2019-2020学年惠州市数学高二(下)期末综合测试试题含解析
- 格式:doc
- 大小:1.17 MB
- 文档页数:16
杭州市2019-2020学年数学高二第二学期期末学业质量监测试题一、单选题(本题包括12个小题,每小题35,共60分.每小题只有一个选项符合题意) 1.设,则在下列区间中,使函数有零点的区间是( )A .B .C .D .【答案】D 【解析】试题分析:函数f (x )在区间[a ,b]上有零点,需要f (x )在此区间上的图像连续且两端点函数值异号,即f (a )f (b )≤0,把选择项中的各端点值代入验证可得答案D . 考点:零点存在定理2.函数()()sin 0,2f x A x A πωϕϕ⎛⎫=+><⎪⎝⎭的图象如图所示,为了得到()f x 的图象,则只要将()cos2g x x =的图象( )A .向左平移6π个单位长度 B .向右平移6π个单位长度 C .向左平移12π个单位长度D .向右平移12π个单位长度【答案】D 【解析】 【分析】先根据图象确定A 的值,进而根据三角函数结果的点求出求ϕ与ω的值,确定函数()f x 的解析式,然后根据诱导公式将函数化为余弦函数,再平移即可得到结果. 【详解】由题意,函数()()sin 0,2f x A x A πωϕϕ⎛⎫=+>< ⎪⎝⎭的部分图象,可得11,43124A T πππ==-=,即T π=,所以2ω=,再根据五点法作图,可得2122ππϕ⨯+=,求得3πϕ=,故()sin 23f x x π⎛⎫=+⎪⎝⎭.函数()y f x =的图象向左平移12π个单位,可得sin[2()]sin(2)1232y x x πππ=++=+ cos2x =的图象,则只要将()cos2g x x =的图象向右平移12π个单位长度可得()f x 的图象,故选:D . 【点睛】本题主要考查了三角函数sin()y A x ωϕ=+的图象与性质,以及三角函数的图象变换的应用,其中解答中熟记三角函数的图象与性质,以及三角函数的图象变换是解答的关键,着重考查了推理与运算能力,属于基础题.3.下列有关统计知识的四个命题正确的是( )A .衡量两变量之间线性相关关系的相关系数r 越接近1,说明两变量间线性关系越密切B .在回归分析中,可以用卡方2x 来刻画回归的效果,2x 越大,模型的拟合效果越差C .线性回归方程对应的直线ˆˆˆy bx a =+至少经过其样本数据点中的一个点D .线性回归方程0.51y x =+中,变量x 每增加一个单位时,变量y 平均增加1个单位 【答案】A 【解析】分析:利用“卡方”的意义、相关指数的意义及回归分析的适用范围,逐一分析四个答案的真假,可得答案.详解:A. 衡量两变量之间线性相关关系的相关系数r 越接近1,说明两变量间线性关系越密切,正确; B. 在回归分析中,可以用卡方2x 来刻画回归的效果,2x 越大,模型的拟合效果越差,错误对分类变量X 与Y 的随机变量的2x 观测值来说, 2x 越大,“X 与Y 有关系”可信程度越大; 故B 错误; C. 线性回归方程对应的直线y bx a =+至少经过其样本数据点中的一个点,错误,回归直线y bx a =+可能不经过其样本数据点中的任何一个点;D. 线性回归方程0.51y x =+中,变量x 每增加一个单位时,变量y 平均增加1个单位,错误,由回归方程可知变量x 每增加一个单位时,变量y 平均增加0.5个单位. 故选A.点睛:本题考查回归分析的意义以及注意的问题.是对回归分析的思想、方法小结.要结合实例进行掌握. 4.执行如右图所示的程序框图,则输出的s 的值是( )A .7B .6C .5D .3【答案】B 【解析】1,1k s ==,1s =,判断否,2k =,2s =,判断否,3,6k s ==,判断是,输出6s =,故选B .5.已知5log 2a =,0.5log 0.2b =,0.20.5c =,则,,a b c 的大小关系为( ) A .a c b << B .a b c << C .b c a << D .c a b <<【答案】A 【解析】 【分析】利用10,,12等中间值区分各个数值的大小. 【详解】551log 2log 52a =<<, 0.50.5log 0.2log 0.252b =>=, 10.200.50.50.5<<,故112c <<, 所以a c b <<. 故选A . 【点睛】本题考查大小比较问题,关键选择中间量和函数的单调性进行比较. 6.下列求导计算正确的是( )A .2ln ln 1()'x x x x -= B .22log (log )'e x x = C .1(2)'2ln 2x x = D .(sin )'cos x x x =【答案】B 【解析】 【分析】根据函数求导法则得到相应的结果. 【详解】 A 选项应为21ln xx -, C 选项应为2ln 2x , D 选项应为sin cos x x x +. 故选B . 【点睛】这个题目考查了函数的求导运算,牢记公式,准确计算是解题的关键,属于基础题.7.如图过抛物线24y x =焦点的直线依次交抛物线与圆()2211x y -+=于A 、B 、C 、D ,则AB CD ⋅=A .4B .2C .1D .12【答案】C 【解析】 【分析】根据抛物线的几何意义转化1=A AB AF x =-,1D CD DF x =-=,再通过直线过焦点可知24A D p x x ⋅=,即可得到答案. 【详解】抛物线焦点为()1,0F ,1=A AB AF x =-,1D CD DF x =-=,,于是214A D p AB CD x x ⋅=⋅==,故选C.【点睛】本题主要考查抛物线的几何意义,直线与抛物线的关系,意在考查学生的转化能力,计算能力及分析能力. 8.下列函数中,即是奇函数,又在(0,)+∞上单调递增的是A .x x y e e -=+B .3y x x =+C .2sin y x x =+D .ln ||y x =-【答案】B 【解析】分析:对四个选项分别进行判断即可得到结果 详解:对于A ,xxy e e-=+,()xx f x ee --=+,()x xf x e e --=--()()f x f x -≠-,不是奇函数,故错误对于C ,2y x sinx =+,12cos y x =+',当1cos 2x =-时,0y '=,函数在()0+∞,上不单调,故错误对于D ,函数在()0+∞,上单调递减,故错误 故选B点睛:对函数的奇偶性作出判断可以用其定义法,单调性的判断可以根据函数的图像性质,或者利用导数来判断。
2022-2023学年广东省珠海市高二上册期末数学质量检测试题一、单选题1.等差数列{}n a 的前n 项和为n S ,若23a =,525S =,则7a =()A .16B .15C .14D .13【正确答案】D【分析】先求得等差数列{}n a 的公差,从而求得7a .【详解】15353325552225,5a S a aa a +=⨯=⨯===,设等差数列{}n a 的公差为d ,则322d a a =-=,所以72535213a a d =+=+⨯=.故选:D2.已知空间向量()()1,2,,,2,3n a m a == ,且n m ⊥,则n m -= ()A .B C .20D .【正确答案】D【分析】根据向量垂直列方程,求得a ,进而求得n m -.【详解】由于n m ⊥,所以43440,1n m a a a a ⋅=++=+==- ,所以()()()1,2,11,2,32,0,4n m -=---=-== 故选:D3.古代《九章算术》记载:“今有五人分五钱,令上二人所得与下三人等,问各得几何”其意思为:“今有5人分5钱,各人所得钱数依次成等差数列,其中前2人所得之和与后3人所得之和相等,问各得多少钱”.由此可知第一人分得的钱数是()A .43B .1C .23D .13【正确答案】A【分析】设第()15,N n n n *≤≤∈分到n a 钱,由题意可得出关于1a 、d 的方程组,解出1a 的值即可.【详解】设第()15,N n n n *≤≤∈分到n a 钱,设数列{}()15,N n a n n *≤≤∈的公差为d ,由题意可得1234512345++++=5+=++a a a a a a a a a a ⎧⎨⎩,所以,121315+=2+=2=+2=1a a a d a a d ⎧⎪⎨⎪⎩,解得143a =.故选:A.4.已知圆1C :22(5)(3)9x y -+-=,圆2C :224290x y x y +-+-=,则两圆的位置关系为()A .外离B .外切C .相交D .内切【正确答案】C【分析】求出两圆的圆心和半径,根据圆心距与半径和与差的关系,判断圆与圆的位置关系.【详解】圆1C :22(5)(3)9x y -+-=的圆心为1(5,3)C ,半径13r =,圆2C :224290x y x y +-+-=,即22(2)(1)14x y -++=,圆心1(2,1)C -,半径2r =,两圆的圆心距125C C =,353-<<+,即211221r r C C r r -<<+,所以圆1C 与圆2C 相交.故选:C5.设{}n a 是等比数列,且1231a a a ++=,234+2a a a +=,则678a a a ++=()A .12B .24C .30D .32【正确答案】D【分析】根据已知条件求得q 的值,再由()5678123a a a q a a a ++=++可求得结果.【详解】设等比数列{}n a 的公比为q ,则()2123111a a a a q q ++=++=,()232234111112a a a a q a q a q a q q q q ++=++=++==,因此,()5675256781111132a a a a q a q a q a q q q q ++=++=++==.故选:D.本题主要考查等比数列基本量的计算,属于基础题.6.过点()21P ,作圆221:+=O x y 的切线l ,则切线l 的方程为()A .3450x y --=B .4350x y --=C .1y =或4350x y --=D .1y =或3450x y --=【正确答案】C【分析】设切线l 为1(2)y k x -=-,即120kx y k -+-=,由l 与圆221:+=O x y 相切,得1d =,即可解决.【详解】由题知,圆221:+=O x y ,圆心为(0,0),半径为1,因为()21P ,在圆外,所以设切线l 为1(2)y k x -=-,即120kx y k -+-=,因为l 与圆221:+=O x y 相切,所以1d ==,解得0k =或43k =,所以切线l 的方程为1y =,或4350x y --=,故选:C7.已知直线1l :20x ay -+=与直线2l :()()240a x a y a ++-+=平行,则a 的值是()A .4-B .1C .4-或1D .4或1-【正确答案】B【分析】根据给定条件列出关于a 的等式,求解并验证即可作答.【详解】因直线1l :20x ay -+=与直线2l :()()240a x a y a ++-+=平行,则有(2)40a a a ++-=,解得1a =或4a =-,当1a =时,直线1l :20x y -+=与直线2l :3310x y -+=平行,当4a =-时,直线1l :420x y ++=与直线2l :2840x y ---=,即420x y ++=重合,所以a 的值是1.故选:B8.已知2F 是椭圆()222210x y a b a b+=>>的右焦点,点P 在椭圆上,()220OP OF PF +⋅= ,且22OP OF b +=,则椭圆的离心率为()A B C D .5【正确答案】A【分析】设2PF 的中点为Q ,根据向量的线性运算法则及数量积的定义可得2OQ PF ⊥,从而得到12PF PF ⊥,根据22OP OF b +=得到1||2PF b =,再根据椭圆的定义得到2||PF ,在直角三角形中利用勾股定理得到23b a =,最后根据离心率公式计算可得;【详解】解:设2PF 的中点为Q ,则22OP OF OQ +=由22()0OP OF PF +⋅= ,即220OQ PF ⋅= 所以2OQ PF ⊥,连接1PF 可得1//OQ PF ,所以12PF PF ⊥,因为22OP OF b += ,即22OQ b = ,即1||2PF b =所以21||2||22PF a PF a b =-=-,在12R t PF F 中,2221212||||||PF PF F F +=,即()()2222224c b a b -+=,又222c a b =-,所以222222b a b ab a b +=+--,所以232b ab =,即23b a =解得c e a =故选:A 二、多选题9.下列说法正确的是()A .过点()1,2P 且在x 、y 轴截距相等的直线方程为30x y +-=B .直线32y x =-在y 轴上的截距为2-C 10y ++=的倾斜角为60︒D .过点()1,2-且垂直于直线230x y -+=的直线方程为20x y +=【正确答案】BD【分析】A 选项忽略了过原点的情况,错误,B 选项计算截距得到正确,直线斜率为k =倾斜角为120︒,C 错误,根据垂直关系计算直线方程得到D 正确,得到答案.【详解】过点()1,2P 且在x 、y 轴截距相等的直线方程为30x y +-=和2y x =,A 错误;取0x =,=2y -,则直线32y x =-在y 轴上的截距为2-,B 正确;10y ++=的斜率为k =120︒,C 错误;垂直于直线230x y -+=的直线方程斜率为2k =-,过点()1,2-的直线方程为()2122y x x =-++=-,即20x y +=,D 正确.故选:BD.10.已知无穷等差数列{}n a 的前n 项和为n S ,20182019S S <且20192020S S >,则()A .在数列{}n a 中,1a 最大;B .在数列{}n a 中,2019a 最大C .20200a >D .当2020n ≥时,0n a <【正确答案】AD【分析】由题得201920200,0a a ><,即可解决.【详解】由题知,无穷等差数列{}n a 的前n 项和为n S ,20182019S S <且20192020S S >,所以201920200,0a a ><,所以等差数列{}n a 为递减数列,所以在数列{}n a 中,1a 最大;当2020n ≥时,0n a <;故选:AD11.已知空间中三点()0,1,0A ,()2,2,0B ,()1,3,1C -,则下列命题正确的是()A .AB方向的单位向量是55⎛⎫- ⎪ ⎪⎝⎭B .AB 与BC 夹角的余弦值是C .ABC的面积为2D .若3AP AB AC =+ ,则点P 到直线AC【正确答案】BCD【分析】根据单位向量、向量夹角、三角形面积、点线距等知识对选项进行分析,从而确定正确答案.【详解】A 选项,()2,1,0AB = ,所以AB方向的单位向量是2,1,0,055AB AB ⎛⎫== ⎪ ⎪⎝⎭,A 选项错误.B 选项,()3,1,1BC =- ,设AB与BC 夹角为θ,则cos AB BC AB BCθ⋅==-⋅,B选项正确.C 选项,由于cos 11θ=-,所以cos 11B =,则B 是锐角,所以sin B =所以12ABC S =C 选项正确.D 选项,()1,2,1AC =-,()111,3,1,,31,33AP AB AC AP ⎛⎫===+ ⎪⎝⎭,所以点P 到直线ACD 选项正确.故选:BCD12.如图,P 是椭圆22122:1(0)x y C a b a b+=>>与双曲线22222:1(0,0)x y C m n m n -=>>在第一象限的交点,且12,C C 共焦点121212,,,,F F F PF C C ∠θ=的离心率分别为12,e e ,则下列结论正确的是()A .12,PF a m PF a m=+=-B .若60θ=︒,则2221314e e +=C .若90θ=︒,则2212e e +的最小值为2D .tan2n bθ=【正确答案】ABD【分析】根据给定条件结合椭圆、双曲线定义计算判断A ;借助余弦定理、离心率公式、均值不等式计算判断B ,C ,D 作答.【详解】由椭圆和双曲线的定义得:121222PF PF aPF PF m ⎧+=⎪⎨-=⎪⎩,解得1PF a m =+,2PF a m =-,A 正确;在12F PF △中,由余弦定理得:()()()()()2222cos 2a m a m a m a m c θ-++--+=,整理得()()2221cos 1cos 2a m c θθ-++=,()()22221cos 1cos 2a m c c θθ-++=,即22121cos 1cos 2e e θθ-++=,当60θ=︒时,222132122e e +=,即2221314e e +=,B 正确;当90θ=︒时,2212112e e +=,2222222112122222121211)11()()1(22e e e e e e e e e e ++++==+2221221212e e e e ≥+⋅,当且仅当121e e ==时取“=”,而1201,1e e <<>,C 不正确;在椭圆中,22222121212122||||cos ||||||442||||PF PF PF PF F F a c PF PF θ=+-=--,即2122||||1cos b PF PF θ=+,在双曲线中,22222121212122||||cos ||||||442||||PF PF PF PF F F m c PF PF θ=+-=-+,即2122||||1cos n PF PF θ=-,于是得22222222sin 221cos 2tan 1cos 1cos 1cos 22cos 2n b n b θθθθθθθ-=⇔===-++,而022θπ<<,则tan 2n b θ=,D 正确.故选:ABD方法点睛:双曲线上一点与两焦点构成的三角形,称为双曲线的焦点三角形,与焦点三角形有关的计算或证明常利用正弦定理、余弦定理、双曲线定义,得到a ,c 的关系.三、填空题13.双曲线221916x y -=的渐近线方程是___________.【正确答案】43y x=±【分析】直接由双曲线的方程求解即可【详解】因为双曲线方程为221916x y -=,所以双曲线的渐近线方程为220916x y -=,即43y x =±,故43y x=±14.以点(1,1),(3,3)A B -为直径的圆的一般式方程为______________.【正确答案】22240x y x y +--=【分析】根据AB 为直径,得到直径和圆心坐标,然后写方程即可.【详解】因为()1,1A -,()3,3,所以AB =AB 中点坐标为()1,2,所以以AB 为直径的圆的标准方程为()()22125x y -+-=,展开得一般式方程为22240x y x y +--=.故答案为.22240x y x y +--=15C :y 2=4x 的焦点,且与C 交于A ,B 两点,则AB =________.【正确答案】163【分析】先根据抛物线的方程求得抛物线焦点坐标,利用点斜式得直线方程,与抛物线方程联立消去y 并整理得到关于x 的二次方程,接下来可以利用弦长公式或者利用抛物线定义将焦点弦长转化求得结果.【详解】∵抛物线的方程为24y x =,∴抛物线的焦点F 坐标为(1,0)F ,又∵直线AB 过焦点F AB 的方程为:1)y x -代入抛物线方程消去y 并化简得231030x x -+=,解法一:解得121,33x x ==所以212116||1||13|3|33AB k x x =+-=+⋅-=解法二:10036640∆=-=>设1122(,),(,)A x y B x y ,则12103x x +=,过,A B 分别作准线=1x -的垂线,设垂足分别为,C D 如图所示.12||||||||||11AB AF BF AC BD x x =+=+=+++1216+2=3x x =+故163本题考查抛物线焦点弦长,涉及利用抛物线的定义进行转化,弦长公式,属基础题.16.如图,二面角AB αβ--的大小为60 ,线段PM 与NQ 分别在这个二面角的两个面内,并且都垂直于棱AB .若2,3,4PM MN NQ ===,则PQ =__________.21【分析】利用空间向量的线性运算可得PQ PM MN NQ =++,再根据向量所成角,结合数量积公式平方即可得解.【详解】根据题意,PQ PM MN NQ =++,由二面角l αβ--大小为120︒,可得,120PM NQ =,22()PQ PM MN NQ =++ 222222PM MN NQ PM MN NQ MN PM NQ=+++⋅+⋅+⋅ 14916224212⎛⎫=+++⨯⨯⨯-= ⎪⎝⎭,所以PQ =四、解答题17.已知公差不为0的等差数列{an }满足a 3=9,a 2是a 1,a 7的等比中项.(1)求{an }的通项公式;(2)设数列{bn }满足()17n n b n a =+,求{bn }的前n 项和Sn .【正确答案】(1)an =4n ﹣3.(2)Sn 44nn =+.(1)设等差数列{an }的公差为d (d ≠0),根据a 3=9,a 2是a 1,a 7的等比中项.利用“1,a q ”法求解.(2)由(1)知()1111741n n b n a n n ⎛⎫==⎪++⎝⎭,再用裂项相消法求解.【详解】(1)设等差数列{an }的公差为d (d ≠0),则()()12111296a d a d a a d +=⎧⎪⎨+=⋅+⎪⎩解得d =4或d =0(舍去),a 1=1,∴an =1+4(n ﹣1)=4n ﹣3.(2)∵()1111741n n b n a n n ⎛⎫==⎪++⎝⎭,∴1231111111412231n n S b b b b n n ⎡⎤⎛⎫⎛⎫⎛⎫=++++=-+-++- ⎪ ⎪⎢⎥+⎝⎭⎝⎭⎝⎭⎣⎦ 1114144nn n ⎛⎫=-=⎪++⎝⎭.本题主要考查等差数列的基本运算和裂项相消法求和,还考查了运算求解的能力,属于中档题.18.已知圆22:240C x y y +--=,直线:10l mx y m -+-=.(1)判断直线l 与圆C 的位置关系;(2)若直线l 与圆C 交于不同的两点,A B,且AB =.【正确答案】(1)直线l 与圆C 相交;(2)直线的方程为0x y -=或20x y +-=【分析】(1)先求出直线l 过的定点坐标,判断定点在圆内,则直线l 必与圆相交;(2)由圆的半径和弦长求得圆心到直线l 的距离,以此列方程求解m 的值,即可求出直线l 的方程.【详解】(1)直线:10l mx y m -+-=,整理得(1)1m x y -=-,令1010x y -=⎧⎨-=⎩,解得11x y =⎧⎨=⎩即直线l 过定点(1,1)P .将P 点坐标代入圆C 方程得112440+--=-<,故P 点在圆C 内,直线l 与圆C 相交.(2)圆22:240C x y y +--=,整理得22(1)5x y +-=即(0,1)C ,r =.因为AB =,所以圆心C 到直线l 的距离为2d ==.又2d =,所以1m =±故直线的方程为0x y -=或20x y +-=.19.如图,在四棱锥P ABCD -中,底面ABCD 是矩形,M 是PA 的中点,PD ⊥平面ABCD ,且4PD CD ==,2AD =.(1)求证:PA CD ⊥;(2)求AP 与平面CMB 所成角的正弦值;(3)求二面角M CB P --的余弦值.【正确答案】(1)证明见解析;(2)45;(331010(1)根据线面垂直的判定定理证明CD ⊥平面PAD ,即证PA CD ⊥;(2)以D 为原点,分别以,,DA DC DP 所在直线为x 轴,y 轴,z 轴建立空间直角坐标系,求平面CMB的法向量,用向量的方法求直线AP 与平面CMB 所成角的正弦值;(3)求平面CBP 的法向量,用向量的方法求二面角M CB P --的余弦值.【详解】(1)PD ⊥ 平面ABCD ,CD ⊂平面ABCD ,PD CD ∴⊥.底面ABCD 是矩形,AD CD ∴⊥,又AD PD D =I ,CD \^平面PAD ,PA ⊂平面PAD ,CD PA ∴⊥.(2)以D 为原点,分别以,,DA DC DP 所在直线为x 轴,y 轴,z 轴建立空间直角坐标系,如图所示则()()()()()()0,0,0,2,0,0,0,4,0,0,0,4,1,0,2,2,4,0D A C P M B ,()()()2,0,4,2,0,0,1,4,2,25AP CB BM AP ∴=-==--= 设平面CMB 的法向量(),,n x y z = ,则·0·0n CB n BM ⎧=⎨=⎩,即0420x x y z =⎧⎨--+=⎩,令1y =,则2z =,()0,1,2,5n n ∴== .设直线AP 与平面CMB 所成的角为θ,则4sin cos ,5255AP n AP n AP n θ=〈〉==⨯ .所以AP 与平面CMB 所成角的正弦值为45.(3)()()2,0,0,2,4,4CB BP ==-- .设平面CBP 的法向量(),,m x y z = ,则·0·0m CB m BP ⎧=⎨=⎩,即02440x x y z =⎧⎨--+=⎩,令1y =,则1z =.()0,1,1,2m m == 又平面CMB 的法向量()0,1,2,5n n == 设二面角M CB P --的大小为α,则α为锐角,310cos cos ,1025m n m n m nα∴=〈〉===⨯ ,所以二面角M CB P --的余弦值为31010.本题考查线线垂直,考查用向量的方法求线面角和面面角,考查学生的运算能力,属于较难的题目.20.如图,焦点为F 的抛物线2y 2px(p 0)=>过点()Q 1,m (m 0)>,且QF 2=.(Ⅰ)求p 的值;(Ⅱ)过点Q 作两条直线1l ,2l 分别交抛物线于()11A x ,y ,()22B x ,y 两点,直线1l ,2l 分别交x 轴于C ,D 两点,若QCD QDC ∠∠=,证明:12y y +为定值.【正确答案】(Ⅰ)p 2=;(Ⅱ)见解析.【分析】(Ⅰ)由抛物线的定义可得出p 的值;(Ⅱ)先写出抛物线的方程,由条件∠QCD =∠QDC ,得出直线AQ 和直线BQ 的斜率之和为零,利用两点的斜率公式以及等式2114y x =,2224y x =可计算出y 1+y 2=-4,进而证明结论成立.【详解】(Ⅰ)抛物线的准线方程为p x 2=-,由抛物线的定义得p QF 122=+=,得p 2=;(Ⅱ)由(Ⅰ)可知,抛物线的方程为2y 4x =,将点Q 的坐标代入抛物线的方程得2m 414=⨯=,m 0> ,得m 2=,所以,点Q 的坐标为()1,2.QCD QDC ∠∠= ,所以,直线AQ 和BQ 的斜率互为相反数.则()()121212AQ BQ 2222121212124y 24y 2y 2y 2y 2y 244k k 0y y x 1x 1y 4y 4y 2y 21144------+=+=+=+=+=----++--.所以,12y 2y 20+++=,因此,12y y 4(+=-定值).本题考查直线与抛物线的综合,考查抛物线的定义,同时考查抛物线性质的应用,考查计算能力,属于中等题.21.已知数列{}n a 中,12a =且*122(2,)n n a a n n n N -=-+≥∈.(1)求2a ,3a ,并证明{}n a n -是等比数列;(2)设12n n n a b -=,求数列{}n b 的前n 项和n S .【正确答案】(1)24a =,37a =,证明见解析;(2)1242n n n S n -+=+-.(1)在已知的数列递推公式中分别取2,3n =,结合已知的首项即可求得23,a a 的值,再把递推式两边同时减n 即可证明{}n a n -是等比数列;(2)由{}n a n -是等比数列求出数列{}n a 的通项公式,代入12n n n a b -=,分组后利用错位相减法求数列{}n b 的前n 项和n S .【详解】(1)由已知()*1222,n n a a n n n N -=-+≥∈+24a =,37a =,1222n n a n a n --=-+,即()121n n a n a n -⎡⎤-=--⎣⎦,因为()()*122,1n n a n n n N a n --=≥∈--,所以{}n a n -是以2为公比的等比数列.(2)由(1)得()1112n n a n a --=-⋅,即12n n a n -=+,所以11122n n n n a n b --==+,设12n n n C -=,且前n 项和为n T ,所以01231123422222n n n T -=+++++ ,①123112322222n n n T =++++ ,②①-②得231111111222222-⎛⎫=+++++- ⎪⎝⎭ n n n n T ,11112212122212--+=+-=--n n nn n ,所以1242n n n T -+=-,1242n n n S n -+=+-.该题主要考查的是等比数列的定义,数列的递推公式,错位相减法求和,还考查了运算求解的能力,属于中档题.22.已知定点()1,0M -,圆N :()22116x y -+=,点Q 为圆N 上动点,线段MQ 的垂直平分线交NQ 于点P ,记P 的轨迹为曲线C .(1)求曲线C 的方程;(2)过点M 与N 作平行直线1l 和2l ,分别交曲线C 于点A ,B 和点D ,E ,求四边形ABDE 面积的最大值.【正确答案】(1)22143x y +=(2)6【分析】(1)由椭圆的定义求解(2)设直线方程后与椭圆方程联立,由韦达定理表示弦长,将面积转化为函数后求求解【详解】(1)由题意可得42MP NP PQ NP MN +=+=>=,所以动点P 的轨迹是以M ,N 为焦点,长轴长为4的椭圆,即曲线C 的方程为:22143x y +=;(2)由题意可设2l 的方程为1x ty =+,联立方程得()2222134690431x y t y ty x ty ⎧+=⎪⇒++-=⎨⎪=+⎩,设()11,D x y ,()22,E x y ,则由根与系数关系有122122634934t y y t y y t ⎧+=-⎪⎪+⎨⎪⋅=-⎪+⎩,所以DE =()2212134t t +=+,根据椭圆的对称性可得()2212134t DE AB t +==+,1l 与2l 的距离即为点M 到直线2l的距离,为d所以四边形ABDE 面积为24S =()1u u =≥得224241313u S u u u==++,由对勾函数性质可知:当且仅当1u =,即0=t 时,四边形ABDE 面积取得最大值为6.。
2019-2020年高二下学期期末考试数学(理)试题 含答案命题教师:张金荣一、选择题(本大题共12小题,每小题5分,共60分)1.已知集合A ={x |y =lg(2x -x 2)},B ={y |y =2x ,x >0},R 是实数集,则(∁R B )∩A 等于( )A .[0,1]B .(0,1]C .(-∞,0]D .以上都不对2.函数f(x)=ln(x-2)-的零点所在的大致区间是( )A .(1,2) B.(2,3) C.(3,4) D.(4,5)3.函数f(x)=的定义域为( )A . B. C. D.4.设a =60.7,b =0.76,c =log 0.76,则a ,b ,c 的大小关系为 ( )A .c <b <aB .c <a <bC .b <a <cD .a <c <b5.以下说法错误的是( )A .命题“若x 2-3x+2=0,则x=1”的逆否命题为“若x≠1,则x 2-3x+2≠0”B .“x=1”是“x 2-3x+2=0”的充分不必要条件C .若p ∧q 为假命题,则p,q 均为假命题D .若命题p:∃x 0∈R,使得+x 0+1<0,则﹁p:∀x ∈R,则x 2+x+1≥06.函数y=lg|x |x 的图象在致是( )7.偶函数y=f (x )在x ∈时,f (x )=x-1,则f(x -1)<0的解集是( )A .{x|-1<x <0B .{x|x <0或1<x <2C .{x|0<x <2D .{x|1<x <28.函数f(x)= 满足对任意成立,则实数a 的取值范围是( )A .B .C .D .9.若不等式x 2+ax+1≥0对于一切x(0,)恒成立,则a 的取值范围是( )A .a≥0B .a≥-2C .a≥-D .a≥-310.已知函数f (x )=的值域为[0,+∞),则它的定义域可以是( )A .(0,1]B .(0,1)C .(-∞,1]D .(-∞,0]11.已知定义在R 上的奇函数f (x ),满足f (x -4)=-f (x ),且在区间[0,2]上是增函数,() A .f (-25)<f (11)<f (80) B .f (80)<f (11)<f (-25)C .f (11)<f (80)<f (-25)D .f (-25)<f (80)<f (11)12.已知a >0且a ≠1,f (x )=x 2-a x ,当x ∈(-1,1)时,均有f (x )<12,则实数a 的取值范围是( ) A .(0,12]∪[2,+∞) B .[14,1)∪(1,4] C .[12,1)∪(1,2] D .(0,14]∪[4,+∞) 二、填空题(本大题共4小题,每小题5分,共20分)13.已知函数f(x)=ax 2+bx+3a+b 是偶函数,定义域为[a-1,2a],则a+b= .14.已知函数f(x)是定义在区间上的函数,且在该区间上单调递增,则满足f(2x-1)<f()的x 的取值范围为__________15.定义:区间[x 1,x 2](x 1<x 2)的长度为x 2-x 1.已知函数y =|log 0.5x |的定义域为[a ,b ],值域为[0,2],则区间[a ,b ]的长度的最大值为________.16.设函数f (x )是定义在R 上的偶函数,且对任意的x ∈R 恒有f (x +1)=f (x -1),已知当x ∈[0,1]时f (x )=(12)1-x ,则 ①2是函数f (x )的周期;②函数f (x )在(1,2)上是减函数,在(2,3)上是增函数;③函数f (x )的最大值是1,最小值是0;④当x ∈(3,4)时,f (x )=(12)x -3. 其中所有正确命题的序号是________.三、解答题(共70分)17.(12分)给定两个命题::对任意实数都有恒成立;:关于的方程有实数根;如果P ∨q 为真,P ∧q 为假,求实数的取值范围.18.(12分)对定义在实数集上的函数f (x ),若存在实数x 0,使得f (x 0)=x 0,那么称x 0为函数f (x )的一个不动点.(1)已知函数f (x )=ax 2+bx -b (a ≠0)有不动点(1,1)、(-3,-3),求a 、b ;(2)若对于任意实数b ,函数f (x )=ax 2+bx -b (a ≠0)总有两个相异的不动点,求实数a 的取值范围.19.(12分)已知f (x )为定义在[-1,1]上的奇函数,当x ∈[-1,0]时,函数解析式f (x )=14x -a 2x (a ∈R). (1)写出f (x )在[0,1]上的解析式;(2)求f (x )在[0,1]上的最大值.20.(12分)C D E AB P 经市场调查,某城市的一种小商品在过去的近20天内的销售量(件)与价格(元)均为时间t (天)的函数,且销售量近似满足g (t )=80-2t (件),价格近似满足f (t )=20-12|t -10|(元). (1)试写出该种商品的日销售额y 与时间t (0≤t ≤20)的函数表达式;(2)求该种商品的日销售额y 的最大值与最小值.21.(12分)已知函数f (x )的图象与函数h (x )=x +1x +2的图象关于点A (0,1)对称.(1)求函数f (x )的解析式;(2)若g (x )=f (x )+a x ,g (x )在区间(0,2]上的值不小于6,求实数a 的取值范围.请考生在第22、23、24三题中任选一题做答,如果多做,则按所做的第一题记分.答时用2B 铅笔在答题卡上把所选题目的题号涂黑.22.(本小题满分10分)选修4—1: 几何证明选讲.如图,在正ΔABC 中,点D 、E 分别在边BC, AC 上,且,,AD ,BE 相交于点P.求证:(I) 四点P 、D 、C 、E 共 圆;(II) AP ⊥CP 。
桂林市2019~2020学年度下学期期末质量检测高二年级 数学(理科)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,有且只有一个选项是符合题目要求的.1. 23A =( )A. 3B. 6C. 9D. 12【答案】B 【解析】 【分析】直接根据排列数公式计算即可得答案.【详解】解:根据排列数公式()()()121mn A n n n n m =---+得:23326A =⨯=.故选:B.【点睛】本题考查排列数公式的计算,是基础题. 2. i (1+i )=( ) A. 1i -+ B. 1i -- C. 1i + D. 1i -【答案】A 【解析】 【分析】根据复数的乘法运算得到结果.【详解】根据复数的乘法运算得到:原式i (1+i )=i-1. 故选A .【点睛】这个题目考查了复数的乘法运算,题目简单基础. 3. 函数()ln f x x =的导数是( ) A. x B.1xC. ln xD. x e【答案】B 【解析】 【分析】根据导数公式直接计算即可得答案. 【详解】解:因为()1ln 'x x=, 所以()1'f x x=. 故选:B.【点睛】本题考查导数的公式,是基础题. 4.212xdx =⎰( )A. 3B. 2C. 1D.32【答案】A 【解析】 【分析】直接利用微积分基本定理求解即可.【详解】222112|413xdx x ==-=⎰. 故选:A .【点睛】本题考查微积分基本定理的应用,考查计算能力,属于基础题. 5. 5(12)x +的展开式中的常数项为( ) A. -1 B. 1C. 92D. 93【答案】B 【解析】 【分析】利用二项展开式的通项公式求出展开式的通项,令x 的指数为0,求出r ,可得展开式的常数项.【详解】5(12)x +的展开式的通项为155(2)2r r r r rr T C x C x +==, 当0r =时,可得5(12)x +的展开式中的常数项为00521C =.故选:B .【点睛】本题主要考查了二项展开式的通项的应用,解题的关键是熟练掌握二项式定理,正确写出其通项,属于基础试题6. 用反证法证明命题“在ABC 中,若A B ∠>∠,则a b >”时,应假设( )A. a b <B. a b ≤C. a b >D. a b ≥【答案】B 【解析】 【分析】直接利用命题的否定,写出假设即可.【详解】用反证法证明命题“在ABC 中,若A B ∠>∠,则a b >”时, 假设就是命题“ABC 中,若A B ∠>∠,则a b >”的结论的否定, 命题“ABC 中,若A B ∠>∠,则a b >”的结论的否定是:a b . 故选:B .【点睛】本题考查反证法的定义以及命题的否定,基本知识的考查. 7. 关于函数3()f x x x =+,下列说法正确的是( ) A. 没有最小值,有最大值 B. 有最小值,没有最大值 C. 有最小值,有最大值 D. 没有最小值,也没有最大值【答案】D 【解析】 【分析】 利用()'fx 研究函数()f x 的最值.【详解】依题意()'2310f x x =+>,所以()f x 在R 上递增,没有最小值,也没有最大值.故选:D【点睛】本小题主要考查利用导数研究函数的最值,属于基础题. 8. 已知随机变量X 的分布列是则a b +=( ) A.23B.32C. 1D.34【解析】 【分析】直接根据离散型随机变量的分布列的性质求解即可得答案.【详解】解:根据离散型随机变量的分布列的概率和为1得:113a b ++=, 所以23a b +=. 故选:A.【点睛】本题考查分布列的性质,是基础题. 9. 已知随机变量ξ服从正态分布()23,N σ,且(4)0.68P ξ≤=,则(2)P ξ≤=( )A. 0.84B. 0.68C. 0.32D. 0.16【答案】C 【解析】 【分析】直接利用正态分布的应用和密度曲线的对称性的应用求出结果. 【详解】解:根据随机变量ξ服从正态分布()23,N σ,所以密度曲线关于直线3x =对称, 由于()40.68P ξ≤=,所以()410.680.32P ξ≥=-=, 所以()20.32P ξ≤=. 故选:C.【点睛】本题考查正态分布的应用,主要考查学生的运算能力和转换能力及思维能力,属于基础题.10. 在正方体ABCD -A 1B 1C 1D 1中,E 是C 1C 的中点,则直线BE 与平面B 1BD 所成角的正弦值为( )A 5-B.5C. 5- D.5【解析】 【分析】以D 为坐标原点,以DA 为x 轴,以DC 为y 轴,以1DD 为z 轴,建立空间直角坐标系,利用向量法能求出直线BE 与平面1B BD 所成角的正弦值.【详解】以D 为坐标原点,以DA 为x 轴,以DC 为y 轴,以1DD 为z 轴,建立如图空间直角坐标系,设正方体的棱长为2,则()000D ,,,()220B ,,,()1222B ,,,()021E ,,,∴() 220BD =--,,,()1 002BB =,,,() 201BE =-,,,设平面1B BD 的法向量为(),,x n y z =, ∵ n BD ⊥,1 n BB ⊥, ∴22020x y z --=⎧⎨=⎩,令y 1=,则()110n =-,,, ∴10cos ,5n BE n BE n BE⋅==⋅, 设直线BE 与平面1B BD 所成角为θ, 则10sin cos ,5n BE θ==,故选B . 【点睛】本题考查直线与平面所成角的正弦值的求法,解题时要注意向量法的合理运用,准确得到面的法向量是解题的关键,是中档题.11. 根据上级扶贫工作要求,某单位计划从5名男干部和6名女干部中选出1名男干部和2名女干部组成一个扶贫小组,派到某村开展“精准扶贫”工作,那么不同的选法有( )A. 60种B. 70种C. 75种D. 150种【答案】C 【解析】 【分析】根据题意,先在5名男干部中任选1人,再从6名女干部中选出2人,由分步计数原理计算可得答案.【详解】根据题意,先在5名男干部中任选1人,有155C =种选法, 再从6名女干部中选出2人,有2615C =种选法,则有51575⨯=种不同的选法; 故选:C .【点睛】本题考查排列组合的应用,涉及分步计数原理的应用,属于基础题.12. 定义域为R 的可导函数()y f x =的导函数为()f x ',满足()()f x f x '>,且()02f =,则不等式()2xf x e <的解集为( )A. (),0-∞B. (),2-∞C. ()0,∞+D. ()2,+∞【答案】C 【解析】【详解】构造函数()()x f x g x e=,根据()()f x f x '>可知()0g x '<,得到()g x 在R 上单调递减;根据()()002f g e==,可将所求不等式转化为()()0g x g <,根据函数单调性可得到解集.【解答】令()()x f x g x e =,则()()()()()20x x x xf x e f x e f x f xg x e e ''--'==< ()g x ∴在R 上单调递减 ()02f = ()()002f g e∴== 则不等式()2xf x e >可化为()2xf x e<等价于()2g x <,即()()0g x g < 0x ∴> 即所求不等式的解集为:()0,∞+ 本题正确选项:C【点睛】本题考查利用导数研究函数的单调性求解不等式,关键是能够构造函数()()xf xg x e =,将所求不等式转变为函数值的比较,从而利用其单调性得到自变量的关系. 二、填空题:本大题共4小题,每小题5分,共20分.13. 已知i 是虚数单位,复数2z i =+,则z =__________.【解析】 【分析】直接根据复数的模的计算公式计算即可得答案.【详解】解:根据复数模的计算公式得:z =【点睛】本题考查复数模的计算,是基础题. 14. 已知()12P B A =,3()10P AB =,则()P A =__________. 【答案】35【解析】 【分析】直接根据条件概率公式计算即可得答案. 【详解】解:根据条件概率公式()()()P AB P B A P A =和已知条件()12P B A =,3()10P AB =, 所以()()()3310152P AB P A P B A ===. 故答案为:35【点睛】本题考查条件概率公式的应用,是基础题.15. 经过圆221x y +=上一点()00,x y 的切线方程为001x x y y +=,则由此类比可知:经过椭圆22221x y a b+=上一点()00,x y 的切线方程为______. 【答案】00221x x y ya b+= 【解析】 【分析】根据圆的切线方程形式,类比推理出椭圆的切线方程.【详解】解:圆的性质中,经过圆上一点()00,M x y 的切线方程就是将圆的方程中的一个x 和y 分别用()00,M x y 的横坐标与纵坐标替换,故可得椭圆22221x y a b +=类似的性质为:过椭圆22221x y a b +=上一点()00,x y 的切线方程为00221x x y ya b+=. 故答案为:00221x x y ya b+=.【点睛】考查了类比推理的数学思想,是基础题.16. 函数()cos f x x x =-在区间[0,]π上的最大值为__________. 【答案】1π+ 【解析】 【分析】求出导函数()f x ',[0x ∈,]π,利用导数研究函数()f x 的单调性,根据单调性可得结果. 【详解】数()cos f x x x =-, ()1sin f x x '=+, [0x ∈,]π,()0f x ∴'>,当[0x ∈,]π时,函数()f x 单调递增;∴函数()f x 在区间[0,]π上的最大值为:()1f ππ=+.故答案为:1π+.【点睛】本题考查了利用导数研究函数的单调性与最值,考查了推理能力与计算能力,属于中档题.三、解答题:本大题共6小题,共70分解答应给出文字说眀、证明过程及演算步骤.17. 在91x x ⎛⎫- ⎪⎝⎭展开式中,求: (1)含x 的项; (2)含3x 的项的系数.【答案】(1)126x ;(2)84-. 【解析】 【分析】(1)写出二项展开式的通项,令x 的指数为1,求得参数的值,代入通项可求得结果;(2)写出二项展开式的通项,令x 的指数为3,求得参数的值,进而可求得展开式中含3x 的项的系数.【详解】(1)91x x ⎛⎫- ⎪⎝⎭展开式的通项为()99219911rr r rr r r T C xC x x --+⎛⎫=-=- ⎝⋅⋅⋅⋅⎪⎭, 令921r -=,得4r =,所以含x 的项为()4491126C x x -=⋅;(2)由(1),令923r -=,得3r =,所以含3x 的项的系数为()339184C ⋅-=-.【点睛】本题考查利用二项式定理求指定项或指定项的系数,考查计算能力,属于基础题. 18. 已知函数1()ln 2f x x x ax =++在(1, (1))f 处的切线方程为2210x y --=. (1)求实数a 的值;(2)求()f x 的单调区间.【答案】(1)0a =;(2)减区间为10,e ⎛⎫ ⎪⎝⎭,增区间为1,e ⎛⎫+∞ ⎪⎝⎭. 【解析】 【分析】(1)求导得()1f x lnx a '=++,利用f '(1)1=,列出关于a 的方程,解之即可. (2)由(1)可知,()1(0)f x lnx x '=+>,令()0f x '=,则1=x e,然后根据原函数的单调性与导函数的正负性之间的联系判断即可得解.【详解】(1)1()2f x xlnx ax =++,()1f x lnx a '∴=++, ()f x 在点(1,f (1))处的切线方程为2210x y --=,f '∴(1)1=,即011a ++=,解得0a =.(2)由(1)可知,1()2f x xlnx =+,()1(0)f x lnx x '∴=+>, 当1(0,)∈x e时,()0f x '<,()f x 单调递减;当1(x e ∈,)+∞时,()0f x '>,()f x 单调递增,故()f x 的单调递减区间为1(0,)e,单调递增区间为1(e ,)+∞.【点睛】本题考查利用导数研究函数的切线方程、单调性,理解原函数的单调性与导函数的正负性之间的联系是解题的关键,考查学生的逻辑推理能力和运算能力,属于基础题. 19. 在数列{}n a 中,已知11a =,112nn na a a +=+.(1)计算2a ,3 a ,4a ;(2)根据计算结果猜想出{}n a 的通项公式n a ,并用数学归纳法证明你的结论. 【答案】(1)213a =,315a =,417a =;(2)121n a n =-,证明见解析.【解析】 【分析】(1)利用()*11112nn na a a n N a +==∈+,,n 分别取234,,可求出234,,a a a ,并由此猜想数列{}n a 的通项公式n a 的表达式;(2)根据计算结果猜想数列{}n a 的通项公式n a 的表达式,用数学归纳法证明①当1n =时,111211a ==⨯-,猜想成立;②假设n k =成立,利用()*112n n n a a n N a +=∈+,可证得当1n k =+时猜想也成立,故可得结论.【详解】(1)∵111,(1,2,3,)12nn a a a n a+===⋅⋅⋅+, ∴1211123a a a ==+,同理可得:315a =,417a =. (2)由(1)计算结果猜想121n a n =-, 下面用数学归纳法证明: ①当1n =时,111211a ==⨯-,猜想成立,②假设当()*1n k k N=+∈时,猜想成立,即:121kak =-. 则当()*1n k k N =+∈时,111121212212(1)1121k k k a k a a k k k +-====+++-+-,所以,当1n k =+时,猜想成立. 根据①②可知猜想对任何*n N ∈都成立.【点睛】本题主要考查了以数列递推式为载体,考查了数列的通项的猜想与证明,解题的关键是利用数学归纳法证明,尤其第二步的证明.属于中档题. 20. 在四棱锥P ABCD -中,已知底面ABCD正方形,PA ⊥底面ABCD ,且2PA AD ==,E 为PD 中点.(1)求证://PB 平面ACE ; (2)求二面角A BE C --的余弦值. 【答案】(1)证明见解析;(2)105- 【解析】 【分析】(1)由中位线可知//OE BP ,结合线面平行判定即可证明//PB 平面ACE ;(2)以A 为原点构建空间直角坐标系,写出对应点的坐标并求出面ABE 、面BCE 的法向量,根据法向量夹角与二面角的关系求它们的夹角的余弦值【详解】(1)证明:连接AC 、BD ,AC BD O = ,连接EO∵在BPD △中,BO OD =,PE ED = ∴//OE BP又∵BP ⊄平面ACE ,OE ⊂平面ACE ∴//BP 平面ACE(2)由题,易知PA ,AD ,AB 两两互相垂直,2PA AD == 故可建立如图的空间直角坐标系A xyz -,则(0,0,0)A ,(2,2,0)C ,(0,1,1)E ,(2,0,0)B ,有(0,1,1)AE =,(2,0,0)AB =,(0,2,0)CB =-,(2,1,1)CE =--设(,,)m x y z =为平面ABE 的一个法向量,有020y z x +=⎧⎨=⎩令1y =-,1z =,得(0,1,1)m =-同理若(,,)n x y z =是平面BCE 的一个法向量,有2020y x y z -=⎧⎨--+=⎩令1x =,2z =,得(1,0,2)n = 则10cos ,||5|,|25m n m n m n ⋅〈〉===⨯∴由图知,二面角A BE C --(钝角)的余弦值为10-【点睛】本题考查了线面平行的判定证明平行,利用空间向量求二面角的余弦值,由题意构建空间坐标系并根据二面角所在的两个面确定各点坐标,可得面的法向量,进而求二面角的余弦值21. 东方商店欲购进某种食品(保质期两天),此商店每两天购进该食品一次(购进时,该食品为刚生产的).根据市场调查,该食品每份进价8元,售价12元,如果两天内无法售出,则食品过期作废,且两天内的销售情况互不影响,为了了解市场的需求情况,现统计该产品在本地区100天的销售量如下表:(视样本频率为概率)(1)根据该产品100天的销售量统计表,记两天中一共销售该食品份数为ξ,求ξ的分布列与期望(2)以两天内该产品所获得的利润期望为决策依据,东方商店一次性购进32或33份,哪一种得到的利润更大?【答案】(1)见解析(2)见解析 【解析】 【分析】(1)根据题意可得ξ的取值为30,31,32,33,34,35,36,计算相应的概率值即可确定分布列和数学期望;(2)分别求解当购进32份时的利润和购进33份时的利润即可确定利润更高的决策. 【详解】(1)根据题意可得()111305525P ξ==⨯=,()13331251025P ξ==⨯⨯=,()123313225510104P ξ==⨯⨯+⨯=,()11327332251010525P ξ==⨯⨯+⨯⨯=,()31221134210105550P ξ==⨯⨯+⨯=, ()21235251025P ξ==⨯⨯=,()111361010100P ξ==⨯=,ξ的分布列如下:()131711213031323334353632.825254255025100E ξ=⨯+⨯+⨯+⨯+⨯+⨯+⨯= (2)当购进32份时,利润()()2131324314830416252525⨯⨯+⨯-⨯+⨯-⨯ 107.5213.92 4.16125.6=++=, 当购进33份时,利润为()()()591313343248314163042410042525⨯⨯+⨯-⨯+⨯-⨯+⨯-⨯ 77.883012.96 3.84124.68=+++=, 125.6124.68>可见,当购进32份时,利润更高.【点睛】本题主要考查离散型随机变量的分布列与数学期望的计算,概率统计的预测作用等知识,意在考查学生的转化能力和计算求解能力. 22. 已知函数()ln 2()f x m x x m =-∈R . (1)当6m =时,试确定()f x 的零点的个数;(2)若不等式(1)2xf x mx e +>-对任意(0,)x ∈+∞恒成立,求证:2m ≤. 【答案】(1)2;(2)证明见解析. 【解析】 【分析】(1)根据条件,利用导函数的符号得到()f x 的单调性和极大值、计算1()f e,2()f e 的符号,由零点存在定理,即可判断零点个数;(2)由题意可得[(1)]2(1)x m ln x x x e +->+-对任意(0,)x ∈+∞恒成立,设(1)y ln x x =+-,求得导数和单调性,得到2(1)(1)x x e m ln x x+-<+-对任意的0x >恒成立,再由此不等式的右边与2作差比较,再求出m 的范围.【详解】(1)当6m =时,知()6ln 2(0)f x x x x =->,则62(3)()2x f x x x-'=-=, ∵当03x <<时,()0f x '>;当3x >,则62(3)()2x f x x x-'=-=, ∴()f x 在区间()0,3是单调递增,在区间(3,)+∞单调递减. ∴max ()(3)6ln 360f x f ==->. 又∵1260f e e⎛⎫=--< ⎪⎝⎭,()221220f e e =-<. ∵()f x 在区间1,3e ⎛⎫ ⎪⎝⎭,在区间()23,e 各有1个零点.综上,函数()f x 零点的个数为2.(2)函数()ln 2f x m x x =-,若不等式(1)2xf x mx e +>-对任意(0,)x ∈+∞恒成立,即为ln(1)2(1)2xm x x mx e +-+>-对任意(0,)x ∈+∞恒成立 即有()(ln(1))21xm x x x e +->+-对任意(0,)x ∈+∞恒成立,设ln(1)y x x =+-,1111x y x x -'=-=++,0x >时,0y '<,函数y 递减, 可得ln(1)0y x x =+-<,则()21ln(1)x x e m x x+-<+-对任意(0,)x ∈+∞恒成立.由()211ln(1)22ln(1)ln(1)x x x e x e x xx x x x+-+--++-=⋅+-+-, 设()1ln(1)(0)xg x x e x x x =+--++>,1()21xg x e x '=--+,21()(1)x g x e x ''=-+,由()y g x ''=在0x >递减,即有()0g x ''<,可得()y g x '=在0x >递减,即有()0g x '<,可得()g x 在0x >递减,可得()0g x <,而ln(1)0x x +-<,可得1ln(1)20ln(1)x x e x xx x+--++⋅>+-. 则由()212ln(1)x x e x x+->+-,所以2m ≤.【点睛】本题考查函数的零点个数和函数恒成立问题解法,零点存在定理和分离参数法、以及构造函数法,考查化简运算能力、推理能力,属于难题.。
杭州市2019-2020学年数学高二第二学期期末学业质量监测试题一、单选题(本题包括12个小题,每小题35,共60分.每小题只有一个选项符合题意) 1.在公差为d 的等差数列{}n a 中,“1d >”是“{}n a 是递增数列”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件2.随机变量a 服从正态分布()21,N σ,且()010.3000P a <<=.已知0,1a a >≠,则函数1xy a a=+-图象不经过第二象限的概率为( ) A .0.3750B .0.3000C .0.2500D .0.20003.从甲地去乙地有3班火车,从乙地去丙地有2班轮船,则从甲地去丙地可选择的旅行方式有( ) A .5种B .6种C .7种D .8种4.若偶函数()f x 在(],0-∞上单调递减,()2log 3a f =,()4log 5b f =,232c f ⎛⎫= ⎪⎝⎭,则a 、b 、c满足( ) A .a b c <<B .b a c <<C .c a b <<D .c b a <<5.某教师有相同的语文参考书3本,相同的数学参考书4本,从中取出4本赠送给4位学生,每位学生1本,则不同的赠送方法共有( ) A .20种 B .15种C .10种D .4种6.复数21i- (i 为虚数单位)的共轭复数是( ) A .1i +B .1i --C .1i -+D .1i -7.在三棱锥P-ABC 中,PB BC =,3PA AC ==,2PC =,若过AB 的平面α将三棱锥P-ABC 分为体积相等的两部分,则棱PA 与平面α所成角的正弦值为( ) A .13B .23C .23D .2238.若(13)n x +的二项展开式各项系数和为256,i 为虚数单位,则复数(1)n i +的运算结果为( ) A .16- B .16C .4-D .49.若展开式的二项式系数之和为64,则展开式的常数项为( )A .10B .20C .30D .12010.平面α 与平面β 平行的条件可以是( ) A .α内有无穷多条直线都与β平行 B .α内的任何直线都与β平行C .直线a α⊂ ,直线b β⊂ ,且//,//a b βαD .直线//,//a a αβ ,且直线a 不在平面α内,也不在平面β内11.若函数()()32ln f x x f x '=+,则()1f '=( )A .1B .1-C .27D .27-12.定义在{|,1}x x R x ∈≠上的函数()()11f x f x -=-+,当1x >时, ()12xf x ⎛⎫= ⎪⎝⎭,则函数()()11cos 22g x f x x π⎛⎫=-+ ⎪⎝⎭(35x -≤≤)的所有零点之和等于( )A .2B .4C .6D .8二、填空题(本题包括4个小题,每小题5分,共20分)13.用数字0,1,2,3,4,5组成没有重复数字的五位数,其中能被5整除的数共有______个. 14.用数学归纳法证明2135(21)n n ++++-=L ,则当1n k =+时左端应在n k =的基础上加上的项为_______.15.若函数2()log (1)a f x x ax =-+有最小值,则a 的取值范围是______.16.某产品的广告费用x (万元)与销售额y (万元)的统计数据如下表:根据上表可得回归方程ˆˆˆybx a =+中的ˆb 为7。
2019-2020学年惠州市数学高二(下)期末综合测试试题一、单选题(本题包括12个小题,每小题35,共60分.每小题只有一个选项符合题意)1.在复平面内,复数65,23i i +-+对应的点分别为,A B .若C 为线段AB 的中点,则点C 对应的复数是( ) A .48i + B .82i +C .24i +D .4i +【答案】C 【解析】 【分析】求出复数对应点的坐标后可求C 的坐标. 【详解】两个复数对应的点坐标分别为(6,5),(2,3)A B -,则其中点的坐标为(2,4)C ,故其对应点复数为24i +,故选:C. 【点睛】本题考查复数的几何意义,注意复数对应的点是由其实部和虚部确定的,本题为基础题.2.已知ABC ∆为等腰三角形,满足AB AC ==2BC =,若P 为底BC 上的动点,则()AP AB AC ⋅+=u u u v u u u v u u u vA .有最大值8B .是定值2C .有最小值1D .是定值4【答案】D 【解析】 【分析】设AD 是等腰三角形的高.将AP u u u r 转化为AD DP +u u u v u u u v,将AB AC u u u v u u u v +转化为2AD u u u r ,代入数量积公式后,化简后可得出正确选项. 【详解】设AD =故()AP AB AC u u u v u u u v u u u v⋅+=()222222224AD DP AD AD DP AD AD +⋅=+⋅==⨯=u u u v u u u v u u u v u u u v u u u v u u u v u u u v .所以选D.【点睛】本小题主要考查向量的线性运算,考查向量的数量积运算,还考查了化归与转化的数学思想方法.属于基础题.3.6(2)x y -的展开式中,42x y 的系数为( ) A .15 B .-15 C .60 D .-60【答案】C 【解析】试题分析:依题意有()224426260C x y x y -=,故系数为60.考点:二项式.4.若X ~B(n ,p),且E(X)=6,D(X)=3,则P(X =1)的值为( ) A .3×2-2 B .2-4 C .3×2-10 D .2-8【答案】C 【解析】E(X)=np =6,D(X)=np(1-p)=3,∴p =12,n =12,则P(X =1)=112C ·(12)1·(12)11=3×2-10. 5.在二项式252()x x-的展开式中,x 的系数为( )A .﹣80B .﹣40C .40D .80【答案】A 【解析】 【分析】根据二项展开式的通项,可得10315(2)r r rr T C x -+=-,令3r =,即可求得x 的系数,得到答案.【详解】由题意,二项式252()x x-的展开式的通项为251031552()()(2)r rr r r r r T C x C x x--+=-=-, 令3r =,可得3345(2)80T C x x =-=-,即展开式中x 的系数为80-,故选A. 【点睛】本题主要考查了二项式定理的应用,其中解答中熟记二项展开式的通项是解答本题的关键,着重考查了推理与运算能力,属于基础题.6.已知双曲线2222:1(0,0)x y C a b a b-=>>的一条渐近线与直线210x y ++=垂直,则双曲线的离心率为( )A B C D【答案】C 【解析】 【分析】求出双曲线的渐近线方程,再由两直线垂直的条件,可得,b=2a ,再由a ,b ,c 的关系和离心率公式,即可得到所求. 【详解】双曲线的渐近线方程为b y x a =±,直线210x y ++=的斜率为12-,由题意有112b a ⎛⎫⨯-=- ⎪⎝⎭,所以2b a =,c ==,故离心率ce a==故选:C . 【点睛】本题考查双曲线的方程和性质,考查渐近线方程和离心率的求法,考查运算能力,属于基础题. 7.设随机变量X 服从正态分布2(4,)N σ,若()0.4P X m >=,则(8)P X m >-=( ) A .0.6 B .0.5C .0.4D .与σ的值有关【答案】A 【解析】分析:根据随机变量X 服从正态分布,可知正态曲线的对称轴,利用对称性,即可求得(8)P X m >-,从而求出(8)P X m >-即可.详解:Q 随机变量X 服从正态分布()24,N σ,∴正态曲线的对称轴是4x =, Q ()0.4P X m >=,而m 与8m -关于4x =对称,由正态曲线的对称性得:()()80.4P X m P X m >=<-=,故()810.40.6P X m >-=-=. 故选:A.点睛:解决正态分布问题有三个关键点:(1)对称轴x =μ;(2)标准差σ;(3)分布区间.利用对称性可求指定范围内的概率值;由μ,σ,分布区间的特征进行转化,使分布区间转化为3σ特殊区间,从而求出所求概率.注意只有在标准正态分布下对称轴才为x =0. 8.已知i 为虚数单位,则复数21ii-+对应复平面上的点在第( )象限. A .一 B .二C .三D .四【答案】D 【解析】分析:首先化简所给的复数,然后确定复数所在的象限即可. 详解:由题意可得:()()()()2121313111222i i i i i i i i ----===-++-, 则复数对应的点为13,22⎛⎫- ⎪⎝⎭,该点位于第四象限, 即复数21ii-+对应复平面上的点在第四象限. 本题选择D 选项.点睛:本题主要考查复数的运算法则及其应用等知识,意在考查学生的转化能力和计算求解能力. 9.若三角形的两内角α,β满足sin αcos β<0,则此三角形必为( ) A .锐角三角形 B .钝角三角形C .直角三角形D .以上三种情况都可能【答案】B 【解析】 【分析】 【详解】由于,αβ为三角形内角,故sin 0α>,所以cos 0β<, 即β为钝角,三角形为钝角三角形,故选B .10.已知,x y 满足2ln y x x =-,其中1,x e e⎡⎤∈⎢⎥⎣⎦,则x y -的最小值为( )A .2111e e++ B .21e e +-C .3ln 24+ D .1【答案】C 【解析】 【分析】令()2ln f x x y x x x =-=-+,利用导数可求得()f x 单调性,确定()min 12f x f ⎛⎫=⎪⎝⎭,进而得到结果. 【详解】令()2ln f x x y x x x =-=-+,则()()()221112112x x x x f x x x x x-++-'=-+==. 1,x e e ⎡⎤∈⎢⎥⎣⎦Q ,由()0f x '<得:11,2x e ⎛⎫∈ ⎪⎝⎭;由()0f x '>得:1,2x e ⎛⎫∈ ⎪⎝⎭,()f x ∴在11,2e ⎛⎫⎪⎝⎭上单调递减,在1,2e ⎛⎫ ⎪⎝⎭上单调递增,()min 13ln 224f x f ⎛⎫∴==+ ⎪⎝⎭,即x y -的最小值为3ln 24+.故选:C . 【点睛】本题考查函数最值的求解问题,关键是能够利用导数确定函数的单调性,进而确定最值点. 11.已知定义域为R 的函数()f x 满足()()f x f x -=,(2)(2)f x f x -=+,当[0,2]x ∈时2()2log (3)f x x =+,则(923)f =()A .22log 3B .3C .22log 5D .4【答案】D 【解析】 【分析】根据奇偶性和()()22f x f x -=+可知()f x 关于y 轴和2x =对称,由对称性和周期性关系可确定()f x 周期为4,进而将所求函数值化为()()()92311f f f =-=,代入1x =可求得结果.【详解】()()f x f x -=Q ,()f x ∴为偶函数,图象关于y 轴对称; ()()22f x f x -=+Q ,()f x ∴关于直线2x =对称;()f x ∴是周期为4的周期函数,()()()()292342311112log 44f f f f ∴=⨯-=-===.故选:D . 【点睛】本题考查利用函数的性质求解函数值的问题,涉及到函数奇偶性、对称性和周期性的应用;关键是能够熟练掌握对称性和周期性的关系,准确求得函数的周期性.12.已知命题2:()4(1)3p f x ax a x =++-在[3,)+∞上递减;命题:q a m ≤,且p ⌝是q ⌝的充分不必要条件,则m 的取值范围为( ) A .25m <-B .3m ≤-C .25m >-D .65m ≥-【答案】A 【解析】 【分析】由题意可得当0a =时不成立,当0a ≠时,满足()04132a a a <⎧⎪+⎨-≤⎪⎩求出a 的范围,从而求出p ⌝,再求出q ⌝,根据p ⌝是q ⌝的充分不必要条件,即可求解. 【详解】由命题2:()4(1)3p f x ax a x =++-在[3,)+∞上递减, 当0a =时,()43f x x =-,不满足题意,当0a ≠时,则()241532a a a a <⎧⎪⇒≤-+⎨-≤⎪⎩, 所以p ⌝:25a >-, 由命题:q a m ≤,则q ⌝:a m >, 由因为p ⌝是q ⌝的充分不必要条件, 所以25m <-. 故选:A 【点睛】本题考查了由充分不必要条件求参数的取值范围以及考查了二次函数的图像与性质,同时考查了学生的逻辑推理能力,属于中档题.二、填空题(本题包括4个小题,每小题5分,共20分)13.甲和乙玩一个猜数游戏,规则如下:已知六张纸牌上分别写有1﹣12n⎛⎫ ⎪⎝⎭()*,16n N n ∈≤≤六个数字,现甲、乙两人分别从中各自随机抽取一张,然后根据自己手中的数推测谁手上的数更大.甲看了看自己手中的数,想了想说:我不知道谁手中的数更大;乙听了甲的判断后,思索了一下说:我知道谁手中的数更大了.假设甲、乙所作出的推理都是正确的,那么乙手中可能的数构成的集合是_____【答案】133163,,,243264⎧⎫⎨⎬⎩⎭【解析】 【分析】根据题意,先推出甲不是最大与最小的数,再讨论乙的所有情形,即可得出答案. 【详解】由题意,六个数字分别为137153163,,,,,248163264. 由甲说他不知道谁手中的数更大,可推出甲不是最大与最小的数, 若乙取出的数字是12或6364,则他知道甲的数字比他大还是小; 若乙取出的数字是34或3132,则他知道甲的数字比他大还是小; 若乙取出的数字是78或1516,则他不知道谁的数字更大. 故乙手中可能的数构成的集合是133163,,,243264⎧⎫⎨⎬⎩⎭. 【点睛】本题考查了简单的推理,要注意仔细审题,属于基础题.14.已知点(),P s t ,(),Q u v ,2s t +≤,221u v +=,复数1z 、2z 在复平面内分别对应点P 、Q ,若12z z z =+,则z 的最大值是__________. 【答案】3 【解析】 【分析】由题意可知,点P 在曲线2x y +≤内,点Q 在圆221x y +=上,利用三角不等式得出z =1212z z z z OP OQ +≤+=+,可求出z 的最大值.【详解】由题意知,点P 在曲线2x y +≤内,点Q 在圆221x y +=上,如下图所示:由三角不等式得12121213z z z z z OP OQ OP =+≤+=+=+≤+=,当点P 为正方形的顶点,且点OP uuu r 、OQ uuur 方向相反时,z 取最大值3,故答案为3.【点睛】本题考查复数模的最值,解题时充分利用三角不等式与数形结合思想进行求解,能简化计算,考查数形结合思想的应用,属于中等题.15.在()61x +的展开式中,2x 项的系数为______. 【答案】15 【解析】 【分析】利用二项式展开式的通项公式,求得2x 项的系数. 【详解】二项式()()6611x x =++,展开式中含2x 项为222615C x x =,所以2x 项的系数为15.故答案为:15. 【点睛】本小题主要考查二项式展开式的通项公式,属于基础题.16.从四棱锥的八条棱中随机选取两条,则这两条棱所在的直线为异面直线的概率是______. 【答案】27【解析】 【分析】基本事件总数2828n C ==,这两条棱所在的直线为异面直线包含的基本事件个数248m =⨯=,由此能求出这两条棱所在的直线为异面直线的概率. 【详解】解:从四棱锥的八条棱中随机选取两条,基本事件总数2828n C ==,这两条棱所在的直线为异面直线包含的基本事件个数248m =⨯=,则这两条棱所在的直线为异面直线的概率是82287m p n ===. 故答案为:27.【点睛】本题考查概率的求法.求古典概型概率时,可采用列举法将基本事件一一列出;也可结合计数原理的思想. 三、解答题(本题包括6个小题,共70分)17.计划在某水库建一座至多安装3台发电机的水电站,过去50年的水文资料显示,水库年入流量X (年入流量:一年内上游来水与库区降水之和.单位:亿立方米)都在40以上,其中,不足80的年份有10年,不低于80且不超过120的年份有35年,超过120的年份有5年,如将年人流量在以上三段的频率作为相应段的概率,假设各年的年入流量相互独立.(1)求未来4年中,至多有1年的年入流量超过120的概率;(30.90.729=,40.90.6561=) (2)水电站希望安装的发电机尽可能运行最多,但每年发电机最多可运行台数受年入流量X 限制,并有如下关系:若某台发电机运行,则该台年利润为4000万元,若某台发电机未运行,则该台年亏损600万元,欲使水电站年总利润的均值达到最大,应安装发电机多少台? 【答案】(1)0.9477;(2)2台. 【解析】 【分析】(1)求出1(4080)0.2p P X =<<=,2(80120)0.7p p x ==剟,2(120)0.1p p x =>=,由二项分布,未来4年中,至多有1年的年入流量超过120的概率.(2)记水电站的总利润为Y (单位,万元),求出安装1台发电机、安装2台发电机、安装3台发电机时Y 的分布列和数学期望,由此能求出欲使水电站年总利润的均值达到最大,应安装发电机的台数.【详解】解:(1)依题意,()11040800.250p P X =<<==, ()235801200.750p p x =≤≤==, ()251200.150p p x =>==, 由二项分布,未来4年中,至多有1年的年入流量超过120的概率为:()()443014343399111430.9477101010p C p C p p ⎛⎫⎛⎫⎛⎫=-+-=+⨯⨯= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.(2)记水电站的总利润为Y (单位,万元)安装1台发电机的情形:由于水库年入流总量大于40,故一台发电机运行的概率为1,对应的年利润4000Y =,()400014000E Y =⨯=,安装2台发电机的情形:依题意,当4080X <<时,一台发电机运行,此时40006003400Y =-=, 因此()()1340040800.2P Y P X p =<<===,当80X ≥时,两台发电机运行,此时400028000Y =⨯=,因此,()()2310000800.8P Y P X P P =≥=+==,由此得Y 的分布列如下所以()34000.280000.87080E Y =⨯+⨯=. 安装3台发电机的情形:依题意,当4080X <<时,一台发电机运行,此时400012002800Y =-=, 因此()()1280040800.2P Y P X p ==<<==,当80120X ≤≤时,两台发电机运行,此时400026007400Y =⨯-=,因此,()()27400801200.7P Y P X p =≤≤===,当120X >时,三台发电机运行,此时4000312000Y =⨯=,因此,()()3120001200.1P Y P X p =>===,由此得Y 的分布列如下所以()28000.274000.7120000.16940E Y =⨯+⨯+⨯=. 综上,欲使水电站年总利润的均值达到最大,应安装发电机2台. 【点睛】本题考查概率的求法,考查离散型随机变量的分布列、数学期望的求法及应用,考查运算求解能力,是中档题.18.已知函数()ln f x x =.(Ⅰ)求函数()(1)2g x f x x =--+的最大值;(Ⅱ)已知0a b <<,求证()()222()a b a f b f a a b-->+. 【答案】 (1) (2)0=g .(2)证明见解析.【解析】 分析:(Ⅰ)先求导,再利用导数求函数的单调区间,再求函数的最大值. (Ⅱ)利用分析法证明,先转化成证明2221ln 1b b a b a a⎛⎫- ⎪⎝⎭>+,再构造函数()()221ln (1)1x F x x x x -=->+,再求证函数()()10F x F >=. 详解:(I )因为()()()12ln 12g x f x x x x =--+=--+,所以 ()12111x g x x x -=-='-- 当()1,2x ∈时()'0g x >;当()2,x ∈+∞时()'0g x <,则()g x 在()1,2单调递增,在()2,+∞单调递减.所以()()ln 12g x x x =--+的最大值为()20g =.(II )由()()()222a b a f b f a a b -->+得,()2222212ln ln 1b a b a a b a b a b a⎛⎫- ⎪-⎝⎭->=++, 则2221ln 1b b a b a a⎛⎫- ⎪⎝⎭>+,又因为0a b <<,有1b a >, 构造函数()()221ln (1)1x F x x x x -=->+则()()()2222211(1)1x x F x x x x --=+>+', 当1x >时,()0F x '>,可得()F x 在()1,+∞单调递增,有()()10F x F >=,所以有()()()222a b a f b f a a b -->+.点睛:(1)本题主要考查利用导数求函数的单调区间和最值,考查利用导数证明不等式,意在考查学生对这些知识的掌握水平和分析推理转化能力.(2)解答本题的关键有两点,其一是先转化成证明2221ln 1b b a b a a ⎛⎫- ⎪⎝⎭>+,其二构造函数()()221ln (1)1x F x x x x -=->+,再求证函数 ()()10F x F >=.19.甲、乙两名篮球运动员,甲投篮的命中率为0.6,乙投篮的命中率为0.7,两人是否投中相互之间没有影响,求:(1)两人各投一次,只有一人命中的概率;(2)每人投篮两次,甲投中1球且乙投中2球的概率.【答案】(1)0.1.(2)0.2.【解析】【分析】【详解】(1)P 1=0.6(1-0.7)+(1-0.6)0.7=0.1.(2)P 2=[0.6(1-0.6)]·[(0.7)2(1-0.7)0]=0.2.20.如图,在矩形ABC 中,3AB =,6AD =,E 在线段AD 上,2DE =,现沿BE 将ABE 折起,使A 至位置A ',F 在线段A C '上,且2CF FA '=.(1)求证://DF 平面A BE ';(2)若A '在平面BCDE 上的射影O 在直线BC 上,求直线A C '与平面A BE '所成角的正弦值.【答案】(1)见解析(2)31416【解析】【分析】(1)取2CM BM =,再根据平几知识证,FM //A B DM //BE ',最后根据线面平行判定定理以及面面平行判定定理及其性质得结果;(2)建立空间直角坐标系,利用向量数量积求出平面A BE '法向量,根据向量夹角公式求夹角,最后根据向量夹角与线面角关系得结果.【详解】(1)取2CM BM =,因为2CF FA '=,所以,FM //A B FM '⊄Q 平面A BE ',A B '⊂平面A BE ',所以//FM 平面A BE ', 因为12,3BM BC DE BM //DE ===∴四边形BMDE 为平行四边形,即,DM //BE DM ⊄Q 平面A BE ',BE ⊂平面A BE ',所以//DM 平面A BE ',因为,,FM DM M FM DM =⊂I 平面FDM ,所以平面FDM //平面A BE ',因为DF ⊂平面FDM ,所以FD//平面A BE '(2)以O 为坐标原点,建立如图所示空间直角坐标系, 设(,0,0),(0),(6,0,0),(4,3,0),B t t C t E t ->--(0,0,)(0)A m m '>,因为2222937||3,||49,(4)916,,4A B A E t m t m t m ''==∴+=-++=∴== 设平面A BE '法向量为(,,)n x y z =r ,则0,0,n BE n BA '⋅=⋅=r u u r r u u u r 即937(4,3,0)0,(,0,)0,4n n ⋅=⋅=r r 即430,370,x y x z +=+=令441,,(1,,)3377x y z n =∴=-=-=--r 因为1537(,0,)4A C '=-uuu r ,所以15931444cos ,16163237n A C +'<>==⨯r uuu r 因此直线A C '与平面A BE '所成角的正弦值为314 【点睛】本题考查线面平行判定定理以及利用空间向量求线面角,考查综合分析论证与求解能力,属中档题. 21.如图所示,四边形ABCD 为菱形,且120ABC ∠=︒,2AB =,//BE DF ,且3BE DF ==DF ⊥平面ABCD .(1)求证:平面ABE ⊥平面ABCD ;(2)求平面AEF 与平面ABE 所成锐二面角的正弦值.【答案】(1)见解析;(2)平面AEF 与平面ABE 所成锐二面角的正弦值为144. 【解析】试题分析: (1)先证得BE ⊥平面ABCD ,再根据面面垂直的判定定理得出结论;(2)建立合适的空间直角坐标系,分别求出平面AEF 和平面ABE 的法向量,利用二面角的公式求解即可.试题解析:(1)∵//,BE DF DF ⊥平面ABCD ,∴BE ⊥平面ABCD ,又BE ⊂平面ABE ,∴平面ABE ⊥平面ABCD .(2)设AC 与BD 的交点为O ,建立如图所示的空间直角坐标系O xyz -, 则)()((3,0,0,0,1,0,3,0,3A B E F -, ∴()(()0,2,0,3,1,3,3,1,0EF AE AB =-=-=-u u u v u u u v u u u v设平面AEF 的法向量为()1111,,n x y z =u v ,则1100EF n AE n u u u v u v u u u v u v ⎧⋅=⎪⎨⋅=⎪⎩, 即111120330y x y z -=⎧⎪⎨+=⎪⎩, 令11x =,则110,0y z ==,∴()11,0,1n =u v .设平面ABE 的法向量为()2222,,n x y z =u u v ,则2200AE n AB n ⎧⋅=⎪⎨⋅=⎪⎩u u u v u u v u u u v u u v , 即2222233030x y z x y ⎧-++=⎪⎨-+=⎪⎩,令21x =,则223,0y z ==,∴()23,0n =u u v . ∴1212122cos ,422n n n n n n u v u u v u v u u v u v u u v ⋅===⨯⋅,∴1214sin ,4n n =u v u u v ,∴平面AEF 与平面ABE 所成锐二面角的正弦值为4. 22.已知()122*()(1)2(1)(1)(1),n n n k n f x x x k x n x n +++=+++++++++∈N L L .(1)当3n =时,求()f x 的展开式中含3x 项的系数;(2)证明:()f x 的展开式中含n x 项的系数为221(1)n n n C +++.【答案】(1)84;(2)证明见解析【解析】【分析】(1)当3n =时,根据二项展开式分别求出每个二项式中的3x 项的系数相加即可;(2)根据二项展开式,含n x 项的系数为123123212322323n n n n n n n n n n n n n C C C nC C C C nC +++++++++⋯+=+++,又1(1)k n n k n k k C n C +++⋅=+,再结合111r r r n n n C C C ++++=即可得到结论.【详解】(1)当3n =时,456()(1)2(1)3(1)f x x x x =+++++,()f x ∴的展开式中含3x 项的系数为6333452384C C C ++=.(2)122()(1)2(1)(1)(1)n n n k n f x x x k x n x +++=++++⋯+++⋯++Q ,(*)n N ∈,故()f x 的展开式中含n x 项的系数为123123212322323n n n n n n n n n n n n n C C C nC C C C nC ++++++++++=++++L L 因为1()!()!()!(1)(1)!!!(1)!(1)!(1)!k n n k n k n k n k n k k C k n n C n k n k n k ++++++⋅===+=+-+-, 所以n x 项的系数为:11111232(1)()n n n n n n n n n C C C C ++++++++++++L21112232(1)()n n n n n n n n n C C C C +++++++=+++++L211332(1)()n n n n n n n C C C +++++=++++L221(1)n n n C ++=+.【点睛】本题考查二项式定理、二项展开式中项的系数的求法、组合数的计算,考查函数与方程思想,考查逻辑推理能力、运算求解能力.。