.24 [∵m =6.5, ∴[6.5]=6,∴f (6.5)=1.06(0.5×6+1)=4.24.]7.在如图所示的锐角三角形空地中,欲建一个面积最大的内接矩形花园(阴影部分),则其边长x 为________m.20 [设内接矩形另一边长为y ,则由相似三角形性质可得x 40=40-y40,解得y =40-x ,所以面积S =x (40-x )=-x 2+40x =-(x -20)2+400(0<x <40), 当x =20时,S max =400.]8.已知投资x 万元经销甲商品所获得的利润为P =x4;投资x 万元经销乙商品所获得的利润为Q =a2x (a >0).若投资20万元同时经销这两种商品或只经销其中一种商品,使所获得的利润不少于5万元,则a 的最小值为________.5 [设投资乙商品x 万元(0≤x ≤20),则投资甲商品(20-x )万元.利润分别为Q =a 2 x (a >0),P =20-x4,因为P +Q ≥5,0≤x ≤20时恒成立, 则化简得a x ≥x2,0≤x ≤20时恒成立. (1)x =0时,a 为一切实数; (2)0<x ≤20时,分离参数a ≥x2,0<x ≤20时恒成立,所以a ≥5,a 的最小值为 5.] 三、解答题9.网店和实体店各有利弊,两者的结合将在未来一段时期内,成为商业的一个主要发展方向.某品牌行车记录仪支架销售公司从2018年1月起开展网络销售与实体店体验安装结合的销售模式.根据几个月运营发现,产品的月销售x 万件与投入实体店体验安装的费用t 万元之间满足x =3-2t +1函数关系式.已知网店每月固定的各种费用支出为3万元,产品每1万件进货价格为32万元,若每件产品的售价定为“进货价的150%”与“平均每件产品的实体店体验安装费用的一半”之和,求该公司最大月利润是多少万元. [解] 由题知t =23-x-1,(1<x <3),所以月利润:y =⎝⎛⎭⎪⎫48+t 2x x -32x -3-t =16x -t 2-3=16x -13-x +12-3=45.5-⎣⎢⎡⎦⎥⎤163-x +13-x ≤45.5-216=37.5,当且仅当x =114时取等号,即月最大利润为37.5万元.10.某创业投资公司拟投资开发某种新能源产品,估计能获得投资收益的范围是[10,100](单位:万元).现准备制定一个对科研课题组的奖励方案:资金y (单位:万元)随投资收益x (单位:万元)的增加而增加且资金不超过5万元,同时资金不超过投资收益的20%.(1)若建立函数模型y =f (x )制定奖励方案,请你根据题意,写出奖励函数模型应满足的条件; (2)现有两个奖励函数模型:(ⅰ)y =120x +1;(ⅱ)y =log 2x -2.试分析这两个函数模型是否符合公司要求. [解] (1)设奖励函数模型为y =f (x ), 则该函数模型满足的条件是: ①当x ∈[10,100]时,f (x )是增函数; ②当x ∈[10,100]时,f (x )≤5恒成立.③当x ∈[10,100]时,f (x )≤x5恒成立.(2)(a)对于函数模型(ⅰ)y =120x +1, 它在[10,100]上是增函数,满足条件①;但当x =80时,y =5,因此,当x >80时,y >5,不满足条件②; 故该函数模型不符合公司要求.(b)对于函数模型(ⅱ)y =log 2x -2,它在[10,100]上是增函数,满足条件①,x =100时,y max =log 2 100-2=2log 2 5<5,即f (x )≤5恒成立.满足条件②,设h (x )=log 2x -2-15x ,则h ′(x )=log 2e x -15,又x ∈[10,100],所以1100≤1x ≤110,所以h ′(x )<log 2e 10-15<210-15=0,所以h (x )在[10,100]上是递减的, 因此h (x )<h (10)=log 210-4<0, 即f (x )≤x5恒成立,满足条件③, 故该函数模型符合公司要求.综上所述,函数模型(ⅱ)y =log 2x -2符合公司要求.B 组 能力提升1.(2019·武汉检测)某汽车销售公司在A ,B 两地销售同一种品牌的汽车,在A 地的销售利润(单位:万元)为y 1=4.1x -0.1x 2,在B 地的销售利润(单位:万元)为y 2=2x ,其中x 为销售量(单位:辆),若该公司在两地共销售16辆该种品牌的汽车,则能获得的最大利润是( ) A .10.5万元 B .11万元 C .43万元D .43.025万元C [设公司在A 地销售该品牌的汽车x 辆,则在B 地销售该品牌的汽车(16-x )辆,所以可得利润y =4.1x -0.1x 2+2(16-x )=-0.1x 2+2.1x +32=-110⎝⎛⎭⎪⎫x -2122+110×2124+32.因为x ∈[0,16]且x ∈N,所以当x =10或11时,总利润取得最大值43万元.]2.(2018·山西一模)如图,Rt△ABC 中,AB ⊥BC ,|AB |=6,|BC |= 2.若其顶点A 在x 轴上运动,顶点B 在y 轴的非负半轴上运动.设顶点C 的横坐标非负,纵坐标为y ,且直线AB 的倾斜角为θ,则函数y =f (θ)的图象大致是( )A BC DA [当θ=π时,y =2,排除B 和C ;当θ=0时,y 取得最小值-2,排除D ,故选A.] 3.某公司为激励创新,计划逐年增加研发资金投入,若该公司2018年全年投入的研发资金为300万元,在此基础上,每年投入的研发资金比上一年增长10%,则该公司全年投入的研发资金开始超过600万元的年份是________.(参考数据:lg 1.1=0.041,lg 2=0.301) 2026 [设从2018年后,第x 年该公司全年投入的研发资金为y 万元,则y =300×(1+10%)x,依题意得,300×(1+10%)x >600,即1.1x>2,两边取对数可得x >lg 2lg 1.1=0.3010.041≈7.3,则x ≥8,即该公司全年投入的研发资金开始超过600万元的年份是2026年.]4.(2019·湖北八校联考)已知某工厂每天固定成本是4万元,每生产一件产品成本增加100元,工厂每件产品的出厂价定为a 元时,生产x (x >0)件产品的销售收入是R (x )=-14x 2+500x (元),P (x )为每天生产x 件产品的平均利润(平均利润=总利润总产量).销售商从工厂以每件a元进货后,又以每件b 元销售,且b =a +λ(c -a ),其中c 为最高限价(a <b <c ),λ为销售乐观系数,据市场调查,λ由当b -a 是c -b ,c -a 的比例中项时来确定. (1)每天生产量x 为多少时,平均利润P (x )取得最大值?并求P (x )的最大值; (2)求乐观系数λ的值;(3)若c =600,当厂家平均利润最大时,求a 与b 的值.[解] (1)依题意设总利润为L (x ),则L (x )=-14x 2+500x -100x -40 000=-14x 2+400x -40000(x >0),∴P (x )=-14x 2+400x -40 000x=-14x -40 000x +400≤-200+400=200,当且仅当14x =40 000x,即x =400时等号成立.故当每天生产量为400件时,平均利润最大,最大值为200元. (2)由b =a +λ(c -a ),得λ=b -ac -a. ∵b -a 是c -b ,c -a 的比例中项, ∴(b -a )2=(c -b )(c -a ), 两边同时除以(b -a )2,得1=c -a -b -a b -a ·c -a b -a =⎝ ⎛⎭⎪⎫c -a b -a -1c -ab -a,∴1=⎝ ⎛⎭⎪⎫1λ-1·1λ,解得λ=5-12或λ=-5-12(舍去).故乐观系数λ的值为5-12.(3)∵厂家平均利润最大,∴a =40 000x +100+P (x )=40 000400+100+200=400.由b =a +λ(c -a ),结合(2)可得b -a =λ(c -a )=100(5-1), ∴b =100(5+3).故a 与b 的值分别为400,100(5+3).。